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Kinematics

For more check:

Donnelly, Prog. Part. Nucl. Phys. 13, 183-236 (1985)

Van Orden, Donnelly, Moreno, arXiv:1707.04121
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Inclusive scattering on a target at rest: only scattered lepton 
is detected and we know nothing about final hadronic system

4 x 4-momentum → 16 variables

1 x 4-mom. conserv. → -4 constraints

3 x (E2=M2+p2) → -3 constraints

3-mom. of the beam → -3 known

3-mom. of the target → -3 known

Independent variables left → 3

M
B
?

We can choose the variables that we like the most as the 
independent variables. Typically, one chooses the lab variables 
of the final state: 
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One hadron is detected in coincidence with the scattered 
lepton, e.g., quasielastic scattering.

5 x 4-momentum → 20 variables

1 x 4-mom. conserv. → -4 constraints
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In this reference frame  (q // z): 

1) The cross section can be 
decomposed in response 

functions (Rosenbluth 
decomposition). 

2) Leptonic and hadronic 
variables are not mixed.

3) The φ
Ν
 dependence 

factorizes in terms of sinos and 
cosinos.

In this reference frame  (q // z): 

1) The cross section can be 
decomposed in response 

functions (Rosenbluth 
decomposition). 

2) Leptonic and hadronic 
variables are not mixed.

3) The φ
Ν
 dependence 

factorizes in terms of sinos and 
cosinos.

v's and R's depend on the independent 
variables (I included the explicit 

dependence on the incoming energy)
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factorizes in terms of sinos and 
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In this reference frame  (q // z): 

1) The cross section can be 
decomposed in response 

functions (Rosenbluth 
decomposition). 

2) Leptonic and hadronic 
variables are not mixed.

3) The φ
Ν
 dependence 

factorizes in terms of sinos and 
cosinos.

4 indep. variables.
If you have less... 

better think about it!

v's and R's depend on the independent 
variables (I included the explicit 

dependence on the incoming energy)
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If q is not along z, then hadronic-leptonic variables are mixed. The 
neutrino energy appears in the hadronic current:
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If q is not along z, then hadronic-leptonic variables are mixed. The 
neutrino energy appears in the hadronic current:

5 indep. variables.
If you have less... 

better think about it!
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If q is not along z, then:

See Donnelly, PPNP 13, 183-236 (1985) for a smart way of factoring 
out the dependence on one phi-angle (using response functions).
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If q is not along z, then:

See Donnelly, PPNP 13, 183-236 (1985) for a smart way of factoring 
out the dependence on one phi-angle (using response functions).

8 indep. variables.
If you have less... 

better think about it!
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Single-Pion Production off 
the nucleon

RGJ et al., PRD 95, 113007 (2017)
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Resonances: 
P33(1232), D13(1520), 
S11(1535), P11(1440)

ChPT background:

Low-energy model for pion-production 
on the nucleon:
ChPT background +  resonances 
Valencia model 
(PRD 76 (2007) 033005; PRD 87 (2013) 113009) 

Low-energy model
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The Problem

Unphysical predictions at large invariant masses. 

Figure: The model overshoots inclusive electron-
proton scattering data.  

Low-energy model 
(resonances + ChPT bg)

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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W values? We don't know...
+ Fermi motion
+ Flux-folding

Therefore, we need reliable 
predictions in:
+ the resonance region 
W < 2 GeV,
+ the high-energy energy 
region W > 2 GeV

W ?

The Problem

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Regge Theory

Kaskulov and Mosel, 
PRC (2010)

Based on unitarity, causality and crossing symmetry, Regge Theory 

provides the high energy (s→∞ ) behavior of the amplitude:

A(s,t) ~ β(t) sα(t)

Regge theory does not predict the 
t-dependence of the amplitude.

For that, one needs a model.

α(t): Families or Regge trajectories

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Regge approach for the vector amplitudes.

We use the approach of Guidal, Laget, and Vanderhaeghen [NPA627, 645 (1997)], 
originally developed for pion photoproduction (Q2 = 0):

The pion propagator is replace by the 
Regge trajectory of the pion family

1) Feynman meson-exchange diagrams are reggeized. 

High-energy model
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Regge approach for the vector amplitudes.

We use the approach of Guidal, Laget, and Vanderhaeghen [NPA627, 645 (1997)], 
originally developed for pion photoproduction (Q2 = 0):

The pion propagator is replace by the 
Regge trajectory of the pion family

2) s-channel and u-channel diagrams are included to keep Conservation of Vector 
Current.

1) Feynman meson-exchange diagrams are reggeized. 

High-energy model
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Figure: High-energy model (red lines), low-energy model (blue lines) and 
electron-induced single-pion production data.

High-energy model: N(e, e'π )N' results

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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High-energy model

Regge approach for the axial amplitudes.

We need meson exchange diagrams to apply the reggeization procedure of the current.

Effective rho-exchange diagrams. This allows us to consider the rho-exchange as the 
main Regge trajectory in the axial current.

We consider κ
ρ
 = 0 so that the low-energy 

model amplitude is recovered.

The propagator of the rho is replaced by the Regge trajectory of the rho family:

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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High-energy model

Regge approach for the axial amplitudes.

We need meson exchange diagrams to apply the reggeization procedure of the current.

Effective rho-exchange diagrams. This allows us to consider the rho-exchange as the 
main Regge trajectory in the axial current.

We consider κ
ρ
 = 0 so that the low-energy 

model amplitude is recovered.

+ ?
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Figure: ReChi model and NuWro predictions are 
compared with high energy cross section data for neutrino 
and antineutrino reactions (Note the high energy cut W>2 
GeV !!).  Data from Allen et al. NPB264, 221 (1986).

ReChi

NuWro: Based on DIS formalism and 
PYTHIA for hadronization.

Antineutrino cross section is ~2 the 
neutrino one:

ReChi
(fitted)

High-energy model: results

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Figure: ReChi model and NuWro predictions are 
compared with high energy cross section data for neutrino 
and antineutrino reactions (Note the high energy cut W>2 
GeV !!).  Data from Allen et al. NPB264, 221 (1986).

ReChi

NuWro: Based on DIS formalism and 
PYTHIA for hadronization.

Antineutrino cross section is ~2 the 
neutrino one:

ReChi
(fitted)

High-energy model: results
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ReChi model: One free parameter in 
the boson-nucleon-nucleon vertex

!!!
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Hybrid model: results
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W < 1.4 GeV No cut in W

Hybrid model: results

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Electroweak one-pion 
production on nuclei

RGJ et al., arXiv:1710.08374 [nucl-th]

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Relativistic Impulse 
Approximation

Relativistic mean field model

Relativistic mean-field 
wave functions

8-fold differential cross section:
Computationally very demanding 

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Relativistic Impulse 
Approximation

Relativistic mean field model

Relativistic mean-field 
wave functions

Plane waves (for the moment...)

RGJ - Ghent UniversityWrocław – Dec 4, 2017

8-fold differential cross section:
Computationally very demanding 
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Relativistic mean-field model

3) Spherical symmetry for finite nuclei:

RMF model provides a microscopic description of the ground state of finite nuclei 
which is consistent with Quantum Mechanic, Special Relativity and symmetries of 
strong interaction.

The starting point is a Lorentz covariant Lagrangian density 

where 

1) Mean-field approximation:

2) Static limit:

Main approximations:

Extension of the original 
σ−ω Walecka model 

(Ann. Phys.83,491 (1974)). 

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Relativistic mean-field model

Dirac equation for nucleons (eq. of motion for the barionic fields):

where the scalar (S) and vector (V) potential are given by: 

Eqs. of motion for the mesons and the photon:

Current densities

Solution of the couple equations for the fields in a self-consistent way. 

Wrocław – Dec 4, 2017 RGJ - Ghent University
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6 free 
parameters

Relativistic mean-field model

In general, the parameters are fit to reproduce some general properties of some 
closed shell spherical nuclei and nuclear matter. 

Parameters for the NLSH model (fitted to the mean charge radius, binding energy and 
neutron radius of the 16O, 40Ca, 90Zr, 116Sr, 124Sn and 208Pb.

 16O

Wrocław – Dec 4, 2017 RGJ - Ghent University



46

MiniBooNE neutrino CC 1pion+. MINERvA antineutrino CC 1pion0. 

RGJ - Ghent UniversityWrocław – Dec 4, 2017

RGJ et al., arXiv:1710.08374 [nucl-th]
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MiniBooNE neutrino CC 1pion+. 

MINERvA antineutrino CC 1pion0. 

RGJ et al., arXiv:1710.08374 [nucl-th]



48

MiniBooNE neutrino CC 1pion0. 

RGJ et al., arXiv:1710.08374 [nucl-th]
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MINERvA neutrino CC 1pion0. 

RGJ et al., arXiv:1710.08374 [nucl-th]
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MINERvA antineutrino CC 1pion0. 

RGJ et al., arXiv:1710.08374 [nucl-th]
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RGJ et al., arXiv:1710.08374 [nucl-th]
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RGJ et al., arXiv:1710.08374 [nucl-th]
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Conclusions

✔ Simple analysis of the kinematics of the problem tell us 
the minimum set of independent variables that is needed to 
describe the scattering process. 

➔ If in our model we have less than that, we are missing 
something. Is it important?

✔ Is it possible to implement (complex) microscopic models 
with full kinematics in the MC event generators?

➔ Is it worthy? Are you interested?

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Thanks for your attention
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Backup slides 
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What we know from (e,e')

Figures by T. Van 
Cuyck

One needs to model all neutrino-nucleus reaction channels 
covered by the neutrino beam

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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What we know from (e,e')

RGJ - Ghent University

Superscaling approach (Megias et al., Phys. Rev. D 91, 073004 (2015) )

12C(e,e')

Wrocław – Dec 4, 2017
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What we know from (e,e')

QE (SuSAv2): 
RGJ et al., PRC 90, 
035501 (2014)

MEC: Megias et al., 
PRD 91, 073004 
(2015)

1pion: RGJ et al., 
PRD 95, 113007 
(2017); 
arXiv:1710.08374 

RGJ - Ghent University

12C(e,e')

Wrocław – Dec 4, 2017
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Quasielastic scattering

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Impulse 
Approximation

Impulse approximation

where 
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where 

Impulse 
Approximation

Impulse approximation

Relativistic mean-field 
wave functions

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Intermediate 
energies 

(typical QE 
regime)

q ~ 401 q ~ 332

q ~ 402
q ~ 585

 Mean-field vs plane waves

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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RPWIA: Scattered nucleon 
wf is described as a Dirac 

plane wave.

RMF-FSI: Scattered 
nucleon wf is solution of 
Dirac eq. in presence of 
the same potentials used 

to describe the bound 
nucleon wf.

Intermediate 
energies 

(typical QE 
regime)

q ~ 401 q ~ 332

q ~ 402
q ~ 585

 Mean-field vs plane waves
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RPWIA: Scattered nucleon 
wf is described as a Dirac 

plane wave.

RMF-FSI: Scattered 
nucleon wf is solution of 
Dirac eq. in presence of 
the same potentials used 

to describe the bound 
nucleon wf.

Low 
energies

High 
energies

q ~ 118 q ~ 297

q ~ 1317
q ~ 2235

 Mean-field vs plane waves
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Back slides: isospin coefficients and resonances 
parameters

Table: Isospin coefficients for the CC reaction.
Table: Isospin coefficients for the neutral 
current (EM and WNC) reactions.

Table: quantum numbers and other 
parameters of the nucleon resonances.

Wrocław – Dec 4, 2017 RGJ - Ghent University
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The Problem

WNC neutrino scattering

Electron scattering 

The pathologies come from the 

resonances and background terms

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Why does this happen?

Direct channels:

Cross channels:

Behavior at threshold (barrier factor).
Feynman diagrams provide the right 
behavior at threshold but not at high s

Behavior at threshold (barrier factor).
Feynman diagrams provide the right 
behavior at threshold but not at high s

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Regge approach for the vector amplitudes.

We use the approach first proposed by Kaskulov and Mosel [PRC81, 045202 (2010)] to 
extends GLV to the case of pion electroproduction (Q2 ≠ 0).

The nucleon N' may be highly off its mass shell. 
Therefore, instead of using the on shell form factor              .
We use a form factor that accounts for the off shell character of 
the nucleon [Vrancx and Ryckebusch, PRC89, 025203 (2014) ]:

In the (on shell) limit the Dirac form factor is recovered.  

High-energy model

Wrocław – Dec 4, 2017 RGJ - Ghent University
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High-energy model

“Reggeizing” the ChPT background:

high-energy model:
ReChi (from Reggeized 

ChPT background )

low-energy model (only 
the ChPT background)

The pion propagator is replaced 
by the Regge propagator of the 

pion trajectory

Wrocław – Dec 4, 2017 RGJ - Ghent University
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+L=0 + ...L=1

Regge Theory

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Regge Theory

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Hybrid model

1) Regularizing the behavior of resonances 
(u- and s-channel contributions): we multiply the 
resonance amplitude by a dipole-Gaussian form 
factor

2) Gradually replacing the ChPT background by 
the High-energy (ReChi) model: we use a 
phenomenological transition function

,

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Delta propagator:

with the energy dependent Delta 
width:

Medium modifications of the Delta

RGJ - Ghent UniversityWrocław – Dec 4, 2017
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Medium modifications of the Delta

We modify the free Delta decay constant 
to take into account the E-dependent 
medium modification of the Delta-width

Wrocław – Dec 4, 2017 RGJ - Ghent University
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Interferences

Wrocław – Dec 4, 2017 RGJ - Ghent University
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