Neutrino-induced pion production R. González-Jiménez (UGent), Wroclaw, Dec 2017

Neutrino-induced pion production

Raúl González Jiménez

Department of Physics and Astronomy, Ghent University, Belgium

NuWro Workshop, 3-5 Dec 2017, Wrocław, Poland

In collaboration with...

Natalie Jachowicz Kajetan Niewczas Jannes Nys Vishvas Pandey Tom Van Cuyck Nils Van Dessel

- I Kinematics
- II 1π production on the nucleon III 1π production off the nucleus IV Conclusions

Kinematics

For more check:

Donnelly, Prog. Part. Nucl. Phys. 13, 183-236 (1985) **Van Orden, Donnelly, Moreno,** arXiv:1707.04121

4 x 4-momentum \rightarrow 16 variables

4 x 4-momentum	\rightarrow	16 variables
1 x 4-mom. conserv.	\rightarrow	-4 constraints
3 x (E ² =M ² +p ²)	\rightarrow	-3 constraints

4 x 4-momentum	\rightarrow	16 variables
1 x 4-mom. conserv.	\rightarrow	-4 constraints
3 x (E ² =M ² +p ²)	\rightarrow	-3 constraints
3-mom. of the beam	\rightarrow	-3 known
3-mom. of the target	\rightarrow	-3 known

Independent variables left \rightarrow 3

4 x 4-momentum	\rightarrow	16 variables
1 x 4-mom. conserv.	\rightarrow	-4 constraints
3 x (E ² =M ² +p ²)	\rightarrow	-3 constraints
3-mom. of the beam	\rightarrow	-3 known
3-mom. of the target	\rightarrow	-3 known

Independent variables left \rightarrow 3

~3 -

We can choose the variables that we like the most as the independent variables. Typically, one chooses the lab variables of the final state:

$$\varepsilon_f, \theta_f \text{ and } \phi_f \longrightarrow \frac{d \theta}{d\varepsilon_f \cos \theta_f d\phi_f}$$

The mass of the final hadronic system is known, e.g., elastic electron-proton scattering.

The mass of the final hadronic system is known, e.g., elastic electron-proton scattering.

The mass of the final hadronic system is known, e.g., elastic electron-proton scattering.

Independent variables left $\rightarrow 2$

$$\theta_f \text{ and } \phi_f \longrightarrow \frac{d^2 \sigma}{d \cos \theta_f d \phi_f}$$

One hadron is detected in coincidence with the scattered lepton, e.g., **quasielastic scattering.**

5 x 4-momentum \rightarrow 20 variables

One hadron is detected in coincidence with the scattered lepton, e.g., **quasielastic scattering.**

5 x 4-momentum	\rightarrow	20 variables
1 x 4-mom. conserv.	\rightarrow	-4 constraints
4 x (E ² =M ² +p ²)	\rightarrow	-4 constraints

One hadron is detected in coincidence with the scattered lepton, e.g., **quasielastic scattering.**

5 x 4-momentum	\rightarrow	20 variables
1 x 4-mom. conserv.	\rightarrow	-4 constraints
4 x (E ² =M ² +p ²)	\rightarrow	-4 constraints
3-mom. of the beam	\rightarrow	-3 known
3-mom. of the target	\rightarrow	-3 known

Independent variables left $\rightarrow 6$

$$d^6\sigma$$

 $d\varepsilon_f d\cos\theta_f d\phi_f dp_m dE_m d\phi_N$

(*) E_m and p_m = Missing₆ energy and momentum

In this reference frame (q // z):

1) The cross section can be decomposed in **response functions** (Rosenbluth decomposition).

2) Leptonic and hadronic variables are not mixed.

3) The ϕ_{N} dependence factorizes in terms of sinos and cosinos.

 $\frac{d^{6}\sigma}{d\phi_{f} d\omega dq d\Omega_{N} dE_{m}} = \sigma_{Mott} \frac{M_{B} M_{N} p_{N}}{M_{A} f_{rec}} \times (v_{L} R_{L} + v_{T} R_{T} + v_{TL} R_{TL} \cos \phi_{N} + v_{TT} R_{TT} \cos 2\phi_{N})$

v's and R's depend on the independent variables (I included the explicit dependence on the incoming energy)

$$egin{aligned} &d^6\sigma\ darepsilon_f d\Omega_f\,dE_m d
ho_m\,d\phi_N &\propto \ell_{\mu
u}H^{\mu
u}\ &\ell_{\mu
u} &= &\overline{\sum}(j_\mu)^*j_
u\ &H^{\mu
u} &= &\overline{\sum}(J^\mu)^*J^
u\ &j_\mu &= &j_\mu(arepsilon_i,q,\omega)\,,\ &J^\mu &= &J^\mu(q,\omega, heta_N,\phi_N,E_m) \end{aligned}$$

If \mathbf{q} is not along \mathbf{z} , then hadronic-leptonic variables are mixed. The neutrino energy appears in the hadronic current:

$$J^{\mu} = J^{\mu}(\varepsilon_{i}, \boldsymbol{q}, \omega, \theta_{N}, \phi_{N}, E_{m})$$

If **q** is not along **z**, then hadronic-leptonic variables are mixed. The neutrino energy appears in the hadronic current:

$$J^{\mu} = J^{\mu}(\varepsilon_i, \boldsymbol{q}, \omega, \theta_N, \phi_N, E_m)$$

Two hadrons are detected in coincidence with the scattered lepton, e.g., **2-nucleon knockout or 1-\pi production.**

 $6 x 4-momentum \rightarrow 24 variables$

Two hadrons are detected in coincidence with the scattered lepton, e.g., **2-nucleon knockout or 1-\pi production.**

6 x 4-momentum → 24 variables 1 x 4-mom. conserv. → -4 constraints 5 x ($E^2=M^2+p^2$) → -5 constraints

Two hadrons are detected in coincidence with the scattered lepton, e.g., **2-nucleon knockout or 1-\pi production.**

6 x 4-momentum	\rightarrow	24 variables
1 x 4-mom. conserv.	\rightarrow	-4 constraints
5 x (E ² =M ² +p ²)	\rightarrow	-5 constraints
3-mom. of the beam	\rightarrow	-3 known
3-mom. of the target	\rightarrow	-3 known

Independent variables left \rightarrow 9

$$\frac{d^9\sigma}{d\varepsilon_f d\cos\theta_f d\phi_f dE_\pi d\cos\theta_\pi d\phi_\pi d\cos\theta_N d\phi_N dE_m}$$

 \sim

$$\frac{d^9\sigma}{d\varepsilon_f d\Omega_f dE_\pi d\Omega_\pi d\Omega_N dE_m} \propto \ell_{\mu\nu} H^{\mu\nu}$$

$$\ell_{\mu
u} = \overline{\sum}(j_{\mu})^{*}j_{
u}$$

 $H^{\mu
u} = \overline{\sum}(J^{\mu})^{*}J^{
u}$

$$\begin{aligned} & j_{\mu} &= j_{\mu}(\varepsilon_{i}, \boldsymbol{q}, \omega), \\ & J^{\mu} &= J^{\mu}(\boldsymbol{q}, \omega, \boldsymbol{E}_{\pi}, \theta_{\pi}, \phi_{\pi}, \theta_{N}, \phi_{N}, \boldsymbol{E}_{m}) \end{aligned}$$

See **Donnelly,** PPNP 13, 183-236 (1985) for a smart way of factoring out the dependence on one phi-angle (using response functions).

If **q** is not along **z**, then:

$$J^{\mu} = J^{\mu}(\varepsilon_{i}, \boldsymbol{q}, \omega, \boldsymbol{E}_{\pi}, \theta_{\pi}, \phi_{\pi}, \theta_{N}, \phi_{N}, \boldsymbol{E}_{m})$$

$$d^{9}\sigma$$

$$d\varepsilon_{f}d\Omega_{f}dE_{\pi}d\Omega_{\pi}d\Omega$$

$$\ell_{\mu\nu} = \sum_{\substack{i \text{ better think about it!} \\ H^{\mu\nu} = \sum_{\substack{i \in i, q, \omega \\ j_{\mu} = j_{\mu}(\varepsilon_{i}, q, \omega), \\ J^{\mu} = J^{\mu}(q, \omega, E_{\pi}, \theta_{\pi}, \phi_{\pi}, \theta_{N}, \phi_{N}, E_{m})}$$

See **Donnelly,** PPNP 13, 183-236 (1985) for a smart way of factoring out the dependence on one phi-angle (using response functions).

If **q** is not along **z**, then:

$$J^{\mu} = J^{\mu}(\varepsilon_{i}, \boldsymbol{q}, \omega, \boldsymbol{E}_{\pi}, \theta_{\pi}, \phi_{\pi}, \theta_{N}, \phi_{N}, \boldsymbol{E}_{m})$$

Single-Pion Production off the nucleon

RGJ et al., PRD 95, 113007 (2017)

Low-energy model

Low-energy model for pion-production on the nucleon: ChPT background + resonances Valencia model (PRD 76 (2007) 033005; PRD 87 (2013) 113009)

ChPT background:

The Problem

Low-energy model (resonances + ChPT bg)

Unphysical predictions at large invariant masses.

Figure: The model overshoots inclusive electronproton scattering data.

The Problem

W values? We don't know...+ Fermi motion+ Flux-folding

Therefore, we need reliable predictions in:

+ the **resonance region** W < 2 GeV,

+ the high-energy energy region W > 2 GeV

Based on unitarity, causality and crossing symmetry, Regge Theory provides the high energy (s $\rightarrow \infty$) behavior of the amplitude:

A(s,t) ~ $\beta(t) s^{\alpha(t)}$

Regge theory does not predict the **t-dependence** of the amplitude.

For that, one needs a model.

α (t): Families or Regge trajectories

High-energy model

Regge approach for the vector amplitudes.

We use the approach of **Guidal, Laget, and Vanderhaeghen** [NPA627, 645 (1997)], originally developed for pion photoproduction ($Q^2 = 0$):

1) Feynman meson-exchange diagrams are reggeized.

$$\mathcal{P}_{\pi}(t,s) = -\alpha'_{\pi}\varphi_{\pi}(t)\Gamma[-\alpha_{\pi}(t)](\alpha'_{\pi}s)^{\alpha_{\pi}(t)}$$

High-energy model

Regge approach for the vector amplitudes.

We use the approach of **Guidal, Laget, and Vanderhaeghen** [NPA627, 645 (1997)], originally developed for pion photoproduction ($Q^2 = 0$):

1) Feynman meson-exchange diagrams are reggeized.

2) s-channel and u-channel diagrams are included to keep **Conservation of Vector Current**.

High-energy model: N(e, e' π)N' results

Figure: High-energy model (red lines), low-energy model (blue lines) and electron-induced single-pion production data.

Wrocław – Dec 4, 2017 RGJ - Ghent University

High-energy model

Regge approach for the axial amplitudes.

We need meson exchange diagrams to apply the reggeization procedure of the current.

Effective rho-exchange diagrams. This allows us to consider the rho-exchange as the main Regge trajectory in the axial current.

$$\mathcal{O}_{CT\rho}^{\mu} = i\mathcal{I} \frac{m_{\rho}^2}{m_{\rho}^2 - t} F_{A\rho\pi}(Q^2) \frac{1}{\sqrt{2}f_{\pi}} \\ \times \left(\gamma^{\mu} + i\frac{\kappa_{\rho}}{2M} \sigma^{\mu\nu} K_{t,\nu}\right) \,.$$

We consider $\kappa_{\rho} = 0$ so that the low-energy model amplitude is recovered.

The propagator of the rho is replaced by the Regge trajectory of the **rho family**:

$$\mathcal{P}_{\rho}(t,s) = -\alpha_{\rho}'\varphi_{\rho}(t)\Gamma[1-\alpha_{\rho}(t)](\alpha_{\rho}'s)^{\alpha_{\rho}(t)-1}$$

High-energy model

Regge approach for the axial amplitudes.

We need meson exchange diagrams to apply the reggeization procedure of the current.

Effective rho-exchange diagrams. This allows us to consider the rho-exchange as the main Regge trajectory in the axial current.

$$\mathcal{O}_{CT\rho}^{\mu} = i\mathcal{I} \frac{m_{\rho}^2}{m_{\rho}^2 - t} F_{A\rho\pi}(Q^2) \frac{1}{\sqrt{2}f_{\pi}} \times \left(\gamma^{\mu} + i\frac{\kappa_{\rho}}{2M}\sigma^{\mu\nu}K_{t,\nu}\right) \,.$$

We consider $\kappa_{p} = 0$ so that the low-energy model amplitude is recovered.

High-energy model: results

Figure: ReChi model and NuWro predictions are compared with high energy cross section data for neutrino and antineutrino reactions (Note the high energy cut W>2 GeV !!). Data from Allen et al. NPB264, 221 (1986).

NuWro: Based on DIS formalism and PYTHIA for hadronization.

Antineutrino cross section is ~2 the neutrino one:

$$\bar{\nu} + \underbrace{uud}^{p} \to \mu^{+} + \underbrace{\bar{ud}}^{\pi^{-}} + uud,$$
$$\nu + uud \to \mu^{-} + \underbrace{u\bar{d}}_{\pi^{+}} + uud.$$
High-energy model: results

Figure: ReChi model and NuWro predictions are compared with high energy cross section data for neutrino and antineutrino reactions (Note the high energy cut W>2 GeV !!). Data from Allen et al. NPB264, 221 (1986).

NuWro: Based on DIS formalism and PYTHIA for hadronization.

Antineutrino cross section is ~2 the neutrino one:

ReChi model: One free parameter in the boson-nucleon-nucleon vertex

Hybrid model: results

FIG. 21. (Color online) Different model predictions for the differential cross section $d\sigma/(dQ^2dW)$, for the channel $p(\nu_{\mu}, \mu^{-}\pi^{+})p$. The incoming neutrino energy is fixed to $E_{\nu} = 10$ GeV.

Hybrid model: results

No cut in W W < 1.4 GeV 20 8 $+\pi$ $v_{\mu} + p$ $\sigma (10^{-39} \text{ cm}^2)$ $\sigma (10^{-39} \text{ cm}^2)$ $\sigma (10^{-39} \text{ cm}^2)$ 10 Hybrid ANL BNL NuWro LEM(wff) LEM 0 BNL ANL ν., + ر (10⁻³⁹ م (10⁻³⁹ م (10⁻³⁹ م $\sigma (10^{-39} \text{ cm}^2)$ Hybrid LEM(wff LEM NuWro 0 0 $+\pi$ + p > μ $\sigma (10^{-39} \text{ cm}^2)$ $\sigma (10^{-39} \text{ cm}^2)$ 0 1.5 2 E_v (GeV) 2.5 3.5 0.5 3 3 4 5 2 E_v (GeV)

6

Electroweak one-pion production on nuclei

Relativistic mean field model

Relativistic Impulse Approximation

$$J_{had}^{\mu} = \sum_{i}^{A} \int d\mathbf{r} \,\overline{\Psi}_{F}(\mathbf{r}) \,\phi^{*}(\mathbf{r}) \hat{\mathcal{O}}_{one-body}^{\mu}(\mathbf{r}) \,\Psi_{B}(\mathbf{r}) \,e^{i\mathbf{q}\cdot\mathbf{r}}$$
Relativistic mean-field wave functions

$$\frac{\mathsf{d}^{8}\sigma}{\mathsf{d}\varepsilon_{f}\mathsf{d}\Omega_{f}\mathsf{d}E_{\pi}\mathsf{d}\Omega_{\pi}\mathsf{d}\Omega_{N}} = \frac{m_{i}m_{f}}{(2\pi)^{8}}\frac{M_{N}\ p_{N}\ k_{\pi}}{E_{N}\ f_{rec}}\frac{k_{f}}{\varepsilon_{i}}\overline{\sum_{fi}}|\mathcal{M}_{fi}|^{2}$$

8-fold differential cross section: Computationally very demanding

Relativistic mean field model

$$\frac{\mathrm{d}^{8}\sigma}{\mathrm{d}\varepsilon_{f}\mathrm{d}\Omega_{f}\mathrm{d}E_{\pi}\mathrm{d}\Omega_{\pi}\mathrm{d}\Omega_{N}} = \frac{m_{i}m_{f}}{(2\pi)^{8}} \frac{M_{N} p_{N} k_{\pi}}{E_{N} f_{rec}} \frac{k_{f}}{\varepsilon_{i}} \overline{\sum_{fi}} |\mathcal{M}_{fi}|^{2}$$

8-fold differential cross section: Computationally very demanding

Relativistic mean-field model

RMF model provides a microscopic description of the ground state of finite nuclei which is consistent with Quantum Mechanic, Special Relativity and symmetries of strong interaction.

The starting point is a Lorentz covariant Lagrangian density

$$\mathcal{L} = \overline{\Psi} \left(i \gamma_{\mu} \partial^{\mu} - M \right) \Psi + \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) - U(\sigma) - \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \mathbf{R}_{\mu\nu} \mathbf{R}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho_{\mu} \rho^{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - g_{\sigma} \overline{\Psi} \sigma \Psi - g_{\omega} \overline{\Psi} \gamma_{\mu} \omega^{\mu} \Psi - g_{\rho} \overline{\Psi} \gamma_{\mu} \tau \rho^{\mu} \Psi - g_{e} \frac{1 + \tau_{3}}{2} \overline{\Psi} \gamma_{\mu} A^{\mu} \Psi .$$

Extension of the original $\sigma-\omega$ Walecka model (Ann. Phys.83,491 (1974)).

where

 $\Omega^{\mu\nu} = \partial^{\mu}\omega^{\nu} - \partial^{\nu}\omega^{\mu},$ $R^{\mu\nu} = \partial^{\mu}\rho^{\nu} - \partial^{\nu}\rho^{\mu},$ $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}.$ $U(\sigma) = \frac{1}{3}g_{2}\sigma^{3} + \frac{1}{4}g_{3}\sigma^{4}$ **Main approximations:**

1) Mean-field approximation: $\omega_{\mu} \rightarrow \langle \omega_{\mu} \rangle \quad \sigma \rightarrow \langle \sigma \rangle \quad \rho_{\mu} \rightarrow \langle \rho_{\mu} \rangle$

2) Static limit:

$$\partial^{\mathbf{0}}\omega_{\mathbf{0}} = \partial^{\mathbf{0}}\boldsymbol{\rho}_{\mathbf{0}} = \partial^{\mathbf{0}}\sigma = \mathbf{0} \quad \omega_{\mu} = \delta_{\mu\mathbf{0}}\omega_{\mathbf{0}}, \quad \boldsymbol{\rho}_{\mu} = \delta_{\mu\mathbf{0}}\boldsymbol{\rho}_{\mathbf{0}}$$

3) Spherical symmetry for finite nuclei:

$$\omega_0 = \omega_0(r)$$
 $\rho_0 = \rho_0(r)$ $\sigma = \sigma(r)$

Wrocław – Dec 4, 2017

RGJ - Ghent University

43

Relativistic mean-field model

Dirac equation for nucleons (eq. of motion for the barionic fields):

 $[-i\boldsymbol{\alpha}\cdot\boldsymbol{\nabla} + V(r) + \beta(M + S(r))]\Psi_i(\boldsymbol{r}) = E_i\Psi_i(\boldsymbol{r})$

where the scalar (S) and vector (V) potential are given by:

 $S(r) = g_{\sigma}\sigma(r),$ $V(r) = g_{\omega}\omega^{0}(r) + g_{\rho}\tau_{3}\rho_{3}^{0}(r) + e\frac{1+\tau_{3}}{2}A^{0}(r)$

Eqs. of motion for the mesons and the photon:

$$\begin{aligned} \left[-\nabla^2 + m_{\sigma}^2 \right] \sigma(r) &= -g_{\sigma} \rho_s(r) - g_2 \sigma^2(r) - g_3 \sigma^3(r) ,\\ \left[-\nabla^2 + m_{\omega}^2 \right] \omega^0(r) &= -g_{\omega} \rho_B(r) ,\\ \left[-\nabla^2 + m_{\rho}^2 \right] \rho_3^0(r) &= -g_{\rho} \rho_{\rho}(r) ,\\ -\nabla^2 A^0 &= e \rho_c , \end{aligned}$$

$$\begin{aligned} & \mathsf{Current densities} \\ \rho_s(r) &= \sum_i^A \overline{\Psi}_i(r) \Psi_i(r) \,, \\ \rho_B(r) &= \sum_i^A \Psi_i^{\dagger}(r) \Psi_i(r) \,, \\ \rho_{\rho}(r) &= \sum_i^A \Psi_i^{\dagger}(r) \tau_3 \Psi_i(r) \\ \rho_c(r) &= \sum_i^A \Psi_i^{\dagger}(r) \frac{1+\tau_3}{2} \Psi_i(r) \end{aligned}$$

Solution of the couple equations for the fields in a self-consistent way.

Relativistic mean-field model

In general, the parameters are fit to reproduce some general properties of some closed shell spherical nuclei and nuclear matter.

Parameters for the NLSH model (fitted to the mean charge radius, binding energy and neutron radius of the ¹⁶O, ⁴⁰Ca, ⁹⁰Zr, ¹¹⁶Sr, ¹²⁴Sn and ²⁰⁸Pb.

M_N	m_{σ}	m_{ω}	$m_{ ho}$	g_{σ}	g_{ω}	$g_{ ho}$	g_2	g_3		6 free parameters
939.0	526.059	783.0	763.0	10.444	12.945	4.3830	-6.9099	-15.8337	l	

$$\begin{split} &[-i\alpha \cdot \nabla + V(r) + \beta(M + S(r)]\Psi_{i}(r) = E_{i}\Psi_{i}(r) \\ &\Psi_{k}^{m_{j}}(r) = \begin{pmatrix} g_{k}(r)\varphi_{k}^{m_{j}}(\Omega_{r}) \\ if_{k}(r)\varphi_{-k}^{m_{j}}(\Omega_{r}) \end{pmatrix}, \\ &\varphi_{k}^{m_{j}}(\Omega_{r}) = \sum_{m_{\ell}s} \langle \ell m_{\ell} \frac{1}{2}s|jm_{j}\rangle Y_{\ell}^{m_{\ell}}(\Omega_{r})\chi^{s} \end{split}$$

RGJ - Ghent University

r (fm)

MiniBooNE neutrino CC 1pion+.

MINERvA antineutrino CC 1pion0.

MiniBooNE neutrino CC 1pion0.

RGJ et al., arXiv:1710.08374 [nucl-th]

MINERvA neutrino CC 1pion0.

RGJ et al., arXiv:1710.08374 [nucl-th]

FIG. 10: Total cross section for the reactions (a) MiniBooNE ν CC $1\pi^+$ [4], (b) MiniBooNE ν CC $1\pi^0$ [62], (c) MINERvA ν CC $1\pi^0$ [7], and (d) MINERvA $\bar{\nu}$ CC $1\pi^0$ [6]. Labels as in Fig. [5]

FIG. 3: MINERvA ν -induced $1\pi^+$ production sample 5 compared with RPWIA predictions. Solid (dotted) line is the result with (without) medium modification of the Delta width. The dash-dotted line is the result with OSMM when the contribution from the $\Delta N \rightarrow \pi N N$ channel is added to the cross section. The results were computed with the Hybrid model (see SecIVB).

- Simple analysis of the kinematics of the problem tell us the minimum set of independent variables that is needed to describe the scattering process.
 - ➔ If in our model we have less than that, we are missing something. Is it important?
- ✓ Is it possible to implement (complex) microscopic models with full kinematics in the MC event generators?
 - → Is it worthy? Are you interested?

Thanks for your attention

Backup slides

What we know from (e,e')

What we know from (e,e')

Wrocław – Dec 4, 2017

What we know from (e,e')

Quasielastic scattering

Impulse approximation

$$J^{\mu}_{had} = \langle N, A - 1 | \hat{\mathcal{O}}^{\mu}_{\scriptscriptstyle{many-body}} | A
angle$$

Impulse Approximation

$$egin{aligned} J^{\mu}_{had} &= \sum_{i}^{A} \int \mathrm{d}\mathbf{r}\,\overline{\Psi}_{F}(\mathbf{r})\,\hat{\mathcal{O}}^{\mu}_{one-body}\,\Psi_{B}(\mathbf{r})\,\,e^{i\mathbf{q}\cdot\mathbf{r}} \ \mathrm{where} & \hat{\mathcal{O}}^{\mu}_{one-body} &= F_{1}\gamma^{\mu} + irac{F_{2}}{2M_{N}}\sigma^{\mulpha}\,Q_{lpha} \end{aligned}$$

Impulse approximation

$$J^{\mu}_{had} = \langle N, A - 1 | \hat{\mathcal{O}}^{\mu}_{many-body} | A \rangle$$
Impulse
Approximation
$$J^{\mu}_{had} = \sum_{i}^{A} \int d\mathbf{r} \, \overline{\Psi_{F}}(\mathbf{r}) \, \hat{\mathcal{O}}^{\mu}_{one-body} \, \Psi_{B}(\mathbf{r}) \, e^{i\mathbf{q}\cdot\mathbf{r}}$$
where
$$\hat{\mathcal{O}}^{\mu}_{one-body} = F_{1}\gamma^{\mu} + i \frac{F_{2}}{2M_{N}} \sigma^{\mu\alpha} Q_{\alpha}$$

Wrocław – Dec 4, 2017

Wrocław – Dec 4, 2017

Back slides: isospin coefficients and resonances parameters

Channel	ΔP	$C\Delta P$	NP	CNP	Others
$p \to \pi^+ + p$	$\sqrt{3/2}$	$\sqrt{1/6}$	0	1	1
$n ightarrow \pi^0 + p$	$-\sqrt{1/3}$	$\sqrt{1/3}$	$\sqrt{1/2}$	$-\sqrt{1/2}$	$-\sqrt{2}$
$n \to \pi^+ + n$	$\sqrt{1/6}$	$\sqrt{3/2}$	1	0	-1
$n \to \pi^- + n$	$\sqrt{3/2}$	$\sqrt{1/6}$	0	1	1
$p \to \pi^0 + n$	$\sqrt{1/3}$	$-\sqrt{1/3}$	$-\sqrt{1/2}$	$\sqrt{1/2}$	$\sqrt{2}$
$p \to \pi^- + p$	$\sqrt{1/6}$	$\sqrt{3/2}$	1	0	-1

Table: Isospin coefficients for the CC reaction.

Channel	ΔP	$C\Delta P$	NP	CNP	Others
$p \rightarrow \pi^0 + p$	$\sqrt{1/3}$	$\sqrt{1/3}$	$\sqrt{1/2}$	$\sqrt{1/2}$	0
$p \to \pi^+ + n$	$-\sqrt{1/6}$	$\sqrt{1/6}$	1	1	-1
$n \to \pi^- + p$	$\sqrt{1/6}$	$-\sqrt{1/6}$	1	1	1
$n \to \pi^0 + n$	$\sqrt{1/3}$	$\sqrt{1/3}$	$-\sqrt{1/2}$	$-\sqrt{1/2}$	0

Table: Isospin coefficients for the neutral current (EM and WNC) reactions.

	Ι	S	P	M_R	$\pi N\text{-}br$	$\Gamma^{exp}_{ m width}$	$f_{\pi NR}$
P_{33}	3/2	3/2	+	1232	100%	120	2.18
D_{13}	1/2	3/2	_	1515	60%	115	1.62
P_{11}	1/2	1/2	+	1430	65%	350	0.391
S_{11}	1/2	1/2	_	1535	45%	150	0.16

Table: quantum numbers and other parameters of the nucleon resonances.

The Problem

Wrocław – Dec 4, 2017

Why does this happen?Cross channels:
$$\checkmark$$
 $\mathcal{A}(t,s) = \sum_{\ell} (2\ell+1) \ A_{\ell}(t) \ P_{\ell}(z_t)$ $\stackrel{1}{\mathcal{P}}_{\ell}(z_t) \xrightarrow{s \to \infty} (2s)^{\ell}$ $P_{\ell}(z_t) \xrightarrow{s \to \infty} (2s)^{\ell}$ Z_t Direct channels: \checkmark $\mathcal{A}(s,t) = \sum_{\ell} (2\ell+1) \ A_{\ell}(s) \ P_{\ell}(z_s)$ Z_s $\mathcal{A}_{\ell}(s) \sim \left(\frac{s-4m^2}{2}\right)^{\ell}$ BehaviorBehaviorBehavior

$$1 \overline{3} \rightarrow \overline{2} 4$$

$$t = 4m^{2}$$

$$t = 0$$

$$t = 0$$

$$12 \rightarrow 34$$

$$z_t \equiv \cos \theta_t = 1 + \frac{2s}{t - 4m^2}$$

$$z_s \equiv \cos \theta_s = 1 + \frac{2t}{s - 4m^2}$$

Behavior at threshold (barrier factor). Feynman diagrams provide the right behavior at threshold but not at high s

High-energy model

 $N F_1^p(Q^2) N'$

Regge approach for the vector amplitudes.

We use the approach first proposed by **Kaskulov and Mosel** [PRC81, 045202 (2010)] to extends GLV to the case of pion electroproduction ($Q^2 \neq 0$).

The nucleon N' may be highly off its mass shell. Therefore, instead of using the on shell form factor $F_1^p(Q^2)$. We use a form factor that accounts for the off shell character of the nucleon [**Vrancx and Ryckebusch**, PRC89, 025203 (2014)]:

$$\longrightarrow F_1^p(Q^2, s) = \left(1 + \frac{Q^2}{\Lambda_{\gamma pp^*}(s)^2}\right)^{-2}$$

$$\Lambda_{\gamma pp^*}(s) = \Lambda_{\gamma pp} + (\Lambda_{\infty} - \Lambda_{\gamma pp}) \left(1 - \frac{M^2}{s}\right)$$

$$\Lambda_{\infty} = 2.194 \, \mathrm{GeV}$$

In the (on shell) limit the Dirac form factor is recovered.

Wrocław – Dec 4, 2017 RGJ - Ghent University

High-energy model

"Reggeizing" the ChPT background:

Regge Theory

$$\mathcal{A}(t,s) = \sum_{\ell} (2\ell+1) \ A_{\ell}(t) \ P_{\ell}(z_t)$$

$$z_t \equiv \cos \theta_t = 1 + \frac{2s}{t - 4m^2}$$

$$\frac{\lambda^2}{m^2 - t} \quad \boldsymbol{P}_{\ell}(\boldsymbol{z}_t) \xrightarrow{\boldsymbol{s} \to \infty} (\boldsymbol{2}\boldsymbol{s})^{\ell}$$

$$\mathcal{M}(s,t) = -\frac{1}{2i} \oint_{C_1} d\lambda \frac{(2\lambda+1) \mathcal{M}_{\lambda}(t) P_{\lambda}(-\cos\theta_t)}{\sin(\pi\lambda)} \xrightarrow{\mathsf{Im}(\lambda)} \mathcal{Re}(\lambda)$$

$$\begin{split} \mathcal{M}_{Regge}^{\zeta}\left(s,t\right) = & C\sum_{i}\left(\frac{s}{s_{0}}\right)^{\alpha_{i}^{\zeta}\left(t\right)}\frac{\beta_{i}^{\zeta}\left(t\right)}{\sin\left(\pi\alpha_{i}^{\zeta}\left(t\right)\right)}\\ & \frac{1+\zeta e^{-i\pi\alpha_{i}^{\zeta}\left(t\right)}}{2}\frac{1}{\Gamma\left(\alpha_{i}^{\zeta}\left(t\right)+1\right)}\,. \end{split}$$
Hybrid model

1) Regularizing the behavior of resonances (u- and s-channel contributions): we multiply the resonance amplitude by a dipole-Gaussian form factor

$$F(s, u) = F(s) + F(u) - F(s)F(u)$$

$$F(s) = \exp\left(\frac{-(s - M_R^2)^2}{\lambda_R^4}\right) \frac{\lambda_R^4}{(s - M_R^2)^2 + \lambda_R^4}$$

2) Gradually replacing the ChPT background by the High-energy (ReChi) model: we use a phenomenological transition function

$$\widetilde{\mathcal{O}} = \cos^2 \phi(W) \mathcal{O}_{ChPT} + \sin^2 \phi(W) \mathcal{O}_{ReChi}$$

$$\phi(W) = \frac{\pi}{2} \left(1 - \frac{1}{1 + \exp\left[\frac{W - W_0}{L}\right]} \right) , \qquad W_0 = 1.7$$

$$L = 100 \ \Sigma$$

RGJ - Ghent University

Medium modifications of the Delta

Delta propagator:

$$S_{\Delta,\alpha\beta} = \frac{-(K_{\Delta} + M_{\Delta})}{K_{\Delta}^{2} - M_{N}^{2} + iM_{\Delta}\Gamma_{\text{width}}} \left(g_{\alpha\beta} - \frac{1}{3}\gamma_{\alpha}\gamma_{\beta} - \frac{2}{3M_{\Delta}^{2}}K_{\Delta,\alpha}K_{\Delta,\beta} - \frac{2}{3M_{\Delta}}(\gamma_{\alpha}K_{\Delta,\beta} - K_{\Delta,\alpha}\gamma_{\beta})\right)$$
with the energy dependent Delta
width:

$$\Gamma_{\text{width}}(W) = \frac{1}{12\pi} \frac{(f_{\pi N\Delta})^{2}}{m_{\pi}^{2}W} (p_{\pi,cm})^{3} (M + E_{N,cm})$$

 $\Gamma^{\text{free}}_{\text{width}} \longrightarrow \Gamma^{\text{in-medium}}_{\text{width}} = \Gamma_{\text{Pauli}} - 2\Im(\Sigma_{\Delta})\,, \quad \textit{M}^{\text{free}}_{\Delta} \longrightarrow \textit{M}^{\text{in-medium}}_{\Delta} = \textit{M}^{\text{free}}_{\Delta} + \Re(\Sigma_{\Delta})\,.$

+ Γ_{Pauli} : some nucleons from Δ -decay are Pauli blocked (the Δ -decay width decreases).

+ The parametrization of $\Im(\Sigma_{\Delta})$ and $\Re(\Sigma_{\Delta})$ is given in terms of the nuclear density ρ :

$$\begin{aligned} -\Im(\Sigma_{\Delta}) &= C_{QE} \left(\rho / \rho_0 \right)^{\alpha} + C_{A2} \left(\rho / \rho_0 \right)^{\beta} + C_{A3} \left(\rho / \rho_0 \right)^{\gamma} , \\ \Re(\Sigma_{\Delta}) &= 40 \text{ MeV} \left(\rho / \rho_0 \right) . \end{aligned}$$

We modify the free $\Delta \pi N$ -decay constant ($f_{\Delta \pi N}$) to take into account the *E*-dependent medium modification of the Δ width:

$$f_{\Delta\pi N}^{\text{in-medium}}(W) = f_{\Delta\pi N} \sqrt{\frac{\Gamma_{\text{Pauli}} + 2C_{QE} (\rho/\rho_0)^{\alpha}}{\Gamma_{\text{width}}^{\text{free}}}}$$

Wrocław – Dec 4, 2017 RGJ - Ghent University

74

Medium modifications of the Delta

$$-\Im(\Sigma_{\Delta}) = \mathcal{C}_{QE} \left(\rho / \rho_0 \right)^{\alpha} + \mathcal{C}_{A2} \left(\rho / \rho_0 \right)^{\beta} + \mathcal{C}_{A3} \left(\rho / \rho_0 \right)^{\gamma}$$

Each contribution corresponds to a different process:

- QE $\implies \Delta N \rightarrow \pi NN$ (still one pion in the final state)
- A2 $\implies \Delta N \rightarrow NN$ (no pions in the final state)
- A3 $\implies \Delta NN \rightarrow NNN$ (no pions in the final state)

We modify the free Delta decay constant to take into account the E-dependent medium modification of the Delta-width

$$\Gamma^{\alpha}_{\Delta\pi N} = \frac{f_{\pi N\Delta}}{m_{\pi}} P^{\alpha}_{\pi}$$

$$f_{\Delta\pi N}^{\text{in-medium}}(W) = f_{\Delta\pi N} \sqrt{rac{\Gamma_{\text{Pauli}} + 2C_{QE} \left(\rho /
ho_0
ight)^{lpha}}{\Gamma_{ ext{width}}^{ ext{free}}}}$$

References: [*] E. Oset and L. L. Salcedo, Nucl. Phys. A 468, 631 (1987).

RGJ - Ghent University

Interferences

$J^{\nu} = \langle J^{\nu}_{\Delta P} \rangle + \langle J^{\nu}_{C\Delta P} \rangle + \langle J^{\nu}_{CT,V} \rangle + \langle J^{\nu}_{CT,A} \rangle + \langle J^{\nu}_{NP} \rangle + \langle J^{\nu}_{PF} \rangle + \langle J^{\nu}_{PF} \rangle + \langle J^{\nu}_{PP} \rangle$

PHYSICAL REVIEW D 93, 014016 (2016) Watson's theorem and the $N\Delta(1232)$ axial transition

L. Alvarez-Ruso,¹ E. Hernández,² J. Nieves,¹ and M. J. Vicente Vacas³

We present a new determination of the $N\Delta$ axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez *et al.* [Phys. Rev. D 76, 033005 (2007)] is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger $C_5^A(0)$, in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.

Wrocław – Dec 4, 2017

RGJ - Ghent University

$$E_m = M_B + M_N - M_A \approx \epsilon_B^* + M_B^0 + M_N - M_A$$
$$E_S = M_B^0 + M_N - M_A.$$
$$E_m \approx E_S + \epsilon_B^*$$

$$\mathbf{p}_m = \mathbf{p}_A - \mathbf{p}_B = \mathbf{p}_N - \mathbf{q}$$