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Initial state
• Models implemented:  

• Global Fermi Gas  (one free parameter !)   

• Local Fermi Gas    (rigid, imposed by nuclear 
potential) 

• Spectral Function  (Rigid)  

• RMF  (????) 
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Removal energy
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• (As far as I know) for impulse 
approximation there are 4 ways to 
implement it:  

• Effective target mass (m→m-Eb) 

• Effective target mass (m→m-Eb) with 
radial distribution, 

• Dispersion relation (Spectral function). 

• Nuclear removal energy.  
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11C
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removal energy

Bind energy is variable because final 
nuclear states might be excited.  

~6 MeV γ in SK 



Removal energy
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• Effect is visible at T2K 
energies. 

• Since the Bind Energy 
is not a fixed value ( 0- 
10 MeV) this could 
smear distributions.  

Nieves Eb  = -16.8 MeV
Neut Eb = -25.0 MeV

Bind energy is a delicate parameter for event 
re-weight making calculations complicated. 



Pauli blocking
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• Same for different implementations:  

• Relativistic Fermi gas.  

• Local Fermi gas.  

• Spectral functions  

• “Ab initio” calculations (non impulse approximation).
Pauli blocking should be also 

implemented consistently for the Final 
State Interactions. 

Pauli blocking is delicate to re-weight in 
case of single Fermi level (RFG). 

!

Remove interactions 
where pp < pfermi

Is this 100% correct ?



Limit of models
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• The validity of the models is normally restricted to some 
kinematical phase space.  

• This is a critical point for broad band beam neutrino MC’s.  

• One of the most relevant cases now is the 2p2h. 

?
Not only a limit of the 

model but also the 
channels included in the 

model !



Merging regimes
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• Is it possible to merge models 
with some “smart” transition 
function ?  

• As far as I know there is only 
one case implemented in our 
MC’s with limited impact on 
the predictions:   

• multipion to DIS transition. 

Can we use inclusive and semi-inclusive models to complement this regions? 
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Model consistency
• We always talk about model consistency.  

• But the argument should be given beyond the beauty of the 
model.  

• Model consistency means mainly:  

• avoid double counting.  

• same initial state or final state.  

• common (and correlated) errors associated to the common 
model (bind energy, FSI, etc…)  
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Double counting
• This is not a “pure” MC issue but a relevant item.  

• How do we ensure that the there is no double 
counting in our implementation ?  

• Some examples:  

• Multipion vs. DIS  

• Initial state nucleon-nucleon correlation vs. 2 
body currents. 

• SF vs. RPA.  

• To me this is the main reason to keep consistency 
across the model. 
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Hadron Tensors
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• The cross-section is a contraction of the 
Lepton (Lμν) and the Hadron tensors (Hμν) 

• The Hadron tensor is precomputed in an 
“slow” MC.  

• The Hadron tensor can be computed under 
several conditions:  

• pp or pn final states.  

• with some model ingredients: Δ, non-Δ, 
interference,  ρ propagator,  … 

• This can be used to understand 
contributions or to implement re-weights.



Susav2

• Hadron tensor is not the only way to generate final 
state leptons.  

• SusaV2 can be seen as (very) smart 
parametrisation of 1p1h Relativistic Mean Field.  

• This might be a simple way to implement complex 
physics in Monte Carlos. 
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Hadronic states
• In both approaches before the hadron kinematics is integrated.  

• We lose information about the hadron kinematics.  

• This information is important for current and future experiments. 

• Adding all kinematics might be very “expensive” in term of CPU.  

• We could explore models where we ensure:  

• model consistency  (i.e. using same fermi momentum model) 

• energy and momentum balance.  

• this has been implemented in 2p2h models in NuWro and NEUT.
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We need to evaluate the “correctness” of this approaches and explore for 
example others like 1p1h.



Hadron model
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• The total energy of hadrons @ the lab is independent of the model for 2p2h. 

• The kinematics of each nucleon is not…very relevant for pn or even pp final 
states. 

full random
back 2 back 
frwd 2 frwd

A =
Tp1 � Tp2

Tp1 + Tp2



FSI 
• FSI has been demonstrated to be a critical model for:  

• channel identification.  

• energy measurement.  

• Two main models:  

• cascade. (NEUT, NuWro).  

• This one is being tuned by experimental data.  

• One big question is the validity of the experimental πA or pA data to 
constrain π and proton interaction inside the nucleus.  

• transport. (NuWro) 
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(e,e’) with hadron measurement is a critical check for these models.



Vertex Activity
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• New detector technology (Gas and Liquid 
TPC’s) will require a more precise 
determination of the activity at the interaction 
vertex: 

• Low energy nuclear evaporation. 

• Nuclear gamma/alpha de-excitations.

• Nuclear kinetic energy (also affecting E-p 
balance)

• Minerva already uses this to derive neutrino 
energy ! 

p (GeV/c)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
 K

in
et

ic
 E

ne
rg

y 
(G

eV
)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

How far are we of this type of implementations?

Sometimes there should  be a correlated pair emitted. How?

 Are they really needed ? 

RFG
Fermi level SF



ν,A vs e,e’ models
• Consensus that we need electron scattering.  

• Many reasons:  

• Pure modelling (factor the axial component) 

• Relation momentum,energy transfer to final state 
hadrons.  

• Model of energy reconstruction (factor axial component).  

• This is a fundamental development for neutrino MC 
implementations in the near future. 
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Other stuff
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• Coulomb potential corrections: 

• Nieves model implementation predicts ~5MeV 
shifts in lepton Energy. 

• Electron production bremsstrahlung emission and 
corrections. 

• Missing channels to which we might be sensitive: 

• Single gamma emission.

• …

• Shallow and Deep inelastic transition. 

Impact on 
experiments to be 

determined

σ (νμ)/σ(νe)

Background for 
oscillations

Calorimetric E 
recon.



Parameters & errors
• Last but not least: Errors!  

• Models have parameters.  

• Parameters have errors.  

• Changing basic parameters of the theory is always far 
better than funny unphysical re-weights. 

• fundamental parameters allow comparison across 
experiments. 

• Common language allows broad comparisons. 
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