NuWro validation & some physical considerations

Jan T. Sobczyk

Wrocław University

NuWro Workshop, Wrocław, December 3-5, 2017

Motivation

Goal: NuWro validation on recent experimental data.

An ultimate goal: a complete NuWro validation tool with all relevant experimental data.

- To start with: look (mostly) for measurements done after Nulnt15 and before Nulnt17.
- Statistical analysis included (a work in progress).
- An attempt to identify and understand tensions in the data.
- Identification of areas of necessary/possible improvements.

A NuWro version 17.09 is used (LFG+RPA). Future NuWro upgrades will be to the same data set. In the future: use NUISANCE?

A lot of data!

T2K

- CC0 π muon double differential cross section on CH target [PRC93].
- CC0π muon double differential cross section on water target [arXiv:1708.06771].
- CC inclusive muon double differential cross section [PRD96].
- CC differential cross section in transverse kinematics variables (one muon and ≥ one proton sample).
- CC π^0 inclusive (Marcela Batkiewicz study).
- DUET π^+ absorption and charge exchange on ¹²C.
- **NOvA NC** coherent π^0
- ArgoNeuT CC 1π

A lot of data!

- MINERvA
 - **CC** π^{0} production
 - **CC** inclusive, ν_{μ} , $\overline{\nu_{\mu}}$, ratio (PRD94)
 - DIS ratios C, Fe, Pb wrt CH (PRC95)
 - CCQE-like $d^2\sigma/dp_L dp_T$ for ν_{μ} , $\overline{\nu_{\mu}}$
 - CC $d^2\sigma/dq dE_{avail}$ for ν_{μ} and $\overline{\nu_{\mu}}$
 - CCQE-like ratios C, Fe, Pb wrt CH (PRL119)
 - new release of CC 1π .
 - NC K⁺ production (PRL119)
 - coherent K⁺ production (PRL117)
 - CC K⁺ production (PRD94)

Many MINERvA papers show comparisons with NuWro.

NuWro 17.09

CCQE

- LFG
- RPA based on K. Graczyk, JTS, Eur.Phys.J. C31 (2003) 177-185
- *M_A* = 1.03 GeV

RES

- *W* < 1.6 GeV
- Smooth (linear) transition to DIS at $W \in (1.3, 1.6)$ GeV
- LFG
- Explicit Δ plus BKGR added incoherently C. Juszczak, J. Nowak, JTS, Nucl. Phys. Proc. Suppl. 159 (2006) 211-216
- For nuclear target reactions a fraction of events is subtracted motivated by Oset et al studies JTS, J. Żmuda, Phys.Rev. C87 (2013) 065503
- π angular distribution from ANL and BNL papers.

イロト イポト イヨト イヨト

NuWro 17.09

DIS

- *W* > 1.6 GeV
- Inclusive cross sections from Bodek-Yang model
- Hadronization with PYTHIA fragmentation functions J. Nowak, PhD thesis.
- No shadowing, anti-shadowing, EMC nuclear effects.

MEC

- Nieves et al model
- Implementation by J. Żmuda with five tabularized response function.
- Nucleons modeled with phase space model JTS, Phys.Rev. C86 (2012) 015504
 - 85% initial p-n pairs
 - Uniform distribution in nucleon CMF.

NuWro 17.09

СОН

Berger-Sehgal model.

Cascade model

- Pions, nucleons.
- 0.2 fm steps.
- For pions Oset et al model T. Golan, C. Juszczak, JTS, Phys.Rev. C86 (2012) 015505.
- For nucleons in-medium modification of NN cross sections v.R. Pandharipande, S.C. Pieper, Phys.Rev. C45 (1992) 791-798

NuWro team

T. Golan

K. Graczyk

C. Juszczak K. Niewczas J. Nowak

J.T. Sobczyk

J. Żmuda

Notable supporters Warsaw

D. Kiełczewska (passed away in 2016)

P. Przewłocki

VA, U.S.

A. Ankowski

Spectral function

U.K.

Reweightning tools

L. Pickering

8/42

General, many discussions NuWro at T2K

Sorry, but...

Sorry, but...

... it is going to be a somehow boring presentation with many plots, ...

э

イロト イロト イヨト イヨト

Sener

$CC0\pi/CCQE$ -like

T2K CC0 π double differential cross section on CH $_{\rm Phys.Rev.~D93~(2016)}$ 112012

There are two sets of results: full phase space ("analysis I") and restricted phase space ("analysis II").

Restricted phase space defined as: $\cos \theta_{\mu} > 0.6$, $p_{\mu} > 600$ MeV/c.

T2K CC0 π double differential cross section on CH (analysis I)

T2K CC0 π double differential cross section on CH (analysis I, cont)

T2K CC0 π double differential cross section on CH (analysis I, cont)

In general, the agreement is fair.

- $\chi^2 = 185.6$, NDoF=67
- Integrated cross section (per nucleon):
 - NuWro: 3.92 · 10⁻³⁹ cm²/nucleon
 - Data: 4.60 · 10⁻³⁹ cm²/nucleon
 - Paper: $(4.17 \pm 0.47 \pm 0.05) \cdot 10^{-39} \text{ cm}^2/\text{nucleon}$
- A significant part of normalization discrepancy comes from the most backward bin (0.75 wrt 1.05 in the units of 10⁻³⁹)

T2K CC0 π double differential cross section on CH (analysis II)

T2K CC0 π double differential cross section on CH (analysis II, cont)

T2K CC0 π double differential cross section on CH analysis II - χ^2 study.

We add statistical tools using covariance matrix M_{cov} .

$$\chi^2 = \sum_{j,k=1}^{83} (\sigma_{NuWro}^j - \sigma_{T2K}^j) M_{cov jk}^{-1} (\sigma_{NuWro}^k - \sigma_{T2K}^k).$$

 $\chi^2 \approx 103.2, \qquad \textit{NDoF} = 96$

One can also calculate χ^2 separately for 8 cosine bins (all with 12 data points). Results are: 2.8, 10.7, 12.2, 15.7, 12.0, 9.0, 6.7.

Normalization comparisons.

Analysis II: data $\rightarrow 2.03 \cdot 10^{-39} \text{ cm}^2/\text{nucleon}$; NuWro $\rightarrow 2.02 \cdot 10^{-39} \text{ cm}^2/\text{nucleon}$.

The agreement is very good.

T2K CC0 π double differential cross section on water arXiv:1708.06771

[hep-ex]

18/42

NuWro below the data at large muon angles.

T2K CC0 π double differential cross section on water (cont)

T2K CC0 π oxygen wrt carbon

A message I from water measurement: NuWro below the data at large muon angles.

Do we see the same on carbon? Oxygen - left; carbon - right

T2K CC0 π oxygen wrt carbon

A message II from water measurement: NuWro above the data at small muon angles.

Do we see the same on carbon? Oxygen - left; carbon - right

If a problem is there, which interaction modes are responsible?

Is there really a data/NuWro discrepancy?

Comparisons with other MCs/computations.

T2K 0π carbon Nieves(dotted line)/Martini(solid line)/NuWro

T2K 0π water NEUT/GENIE/NuWro

T2K 0π water NuWro/other models

- The results are quite similar.
- In the SuSa2 results there is no RES contribution quite important in the forward directions.

n o

イロト イポト イヨト イヨト

~

e n e

T2K 0π "suspicious bins" kinematical study

What is kinematical characteristic of bins where the data/MC tension is seen?

- We need a universal language in which tensions from distinct experiments can be discussed.
- We try to identify a region in energy and momentum transfer (q, ω) plane.
 - A limitation is that disagreement may come from either transverse or longitudinal components and their ratio depends on neutrino energy.
- With NuWro one can easily identify (q, ω) of CCQE and MEC events in particular bins.

T2K 0π "suspicious bins" kinematical study (cont)

Blue: deficit of events in NuWro. Red: excess of events in NuWro.

A structure is there. If the problems comes from MEC dynamics, the information is smeared.

MINERvA CC0 π p_T , p_L on CH ν_μ

MINERVA CC0 π p_T , p_L on CH $\bar{\nu}_{\mu}$

MINERvA results are not yet published. Based on Daniel Ruterbories presentation on NuInt17.

Much better agreement with normalization.

°utrino

イロト イポト イヨト イヨト

MINERvA ν_{μ} CC0 π p_T , p_L – GENIE results

Data/MC discrepancies - MINERvA

Data/MC discrepancies - MINERvA

The main issue is normalization. NuWro is below the data in a vary wide kinematical region! How much?

Overall rescaling factor is 1.24. In particular bins it differs from 1.47 (largest p_L) to 1.07 (intermediate p_L).

Another puzzling fact: kinematical characteristics of CCQE and MEC events in (p_L, p_T) are quite similar.

CCQE

 $p_L \in (15, 20) \ p_T \in (0.4, 0.475) \ q \sim 466 \pm 30 \ \text{MeV/c}, \ \omega \sim 140 \pm 50 \ \text{MeV}$ $p_L \in (4, 4.5) \ p_T \in (0.4, 0.475) \ q \sim 473 \pm 32 \ \text{MeV/c}, \ \omega \sim 147 \pm 52 \ \text{MeV}$

MEC

 $p_L \in (15, 20) \ p_T \in (0.4, 0.475) \ q \sim 573 \pm 126 \ \text{MeV/c}, \ \omega \sim 342 \pm 194 \ \text{MeV}$ $p_L \in (4, 4.5) \ p_T \in (0.4, 0.475) \ q \sim 639 \pm 186 \ \text{MeV/c}, \ \omega \sim 403 \pm 258 \ \text{MeV}$

Data/MC discrepancies - MINERvA

My guess: understanding of neutrino spectrum.

Why?

Events in distinct p_L bins come from mostly separated ν energies: CCQE

```
p_L \in (15, 20) \ p_T \in (0.4, 0.475) \ E \sim 17.2 \pm 1.2 \ \text{GeV}
p_L \in (4, 4.5) \ p_T \in (0.4, 0.475) \ E \sim 4.4 \pm 0.1
```

MEC

```
p_L \in (15, 20) \ p_T \in (0.4, 0.475) \ E \sim 18.2 \pm 1.5
p_L \in (4, 4.5) \ p_T \in (0.4, 0.475) \ E \sim 4.7 \pm 0.3
```

Relative normalization of ν s in 4.5 GeV and 17.5 GeV may be different by 20-30% wrt what is expected?!

イロト イポト イヨト イヨト

MINERvA flux normalization

FIG. 8: Extracted low- ν flux (points) for FHC neutrino (left) and RHC antineutrino (right). The histogram shows the Monte Carlo simulated fluxes from Ref. [17] and one sigma error band (shaded bars). The insets show a zoom-in of the 9-22 GeV energy range.

Phys.Rev. D95 (2017) 072009

From Lu Ren: renormalization factors are 0.92 and 1.07.

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

MINERvA recoil energy

An attempt to resolve kinematics completely.

- Calorimetric measurement of hadronic energy.
- MC (GENIE) dependent estimate of energy and momentum transfer q3.
- Allows to single out and study region of low q3 and "available energy" E_{avail}
- Double differential cross section reported.

$$E_{avail} \equiv \sum_{kineticenergy} proton, \pi^{\pm} + \sum_{energy} \pi^{0}, \gamma, e^{-}.$$

MINERvA recoil energy

MINERvA recoil energy (cont)

- Surprisingly well!
- To be confirmed with Patrick computations (a few dfferences are there).
- NuWro results shifted to the right.
- A bias in reconstruction of q3?

MINERvA recoil energy - conclusions

If we treat E_{avail} as a proxy for energy transfer, the conclusions may be:

NuWro underestimates the data in the region of small energy and momentum transfer: $q \in (200, 400)$ MeV/c, $\omega \leq 40$ MeV.

This stands in contradiction to the T2K results

- NuWro is somehow below the data for $(q, \omega) \sim (450, 150), (550, 50 200), (700, 100 250).$
 - This may be consistent with the T2K results if the problem comes from CCQE rather than from MEC.

Tomorrow:

Including protons in the game ...

Summary

- Even if NuWro 17.09 is a rather primitive model a general agreement is OK. A surprise.
- We need better data (smaller uncertainties in order to identify problems.
 - Can be on a small piece of the phase space, can be in a form of ratios, but 5% errors and not 10%!

