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Challenges for cross section 
measurements

Model dependence, and how we bias our data
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Cross section extraction
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Cross section model dependence

Some unfolding 
methods introduce bias

Efficiency corrections 
couple to model in 

complex ways

The signal definition and 
background subtraction 
can be model dependent 

Choice of variables
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Choice of variables

● Model-independent: final state particle kinematics, or 
some combination of them (e.g., Q2

QE
). Combinations are 

prone to subtle efficiency issues!

● Model-dependent: interaction-level kinematics, Q2, E
ν
 W…

● Perception that theorists will prefer interaction-level 
variables because they are easier to use… very 
shortsighted view...

● Often it’s unclear to experimentalists which variables are of 
interest to the theory community, and can be measured... 
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Cross section model dependence

Some unfolding 
methods introduce bias

Efficiency corrections 
couple to model in 

complex ways

The signal definition and 
background subtraction 
can be model dependent 

Choice of variables
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Efficiency corrections

● Basic problem: efficiency corrections are typically done on a 
bin-by-bin basis. Other degrees of freedom have been integrated 
out.

● Binning efficiency in p
μ
 only integrates out cosθ

μ
 variation: all 

events in a p
μ
 bin are assigned the same efficiency correction.

● If data more/less 
forward than MC, 
result biased 
up/down

● Sometimes 
regions of zero 
efficiency are 
“corrected for”
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MINERvA CC1π±

● One angular bin filled with MC… 
unclear where this affects the 
KE spectrum

● Also, signal defined as π±. But, 
Michel required! So π- effectively 
filled in with MC…

● Unclear how much  MC (GENIE) 
has biased the result...

???

???

???
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MiniBooNE CC1π+

● Cut made on reconstructed 
invariant mass, but not 
reflected in signal definition

● ~30% correction to published 
cross section comes from 
MB MC.

Your model here!

● Cannot assess where this bias 
lives… it might dominate some 
kinematic bins.

● Hidden efficiency correction!
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Cross section model dependence

Some unfolding 
methods introduce bias

Efficiency corrections 
couple to model in 

complex ways

The signal definition and 
background subtraction 
can be model dependent 

Choice of variables
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Unfolding methods
● Discussion at PhyStat-nu conferences highlighted unfolding as 

another critical source for model-dependence

● Unfolding is an inverse problem:

● Some commonly used methods lead to biased results:

● D’Agostini unfolding with low (< 10) # iterations (common!)

● Bin-by-bin efficiency corrections

● Impossible to quantify bias after the fact

Figure from 
M. Kuusela

Smeared Unsmeared
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Unfolding methods

● Solution #1: use data driven regularization methods.

● Regularization makes some assumptions about expected result

● No regularization be harder to interpret (large bin-bin variation)

● Solution #2: not unfolding (MB NCEL, MINERvA CC-inc ratios)

● Present results in reconstructed variables, provide smearing 
matrix to smear theory to match data

● Harder to use… some concern that this will lead to results not 
being used

● Unambiguous advice from statisticians…
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Cross section model dependence

Some unfolding 
methods introduce bias

Efficiency corrections 
couple to model in 

complex ways

The signal definition and 
background subtraction 
can be model dependent 

Choice of variables
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Visible 
particles

● Experiments can only measure final state particles, e.g., 1μ 0π:

CC0π = CCQE + npnh(0π) + CC1π(+abs) + …

● Many previous measurements try to correct for irreducible 
backgrounds to make the result easier to use...

… but trying to recover CCQE introduces model dependence

CCQE = CC0π - npnh(0π) - CC1π(+abs) - … ???

Data Generator

Model-independent signal definitions



15

● Only post-FSI cross sections are model-independent:

● Need to integrate out all degrees of freedom other than y 
FSI makes this difficult analytically

● Some results will become very difficult to compare to 
outside a generator (e.g., MINERvA 1π+, with any number 
of π0s allows)

What can we actually measure?

CC0π = 1p1h + 2p2h + CC1pi(+abs) + ...
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Graphic from S. Dolan

What can we actually measure?

Many modes 
contribute to any 

measurement

Integrated over 
broad ω region

Difficult to tune 
models!
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Challenges for global fits
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● Tuning σ
i
 parameters requires many post-FSI datasets to 

break degeneracies!

● Multiple fluxes

● Different acceptance

● Detector technologies

● Multiple targets

● Cannot fit parameters of a single interaction channel, 
without making assumptions about (or fitting) others

● Tuning or validation of a model is really challenging!

Tuning models to data
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Previous T2K CC0π attempt

● Attempt to fit all CC0π data:

● MiniBooNE T
μ
-cosθ

μ
 ν

μ

● MiniBooNE T
μ
-cosθ

μ
 ν

μ

● MINERvA Q2 ν
μ 
& ν

μ
 (with corr.)

● Many NEUT model improvements: 
SF, 2p2h,…

● Unable to fit the data, surprising 
and unsatisfactory results. 

See PRD 072010 (2016) for the gory details!
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Frankenmodels

● Incomplete models lead to unphysical 
effective parameters (large axial mass!)

● Not clear where the deficiency lies

● Common issue for all neutrino 
experiments and model tunings!



21

Unclear where deficiency lies

● We know that we can’t 
isolate CCQE for ν-A data 
→ CC0π

● But there’s still a temptation 
to fit CCQE parameters to 
CC0π data

● RES parameters in NEUT 
clearly have a large effect on 
CC0π data

● But, this makes theory 
challenges outside generators 
very challenging!

MINERvA CC0π
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Another example (sort of)

Is disagreement due to the CCQE 
model? MEC? Pion production?
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Partial exception

● Inclusive data can still 
highlight model deficiencies

● NEUT clearly deficient at very 
low energy transfers (QE-
dominated)

● Difference in the nuclear 
model → motivated further 
NEUT development

● Limited use, but important 
cross check!

0.2 < q
3
/GeV < 0.3
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External cross section model constraints

Neutrino heavy 
target experiments

ν-D
2
 bubble chamber 

(1970s-1980s)

e-A scattering
(1970s-present) Pion/nucleon
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Modular approach on T2K

● Tune different aspects of the model to appropriate data

● Develop ad hoc models in the generators (NEUT) to 
include new theory where possible / fill in the gaps

● Theory and generator co-ordination essential to 
improve this horrible situation!
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Outlook

● Difficult road ahead to reduce cross systematics for 
future experiments.

● Situation is improving, a lot of new, higher quality data.

● Alternative generators and models essential for that

● Challenge to using that data to constrain models. Bad 
data may also spoil the picture…

● Need new theory models in generators rather than 
simply fiddling with effective generator parametrizations.
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Backup
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Tuning the R-S model

● Parameters tuned to 10% level by 
limited set of BC data:

● ANL and BNL, E
ν
 and Q2

●  ν
μ
 + p→μ- + π+ + p

●  ν
μ
 + n→μ- + π0 + p

●  ν
μ
 + n→μ- + π+ + n

● Caveats:

● D
2
 data, FSI may not be negligible

● CC used to predict NC model

● Many known limitations to R-S 
model!
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ν-N resonance production

● Higher order resonances also 
contribute, insufficient data to 
constrain model for them

● Current experiments can’t do 
better, can’t reconstruct W well 
enough.
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● Not clear that the R-S model fits 
all available kinematics.

● Little flexibility in model to cover 
possible discrepancies.

Δ++(1232)

Δ0(1232)

W2 = (ΣE)2 - |Σp|2



30

● Reasonable agreement with 
outgoing muon kinematics

● Not for pion kinematics. 
Inadequate FSI model?
… but poor for ν-N data too!
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ν-A data-MC disagreement

● Fractional deviation of data from reference model (shape-only)

● Good agreement for muon kinematics, poor for pion kinematics

● Difficult to resolve… simply tuning cascade model parameters is 
clearly inadequate...
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Developing new parameters

● 2p2h shape: separate terms
● Delta-component (PDD)
● Non-Delta
● Interference

● Vary relative strength of the 
Delta-component, but preserve 
total 2p2h norm.

A B

C D

● BeRPA: effective model to 
mock up Nieves RPA, but 
introduce flexibility.

● Approximates theoretical error 
band. 
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Bernstein polynomials
● Bernstein polynomials of degree n form a 

basis for the power polynomials of order n:

● The n Bernstein polynomials peak at different values of x and can reproduce 
any nth order power polynomial by varying their normalizations.

● The same cubic to exponential form expressed with Bernstein polynomials 
gives:

where x = Q2, x’ = x/U

● Looks awful! But, the continuity 
conditions are much less problematic:
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BeRPA (1)

● Bernstein polynominals used to approximate the Nieves RPA 
model, with additional freedom.

● Fit (blue) to nominal Nieves RPA (solid black).

● Guesstimate errors (purple band) which cover the Nieves error 
(dashed). 



35

BeRPA (2)

BeRPA parameters affect different regions of Q2 → more flexibility

A B

C D
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Bubble chamber tuning

● Parameters tuned to a limited set of bubble chamber data:
● ANL and BNL, E

ν
 and Q2 distributions

●  ν
μ
 + p→μ- + π+ + p

●  ν
μ
 + n→μ- + π0 + p

●  ν
μ
 + n→μ- + π+ + n

● Similar to tuning of the GENIE model for MINERvA (pictured)
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