

Nuclear Transparency: NuWro vs Data

Kajetan Niewczas

Kajetan Niewczas

07.12.2017 2 / 29

Nuclear response

T. Van Cuyck

Purpose of generators

Provide cross sections:

- for every significant channel
- over the whole phase space
- taking care of complexity of detector setups
- in efficient way so it can be used for experimental analysis

 \rightarrow we solve this complex integral using Monte Carlo method!

NuWro team since 2006

(currently active)

Notable supporters

Warsaw

D. Kiełczewska (passed away in 2016)

P. Przewłocki

CA, U.S.

A. Ankowski

U.K.

L. Pickering

P. Stowell

Reweightning tools

General, many discussions NuWro at T2K

Spectral function

Kajetan Niewczas

Nuclear Transparency

NuWro blueprint

Intranuclear cascade

- Propagates particles through the nuclear medium
- **Probability** of passing a distance *λ*:

$$P(\lambda) = e^{-\lambda/ ilde{\lambda}}$$

- where $\tilde{\lambda} = (\rho \sigma)^{-1}$ ρ - local density σ - cross section
- Implemented for nucleons and pions
 - T. Golan, C. Juszczak, J.T. Sobczyk,

Phys.Rev. C86 (2012) 015505

• Semi-classical – neglects quantum mechanical effects

Kajetan Niewczas

FSI effects

• Reduction

•

Indirect effects

Nuclear transparency

Definition

Nuclear transparency is the average **probability** for a knocked-out **proton** to **escape** the nucleus **without significant reinteraction**.

e.g. measured for Carbon: $T\simeq$ 0.60 [D. Abbott et al., PRL 80 (1998), 5072]

NuWro comparison with data

The simplest Monte Carlo transparency definition \rightarrow no rescattering.

Experiment: D. Abbott *et al.*, PRL 80 (1998), 5072 (*e*, *e*'*p*) D. Dutta *et al.*, PRC 68 (2003), 064603

Exclusive QE proton knockout at **fixed kinematics**:

- beam: E_e
- electron: $E_{e'}, \theta_{e'}, \phi_{e'}$
- proton: E_p, θ_p, ϕ_p

Transparency:

$$\langle T \rangle_{\theta_p} = \frac{\sigma_{\exp}}{\sigma_{PWIA}}$$

 $\sigma_{\rm PWIA}$ - expected value without FSI (model dependent)

How precisely are the kinematics fixed?

 electrons: 	 protons: 		
$rac{\Delta p}{p}\pm 10\%$	$rac{\Delta ho}{ ho}\pm 20\%$		
$\Delta heta\pm$ 2.4 $^\circ$	$\Delta heta\pm$ 3.4 $^\circ$		
$\Delta\phi\pm4.7^{\circ}$	$\Delta \phi \pm 2.3^{\circ}$		

Cuts on "missing" variables:

• energy:
$$E_m = \omega - T_{p'} - T_{A-1}$$

• momentum:
$$ec{p}_m = ec{p}_{p'} - ec{q}$$

 $E_m < 80 \; {
m MeV}, \;\; |ec{
ho}_m| < 300 \; {
m MeV/c}$

This ultimately ensures lack of FSI \rightarrow the definition of soft interactions!

Beam energy (GeV) 2.445	Central electron energy (GeV) 2.075	Central electron angle (deg) 20.5	Central proton energy (MeV) 350	Central proton angle (deg) 36.4,39.4 43.4,47.4 51.4, 55.4 59.4,63.4	Q^2 (GeV ² /c ²) 0.64
				67.4,71.4 75.4	
0.845	0.475	78.5	350	27.8 31.8 35.8,39.8, 43.8,47.8	0.64
3.245	2.255	28.6	970	32.6.36.6, 40.6 , 44.6,48.6, 52.6	1.80
1.645	0.675	80.0	970	22.8 , 26.8,30.8 34.8	1.83
2.445	1.725	32.0	700	31.5,35.5 39.5, 43.5 47.5,51.4 55.4	1.28
3.245	1.40	50.0	1800	25.5 28.0,30.5	3.25

Main problems in experimental comparison

- We use ν_e NC on protons (kinematics is the same, $\sigma_{\rm EM} \propto Q^{-4}$)
- In experiments the **kinematics** is **fixed** (with some precision)
- Experiements provide transparency as a function of *Q*² (FSI is mainly a **function** of **proton momentum**)
- Definition of soft interactions by "missing" variables (energy: E_m = ω - T_{p'} - T_{A-1}, momentum: p
 _m = p
 _{p'} - q)

NuWro simulation

- Variables in the exclusive QE process: E_{e'}, θ_{e'}, φ_{e'}, E_p, θ_p, φ_{p'}
- Differential cross section: $\frac{\mathrm{d}^5\sigma}{\mathrm{d}E_{e'}\mathrm{d}\cos\theta_{e'}\mathrm{d}E_{p}\mathrm{d}\Omega_{p}}$

 \rightarrow cross section is **independent** on one of the ϕ angles!

- To resemble the experiment, where the spectrometers are in the same plane, we chose to fix $\phi_{\it ep}.$
- We fix the kinematics by:

 $p_{e'} \pm 10\%, \, \theta_{e'} \pm 2.4^{\circ}, \, p_p \pm 20\%, \, \theta_p \pm 3.4^{\circ}, \, \theta_{ep} \pm 4.7^{\circ} \pm 2.3^{\circ}$

around the central, given, values.

Nucleon-nucleon cross section

Carbon, $Q^2 = 0.64 \text{ GeV}^2$

• Lepton kinematics

Proton angle with FSI

Carbon, experimental results

Kajetan Niewczas

Carbon, NuWro vs data

Carbon, NuWro vs data

• Local Fermi Gas

Kajetan Niewczas

Initial state models

Local Fermi Gas

Spectral Function

A. Ankowski

Carbon, LFG vs SF

Carbon, NuWro vs data

Carbon, LFG vs SF

Transparency for Carbon

Ratio to data for Carbon and Iron

Transparency, data without spectroscopic factors

Ratio to data without spectroscopic factors

Transparency fit to data without spectroscopic factors

Fitted ratio to data without spectroscopic factors

