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Motivation

In short:

Electromagnetic (weak gravitational) solutions with non-trivial
topological properties.
Hamiltonian energy for linearized gravity.

g First, let me present a simple observation which leads to
interesting question.

Consider the folowing solution

f(t, r) :=
1

r2 − t2
(1)

of the wave equation

2f(t, r) = −δ(r, t) (2)

g For example, f(t, r) = E · r.
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Motivation

g Performing an imaginary time translation t→ t− ı for f(t, r):

Φ0 =
1

(r2 − (t− ı)2)
(3)

g Change E · r ; (E + ıB) · r = Z · r leads to real electromagnetic
field with non-trivial topological properties – Synge’s pre-hopfion
solution.
• For quantum electrodynamics, Synge’s solution treated like a

photonic wave function saturates uncertainty relation for photons in
three dimensions1:

∆r∆p ≥ 4~ (4)

• Generates electromagnetic hopfions – solutions with non-trivial
topological properties .

1I. Białynicki-Birula, Z. Białynicki-Birula Uncertainty Relation for Photons PRL 108,
140401 (2012)
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Magic field–distorted Culomb solution

g There are known other issues in Physics where such imaginary
translation gives a new solution with an interesting structure...

g Consider an ordinary Culomb solution

f(r) =
1

r

g Perform an imaginary shift

f̃(r) =
1

r − ia cos θ

g Example of simply but highly non-trivial solution of Maxwell
equations — limit of Kerr–Newman E-M field2 for M → 0

2E. T. Newman 1973 Maxwell’s equations and complex Minkowski space J. Math.
Phys. 14 102
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The Janis-Newman (J-N) algorithm

g Originally enables one to obtain Kerr from Schwarzschild metric.

g The J-N3 prescription for transforming the tensor structure of
metric relies on the Newman–Penrose formalism (null tetrad).

g The result of J-N algorithm is an imaginary coordinate
transformation:
Consider Schwarzschild metric in Eddington-Finkelstein
coordinates

ds2 = −
(

1− 2GM

r

)
du2 − 2 dudr + r2dΩ2 (5)

Transformation u = ũ+ ıa cos θ, r = r̃ − ia cos θ gives Kerr in
Eddington-Finkelstein coordinates.

3H. Erbin, Janis–Newman Algorithm: Generating Rotating and NUT Charged Black
Holes Universe 2017, 3, 19
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History of Complex E-M potentials

g Hertz (1889)
g Whittaker (1903): (E,B) can be expressed as two scalar

potentials (F,G)

g Debye (1909)
g Bateman (1915):

Z = ∇ξ ×∇η (6)

is a wave solution of Maxwell equation if

∇ξ ×∇η = ı (∂tξ∇η − ∂tη∇ξ) (7)

g and others...
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Hodge-Kodaira decomposition on S2 for vectors

,
3-D vector

Z
k

,
radial part

Z
r

=
Φ

r
,
axial part

Z
A

,
longitudinal part

Z
A
||A ,

transversal part
εABZ

A||B

ZA can be decomposed into a gradient and co-gradient of some
functions

ZA = α,A + εABβ,B (8)
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Quasi-local scalar description

g The following issue will be considered in the spherical coordinates
(t, r, θ, φ).

g Constructing a scalar Φ = Z · r, we receive a complex function
which is harmonic

2Φ = 0 (9)

g Vacuum Maxwell equations in terms of the scalar Φ take the form

∂r (rΦ) = −r2ZA||A

∂tΦ = ıεABZA||B

Φ = rZr

g For ZA = α,A + εABβ,B, we obtain relation between ∆α, ∆β and
Φ, ∂tΦ...
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Generating hopfions

Consider l-th order differential operator Al
which
g generates a function Φl from

Φ0 =
1

(r2 − (t− ı)2)

which is proportional to l-th spherical
mode.

g commutes with d’Alembert operator.

g Φl fulfills wave equation.
g Φl are called generalized

electromagnetic Hopfions.

Example: For l = 1

A1 =
∂

∂x
± ı ∂

∂y
(10)

and

0 = A12Φ0(t, r)

= 2A1Φ0(t, r)

= 2Φ1 (11)

Now, consider topological properties of Φ1...
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Hopf fibration

Hopf fibration is a non-trivial principal
bundle of a three-dimensional sphere:

S3 ∼ R3∪{∞} h−→ C∪{∞} ∼ S2 (12)

Hopf projection h maps circles (fibres)
in S3 into points on S2.

The mapping h : R3 ∪ {∞} h−→ C ∪ {∞}
is given by:

h(x, y, z) =
x+ ız

−y + ı
(
Ã− 1

) (13)

where Ã =
1

2
(x2 + y2 + z2 + 1).

W. T. Irvine, D. Bouwmeester Linked and knotted beams
of light Nature Physics, 4 716-720, (2008).
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Ã− 1

) (13)

where Ã =
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E-M solution related to Hopf fibration

In 1990, Rañada proposed the following solution of Maxwell equations:

ER =
1

4π

∇ξ ×∇ξ̄
(1 + ξξ̄)2

(14) BR =
1

4π

∇η ×∇η̄
(1 + ηη̄)2

(15)

where ξ(t, x, y, z) and η(t, x, y, z) are defined as

ξ =
(Ax+ ty) + ı(Az + t(A− 1))

(tx−Ay) + ı(A(A− 1)− tz)
(16) η =

(Az + t(A− 1)) + ı(tx−Ay)

(ty +Ax) + ı(A(A− 1)− tz)
(17)

and A =
1

2
(x2 + y2 + z2 − t2 + 1).

Properties:
g ξ(0, x, y, z) = h(x, y, z) and η(0, x, y, z) = h(z, x,−y)

g The E field is tangential to lines of constant ξ.
g The helicities are preserved in time.

Tomasz Smołka (University of Warsaw) Hopfions POTOR, 27.09.2018 11 / 25



E-M solution related to Hopf fibration

In 1990, Rañada proposed the following solution of Maxwell equations:

ER =
1

4π

∇ξ ×∇ξ̄
(1 + ξξ̄)2

(14) BR =
1

4π

∇η ×∇η̄
(1 + ηη̄)2

(15)

where ξ(t, x, y, z) and η(t, x, y, z) are defined as

ξ =
(Ax+ ty) + ı(Az + t(A− 1))

(tx−Ay) + ı(A(A− 1)− tz)
(16) η =

(Az + t(A− 1)) + ı(tx−Ay)

(ty +Ax) + ı(A(A− 1)− tz)
(17)

and A =
1

2
(x2 + y2 + z2 − t2 + 1).

Properties:
g ξ(0, x, y, z) = h(x, y, z) and η(0, x, y, z) = h(z, x,−y)

g The E field is tangential to lines of constant ξ.
g The helicities are preserved in time.

Tomasz Smołka (University of Warsaw) Hopfions POTOR, 27.09.2018 11 / 25



E-M solution related to Hopf fibration

In 1990, Rañada proposed the following solution of Maxwell equations:

ER =
1

4π

∇ξ ×∇ξ̄
(1 + ξξ̄)2

(14) BR =
1

4π

∇η ×∇η̄
(1 + ηη̄)2

(15)

where ξ(t, x, y, z) and η(t, x, y, z) are defined as

ξ =
(Ax+ ty) + ı(Az + t(A− 1))

(tx−Ay) + ı(A(A− 1)− tz)
(16) η =

(Az + t(A− 1)) + ı(tx−Ay)

(ty +Ax) + ı(A(A− 1)− tz)
(17)

and A =
1

2
(x2 + y2 + z2 − t2 + 1).

Properties:
g ξ(0, x, y, z) = h(x, y, z) and η(0, x, y, z) = h(z, x,−y)

g The E field is tangential to lines of constant ξ.

g The helicities are preserved in time.

Tomasz Smołka (University of Warsaw) Hopfions POTOR, 27.09.2018 11 / 25



E-M solution related to Hopf fibration

In 1990, Rañada proposed the following solution of Maxwell equations:

ER =
1

4π

∇ξ ×∇ξ̄
(1 + ξξ̄)2

(14) BR =
1

4π

∇η ×∇η̄
(1 + ηη̄)2

(15)

where ξ(t, x, y, z) and η(t, x, y, z) are defined as

ξ =
(Ax+ ty) + ı(Az + t(A− 1))

(tx−Ay) + ı(A(A− 1)− tz)
(16) η =

(Az + t(A− 1)) + ı(tx−Ay)

(ty +Ax) + ı(A(A− 1)− tz)
(17)

and A =
1

2
(x2 + y2 + z2 − t2 + 1).

Properties:
g ξ(0, x, y, z) = h(x, y, z) and η(0, x, y, z) = h(z, x,−y)

g The E field is tangential to lines of constant ξ.
g The helicities are preserved in time.

Tomasz Smołka (University of Warsaw) Hopfions POTOR, 27.09.2018 11 / 25



Topological invariants in physics

A topologically invariant configuration of
field lines is to be linked and/or knotted.
A measure of linkedness is Gauss linking
integral:

L(c1, c2) =
1

4π

∫
dc1

dt1
·

c1 − c2

‖c1 − c2‖3
×

dc2

dt2
(18)

where c1(t1), c2(t2) are closed curves.

The self-linking number, L(c, c), is a
measure of knotedness.

Linked, L=1.

Knotted
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Topological invariant in physics

Physical analogue of Linking number are helicities4. The magnetic
helicity:

hm =

∫
V
dVA ·B (19)

where B = rot A.

hm is an „average” of the linking integral over all field-line pairs
together, including self-linking.
hm is proportional to the well-defined quantity which arises from the
algebraical topology. The invariant is called the Hopf index.
Analogically we can define electric helicity

he =

∫
V
dVC ·E (20)

where E = rot C.

4M. A. Berger, Introduction to magnetic helicity Plasma Physics and Controlled
Fusion, (1999),41, B167.
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When the E-M field is topologically invariant?

g We assume the fields Z,W = C + ıA are asymptotically
decreasing, such that the boundary terms can be neglected.

g The helicities hm and he are time independent if and only if

=
∫
V

Z · Z =

∫
V

E ·B = 0 (21)
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E-M solution related to Hopf fibration

W. T. Irvine, D. Bouwmeester Linked and knotted beams of light Nature Physics, 4 716-720, (2008).
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Historical context5

g Trautman A. Solution of the Maxwell and Yang–Mills equations
associated with Hopf fibrings Int. J. Theoret. Phys 16 (1977) 561

g Rañada and Trueba—propagating E-M solution based on Hopf
bundle (1989, 1990, 2001).

g Generalization of Rañada’s solutions using Penrose spinorial
transform – Bouwmeester group (2008-)

5M. Arrayás, D. Bouwmeester, J. L. Trueba Knots in electromagnetism Physics
Reports 667 (2017)
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Linearized theory of gravitation

Consider two observers separated by a small spatial
vector ξ.
The geodesic deviation equations are
g for a relative tidal acceleration ai

∆ai = −Eijξj (22)

g a gyroscope at the tip of ξ will precess with angular
velocity Ωk

∆Ωk = Bklξ
l (23)
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Quasi-local scalar description of linearized gravity

,
3-D symmetric

traceless tensor
Z

kl
= E

kl
+ ıB

kl

,Zrr
=

Φ

2r2
,ZrA ,ZAB

,
Vector

decomposition ,
2-D trace
Z

A
A ,

2-D traceless
◦
ZAB

,◦ZAB

||AB ,◦ZA
B
||BCε

AC
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Quasi-local scalar description of linearized gravity

g Introducing a scalar

Ψ = 2Zklx
kxl = 2Zrrr

2 (24)

we receive a complex function which satisfies

2Ψ = 0 (25)

g (2+1) splitting of constraint and dynamical equations enables one
to express gravitoelectric tensor components in terms of Ψ and its
derivatives.

g Ψ carries gauge independent information of the field.
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Quasi-local scalar description of linearized gravity

Constraints:

Zkl|l = 0 (26)

Dynamical equations:

Żkl = −ıεpq(kZ l)q|p (27)

r2Zrr =
1

2
Ψ (28)

r2ZrA||Bε
rAB = −1

2
ı∂tΨ (29)

r3ZrA||A = −1

2
∂r(rΨ) (30)

r2
(2)

Z = −1

2
Ψ (31)

r4
◦
Z
AB

||AB =
1

2
∂r (r∂r(rΨ)) +

1

4
∆Ψ(32)

r4
◦
ZA

B
||BCε

rAC =
1

2
ı∂r(r

2∂tΨ) (33)

where
(2)

Z= gABZ
AB and

◦
ZAB= ZAB −

1

2
gAB

(2)

Z .
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Hopf solution in linearized gravity

The quadrupole solution related to the Hopf fibration

Ψq :=
(x+ ıy)2

[r2 − (t− ı)2]3
(34)

has complicated algebraical structure...

But it can be easily presented using eigenvectors:
g Each symmetric, traceless, rank 2 tensor can be equivalently

represented by its eigenvalues and eigenvectors.
g Both fields Ekl and Bkl has the same eigenvalues {0, λ,−λ}

where

λ =
[1 + x2 + (y + t)2 + z2]2

[1 + 2(t2 + r2) + (t2 − r2)2]5/2
(35)
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Hopf solution in linearized gravity

Eigenvalues {0, λ,−λ}
Constructing complex vectors for the remaining fields

ZGE = E− + iE+, (36)
ZGB = B− + iB+, (37)

it turns out

ZGE = eiπ/4ZGB (38)

= eiArg(
√
f)ZR, (39)

where f = −(t− i)2 + r2 and ZR is the dipole E-M hopfion (Rañada’s
solution).
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Issue of energy for linearized gravity

g The energy related to the Hamiltonian methods is

H =
1

16π

∫
Σ

dV
[
Ekl(−4)−1Ekl +Bkl(−4)−1Bkl

]
(40)

g In terms of Ψ:

H =
1

32π

∫
Σ

[
(r∂tΨ)∆−1(∆ + 2)−1(r∂tΨ) (41)

+ (rΨ),r∆
−1(∆ + 2)−1(rΨ),r −Ψ(∆ + 2)−1Ψ

]
dΣ

g Białynicki–Birula has obtained the same result as a classical limit
for Wigner functional6.

6I. Białynicki-Birula, Quantum fluctuations of geometry in a hot Universe, CQG 32
(2015) 215015.
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Proposition of topological charge for linearized gravity

Consider the following non-local objects:

hGE =

∫
Σ
Eab(−4−1)Sab =

∫∫
Σ×Σ

Eab (r′)Sab (r′′)

4π‖r′ − r′′‖
dr′dr′′ (42)

hGB =

∫
Σ
Bab(−4−1)Pab =

∫∫
Σ×Σ

Bab (r′)Pab (r′′)

4π‖r′ − r′′‖
dr′dr′′ (43)

Conserved in time if

=
∫

Σ
(Ekl + ıBkl)(−4−1)(Ekl + ıBkl) = 0 (44)
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