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Plan of the talk
Mathematical problems when dealing with black holes

1 Some unresolved annoyances in a mathematically rigorous
treatment of black holes, Λ = 0.

2 Recent progress, for Λ ≤ 0, including a construction of
stationary black holes, solutions of Einstein-matter
equations (possibly vacuum).

3 Recent progress for Λ > 0.
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Some mathematical issues in any field theory:
Mathematical questions in all geometric theories of gravitation

Long time goal: exhaustively describe the global properties
of solutions of the equations
First step: find all regular time-independent solutions (in
GR, this means both strictly stationary solutions and black
hole solutions)
Next step: isolate the stable ones
Next step: explore the remainder of the iceberg (beyond
event horizons: chaos? mixmaster? curvature blowup?
spikes? extendable singularities? else?...)
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Static vs. stationary

and degenerate (also known as
extreme) vs. non-degenerate

Time-independent can be static or stationary;

def. of degenerate only in the static case
for simplicity

• static: stationarity
plus time-reversal
isometry
• Regular, static, black
hole exteriors (M,g)
take the form
M = R× Σ,

Embedding a non-degenerate space-geometry in higher dimension

g = −V 2dt2 + γ, and the Riemannian metric γ satisfies

in vacuum: VRicci(γ) = HessV , ∆V = 0 ,

with ∂Σ = {V = 0}. ∂Σ = non-degenerate horizons;
asymptotically cylindrical ends = degenerate horizons
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Piotr T. Chruściel Black holes



Static vs. stationary and degenerate (also known as
extreme) vs. non-degenerate
Time-independent can be static or stationary; def. of degenerate only in the static case
for simplicity

• static: stationarity
plus time-reversal
isometry
• Regular, static, black
hole exteriors (M,g)
take the form
M = R× Σ,

Embedding a non-degenerate space-geometry in higher dimension

g = −V 2dt2 + γ, and the Riemannian metric γ satisfies

in vacuum: VRicci(γ) = HessV , ∆V = 0 ,

with ∂Σ = {V = 0}. ∂Σ = non-degenerate horizons;
asymptotically cylindrical ends = degenerate horizons
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Λ = 0: ”Black Holes have No Hair”
The analytic, nondegenerate,connected classification in space-time dimension four;
contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod, new
proof by Agostini-Mazzieri

Stationary,

electro-

vacuum,
analytic,

non-degenerate,
connected,

regular black hole
=

Kerr-Newman

in the exterior region

Static,
electro-vacuum,

regular black hole
=

MP or RN

in the exterior region
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Analyticity? Degenerate?
what’s a uniqueness theorem good for

Real-life objects are never exactly stationary

Consider a nearly-stationary black-hole configuration, one
expects that it will evolve to a stationary solution
The end state has no reason to be analytic, and therefore
a uniqueness theorem assuming analyticity is nice but not
useful
Similar problem with the non-degeneracy condition
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Analyticity?

Degeneracy?

Some progress: Alexakis, Ionescu, Klainerman arXiv:0904.0982 [gr-qc]

;
PTC, Szybka, Tod, arXiv:1707.01118 [gr-qc] ; Jezierski, Kamiński arXiv:1206.5136
[gr-qc]

Theorem (Alexakis, Ionescu, Klainerman 2009)
Regular non-degenerate vacuum black holes near non-extreme
Kerr are Kerr

(no assumption of analyticity)

Theorem (PTC, Szybka, Tod 2017)
Regular near-horizon geometries of degenerate vacuum black
holes near extreme-Kerr are Kerr

Computer assisted proof using the Jezierski-Kamiński
potentials: reduce the problem to a (numerical) proof that
explicit linear Fuchsian ODEs on (−1,1) for eight
complex-valued functions Wk , k = 1, . . . ,8 have no bounded
solutions
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potentials: reduce the problem to a (numerical) proof that
explicit linear Fuchsian ODEs on (−1,1) for eight
complex-valued functions Wk , k = 1, . . . ,8 have no bounded
solutions
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k 6= 0, second order equation for Wk

Wk (x) satisfies

8 (x − 1)2 (x + 1)2
(

x2 + 1
) [

1/2 k2x8 + k (i + 2 k) x6 +
(

i k + 3 k2 − 8
)

x4 +
(
−ik + 2 k2 + 16

)
x2

−ik + 1/2 k2 − 8
]

W ′′
k (x)

+16 (x + 1) (x − 1)
[
k (i + k) x8 +

(
4 k2 − 16

)
x6 +

(
−2 ik + 6 k2 + 64

)
x4 +

(
4 k2 − 80

)
x2 + ik + k2 + 32

]
xW ′

k (x)

−2

[
1/2 k4x14 + k3 (i + 7/2 k) x12 + 4 k

(
ik2 +

21 k3

8
− 6 i − 11 k

)
x10+

(
−68 k2 + 64 + 5 ik3 +

35 k4

2
− 40 ik

)
x8 +

(
40 k2 − 128 +

35 k4

2
+ 240 ik

)
x6

+
(

88 k2 + 256 − 5 ik3 + 21/2 k4 + 16 ik
)

x4 +
(

4 k2 − 384 − 4 ik3 + 7/2 k4 − 216 ik
)

x2

−
(

k2 − 24
) (

ik − 1/2 k2 + 8
)]

Wk (x) = 0
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Numerical solutions: regular solutions would produce
closed curves
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Stability, Λ = 0: (on the 25th anniversary of the
Christodoulou-Klainerman theorem, almost there...)
Dafermos, Imperial College Colloquium, January 2018

; Szeftel, ESI Conference,
August 2017

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in
preparation)
Schwarzschild black holes are stable under non-linear
perturbations

More precisely, the authors identify a subset of the set of initial
data of finite co-dimension so that perturbations within this set
evolve asymptotically to some Schwarzschild, while the
remaining do not

Theorem (Klainerman, Szeftel; in preparation)
Schwarzschild black holes are stable under axi-symmetric
polarised non-linear perturbations
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Λ < 0: things are different

• Existence of infinite dimensional families of globally well
behaved stationary solutions
• Instabilities
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Λ < 0: the global structure of anti de Sitter space-time
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Λ < 0: the global structure of Schwarzschild-anti de
Sitter metrics
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Figure: The projection diagrams for the Kerr-Newman - anti de Sitter
metrics with two distinct zeros of ∆r (left diagram) and one double
zero (right diagram).
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Λ < 0: Instability
Formation of singularities in finite time with arbitrarily small perturbations

Bizoń and Rostworowski (2011):
Spherically symmetric Einstein-scalar field equations are
(numerically) unstable near the anti-de Sitter space-time

Theorem (Moschidis, in preparation)
Spherically symmetric Einstein-Vlasov equations are

unstable near the anti-de Sitter space-time
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Λ < 0: Static

Stationary

globally regular vacuum black
holes

with or without matter fields

3+1 dim.: 2002; n+1 dim.: 2005

; Maxwell-Chern-Simons-Yang-Mills-Higgs-scalar
field-dilaton-f (R)

Theorem (Anderson, PTC, Delay 2002, 2005)
There exists an infinite dimensional family of globally regular
static vacuum black holes with Λ < 0 near SAdS

for almost all
mass parameters

free data: conformal classes of static metrics at the conformal
boundary at infinity R × Sn−1; m 6=mass corresponding to the
“Hawking-Page phase transition”

Theorem (PTC, Delay, Klinger 2017)
There exists an infinite dimensional family of globally regular
stationary black hole solutions with Λ < 0 near non-degenerate
static solutions
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Λ < 0:

Static

Stationary globally regular

vacuum

black
holes with or without matter fields
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Λ < 0: Stationary globally regular black holes with or
without matter fields
Maxwell-Chern-Simons-Yang-Mills-Higgs-scalar field-dilaton-f (R)

free data: conformal classes of static metrics at the conformal
boundary at infinity R× Nn−1, arbitrary compact Nn−1, and
asymptotic data for matter fields

non-degenerate: a condition on the spectrum of the
Lichnerowicz Laplacian of the “Wick-rotated” metric
true for large classes of Riemannian Birmingham metrics

g = +(r2 + κ− 2m
rn−2 )dt2 +

dr2

r2 + κ− 2m
rn−2

+ r2h

where (Nn−1,h) satisfies RAB(h) = k(n − 2)hAB

Theorem (PTC, Delay, Klinger 2017)
There exists an infinite dimensional family of globally regular
stationary black holes solutions with Λ < 0 near
non-degenerate static solutions
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Λ < 0: Stationary globally regular black holes with or
without matter fields
Maxwell-Chern-Simons-Yang-Mills-Higgs-scalar field-dilaton-f (R)
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Λ < 0: Stationary globally regular black holes with or
without matter fields
Maxwell-Chern-Simons-Yang-Mills-Higgs-scalar field-dilaton-f (R)

Idea of the proof:
• Construct complex-valued tensor and matter fields,
parameterised by a complex-parameter a, solutions of elliptic
equations obtained by a Wick rotation

“t 7→
√
−1t”

• Use non-degeneracy, and hence uniqueness of nearby
solutions, to show that solutions are

1 holomorphic in a,

2 time-independent,
3 real-valued and Lorentzian for real a after undoing the

Wick rotation.
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Λ < 0: Stationary globally regular

vacuum

black holes
with or without matter fields, example of arguments
Maxwell-Chern-Simons-Yang-Mills-Higgs-scalar field-dilaton-f (R)

For the purpose of illustration, let us assume vacuum
• Let (x i) = (x , xA), A = 2, . . . ,n, and consider a Lorentzian
non-degenerate static vacuum metric on R× Σ, in local
coordinates (t , x i),

g̊ = x−2(dx2 + ˚̄g00(x i)dt2 + ˚̄gAB(x i)dxAdxB)
•We wish to construct one-parameter families of vacuum

metrics of the form

g = x−2(dx2+ḡ00(a, x i)dt2+2ḡ0A(a, x i)dtdxA+ḡAB(a, x , xC)dxAdxB)
with asymptotics

ḡ00(a, xC)→x→0 ˚̄g00(xC) , ḡAB(a, xC)→x→0 ˚̄gAB(xC) ,

ḡ0A(a, xC)→x→0 aψA(xC) ,

with given ψA(xC), a, with a real and small .
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ḡ0A(a, xC)→x→0 aψA(xC) ,

with given ψA(xC), a, with a real and small .
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Λ < 0: Stationary globally regular vacuum black holes
, example of arguments

• Let P denote the linearisation of

Rµν − λgµν ≡ 0 (1)

• The hypothesis of non-degeneracy is precisely the
requirement that P has no L2-kernel at the Riemannian metric

g̊ = x−2(dx2 − ˚̄g00(x i)dt2 + ˚̄gAB(x i)dxAdxB)
on S1 × Σ
• For all small complex a the implicit function theorem gives
complex-valued solutions of (1)

g = x−2(dx2−ḡ00(a, x i)dt2+2i ḡ0A(a, x i)dtdxA+ḡAB(a, x i)dxAdxB)
with asymptotics

ḡ00(a, x i)→x→0 ˚̄g00(xC) , ḡAB(a, x i)→x→0 ˚̄gAB(xC) ,

ḡ0A(a, x i)→x→0 aψA(xC) .
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with asymptotics
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Λ < 0: Stationary globally regular vacuum black holes
, example of arguments

•Write a = α + iβ, α, β ∈ R, and let

∂a := ∂α + i∂β

be the usual complex derivative operator with respect to the
complex conjugate a of a.

• Since g solves the Einstein equation, ∂ag satisfies

0 = ∂a
(
Rµν − λgµν

)
= P∂agµν ,

with vanishing asymptotic data, hence

∂ag ≡ 0

since P has no kernel.
• Thus g is holomorphic in a.
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Λ < 0: Stationary globally regular vacuum black holes
, example of arguments

• Since g solves the Einstein equation, ∂tg satisfies

0 = ∂t
(
Rµν − λgµν

)
= P∂tgµν ,

with vanishing asymptotic data, hence

∂tg ≡ 0

since P has no kernel.
• For a = iβ, β ∈ R, the boundary conditions are real, and there
exists a (real-valued) Riemannian solution, by uniqueness g(iβ)
is a Riemannian metric.
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Piotr T. Chruściel Black holes



Λ < 0: Stationary globally regular vacuum black holes
, example of arguments

• Let φ be the time-reversal, t 7→ −t . Then φ∗g(−a) and g(a)
satisfy the same equations and same bouundary conditions. By
uniqueness

φ∗g(−a) = g(a) .

Equivalently

gti(−a) = −gti(a) , gtt (−a) = gtt (a) , gij(−a) = gij(a) . (2)

• For a ∈ R, (2) and the fact that g(iβ) is a Riemannian metric
show that

gtk (a) ∈ iR , gtt (a) ∈ R− , gk`(a) ∈ R . (3)

e.g.:

gtk (a) =
∑
n∈N

(gtk )nan =
∑

n=2k+1 , k∈N
(gtk )n︸ ︷︷ ︸
∈iC

a2k+1
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Λ < 0: Stationary globally regular vacuum black holes
, example of arguments

• This proves that the replacement t 7→ it provides a
one-parameter family of Lorentzian (real-valued) metric solving
the vacuum Einstein equations with a negative cosmological
constant for all small a ∈ R.
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Λ > 0: the global structure of de Sitter space-times
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Λ > 0: the global structure of Schwarzschild-de Sitter
metrics
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Figure: conformal diagram for Schwarzschild-de Sitter metrics
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Λ > 0: the global structure of Kerr-de Sitter
space-times
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Figure: A projection diagram for the Kerr-de Sitter spacettimes with
four distinct zeros of ∆r = (r2 + a2)

(
1− Λ

3 r2
)
− 2m(1 + Λ

3 a2)r .
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Λ > 0: Stability (32 years of Friedrich’s theorem ...)

Theorem (Friedrich 1986)
de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)
Kerr-de Sitter black holes are stable under non-linear
perturbations in the region between horizons

compare Schlue (work in progress) and Ringström, Oxford
Univ. Press 2013

Corollary (Hintz 2018)
Stationary vacuum black holes near Schwarzschild-de Sitter
are Kerr-de Sitter between the Killing horizons.

Piotr T. Chruściel Black holes



Λ > 0: Stability (32 years of Friedrich’s theorem ...)

Theorem (Friedrich 1986)
de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)
Kerr-de Sitter black holes are stable under non-linear
perturbations in the region between horizons

compare Schlue (work in progress) and Ringström, Oxford
Univ. Press 2013

Corollary (Hintz 2018)
Stationary vacuum black holes near Schwarzschild-de Sitter
are Kerr-de Sitter between the Killing horizons.
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Λ > 0: Uniqueness, static case

g = −V 2dt2 + gijdx idx j , ∂tV = 0 = ∂tgij .

Theorem (Lafontaine, Rozoy 1999)
Schwarzschild-de Sitter black holes are unique in the class of
static black holes with nice level sets of the “lapse function” V

Theorem (Borghini, Mazzieri )

Schwarzschild-de Sitter’s are the only static black holes

and satisfying a “virtual mass” condition

(special case of a more general theorem)
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g = −V 2dt2 + gijdx idx j , ∂tV = 0 = ∂tgij .

Theorem (Lafontaine, Rozoy 1999)
Schwarzschild-de Sitter black holes are unique in the class of
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Theorem (Borghini, Mazzieri 2018)

Schwarzschild-de Sitter’s are the only static black holes
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and satisfying a “virtual mass” condition

(special case of a more general theorem)
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