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Registration for CERS9 open now

https://www.univie.ac.at/cers/cers9/

oth Central European Relativity Seminar
February 14-16, 2019, Krakéw

The 9th Central European Relativity Seminarwill be held in Krakéw from Thursday, February 14 to
Saturday, February 16, 2019. The meeting will begin on Thursday at 2pm and end on Saturday mid-day.

The Krakéw meeting will be the ninth seminar of a series initiated at the Erwin Schroedinger Institute in
Viennain 2011. Here is the list, with links, to all previous meetings.

This series of seminars is designed to provide a forum for younger researchers to present their work, and to
expand their research horizons, in all topics of research in general relativity. While the main geographical
basin of attraction is Austria, the Czech Republic, Hungary, Poland and Germany, we welcome researchers
from all countries.

See you in Krakéw in February!
Organizers:

= Lars Andersson (Golm)

= Robert Beig (Vienna)

= Piotr Bizon (Krakéw)

= Piotr T. Chrudciel (Vienna) L
= Helmut Friedrich (Golm) Uyersitat
= Maciej Maliborski (Vienna)

Black holes


https://www.univie.ac.at/cers/cers9/

Plan of the talk
Mathematical problems when dealing with black holes

@ Some unresolved annoyances in a mathematically rigorous
treatment of black holes, A = 0.

wiversitat
wien

Piotr T. Chrusciel Black holes



Plan of the talk
Mathematical problems when dealing with black holes

@ Some unresolved annoyances in a mathematically rigorous
treatment of black holes, A = 0.

© Recent progress, for A < 0, including a construction of
stationary black holes, solutions of Einstein-matter
equations (possibly vacuum).
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Plan of the talk
Mathematical problems when dealing with black holes

@ Some unresolved annoyances in a mathematically rigorous
treatment of black holes, A = 0.

© Recent progress, for A < 0, including a construction of
stationary black holes, solutions of Einstein-matter
equations (possibly vacuum).

© Recent progress for A > 0.
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Some mathematical issues

Mathematical questions in all geometric theories of gravitation

@ Long time goal: exhaustively describe the global properties
of solutions of the equations
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Some mathematical issues

Mathematical questions in all geometric theories of gravitation

@ Long time goal: exhaustively describe the global properties
of solutions of the equations

@ First step: find all regular time-independent solutions
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Some mathematical issues

Mathematical questions in all geometric theories of gravitation

@ Long time goal: exhaustively describe the global properties
of solutions of the equations

@ First step: find all regular time-independent solutions (in
GR, this means both strictly stationary solutions and black
hole solutions)
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Some mathematical issues

Mathematical questions in all geometric theories of gravitation

@ Long time goal: exhaustively describe the global properties
of solutions of the equations

@ First step: find all regular time-independent solutions (in
GR, this means both strictly stationary solutions and black
hole solutions)

@ Next step: isolate the stable ones

wiversitat
wien

Piotr T. Chrusciel Black holes



Some mathematical issues

Mathematical questions in all geometric theories of gravitation

@ Long time goal: exhaustively describe the global properties
of solutions of the equations

@ First step: find all regular time-independent solutions (in
GR, this means both strictly stationary solutions and black
hole solutions)

@ Next step: isolate the stable ones
@ Next step: explore the remainder of the iceberg
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Some mathematical issues

Mathematical questions in all geometric theories of gravitation

@ Long time goal: exhaustively describe the global properties
of solutions of the equations

@ First step: find all regular time-independent solutions (in
GR, this means both strictly stationary solutions and black
hole solutions)

@ Next step: isolate the stable ones

@ Next step: explore the remainder of the iceberg (beyond
event horizons: chaos? mixmaster? curvature blowup?
spikes? extendable singularities? else?...)
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Static vs. stationary

Time-independent can be static or stationary;

e static: stationarity
plus time-reversal
isometry
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Static vs. stationary and
VS. non-degenerate

Time-independent can be static or stationary; def. of degenerate only in the static case

e static: stationarity
plus time-reversal
isometry

e Regular, static, black
hole exteriors (M, g)
take the form
M=RxY,
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Static vs. stationary and
VS. non-degenerate

Time-independent can be static or stationary; def. of degenerate only in the static case

e static: stationarity
plus time-reversal
isometry

e Regular, static, black
hole exteriors (M, g)
take the form
M=RxY,

g = —V2dt? + ~, and the Riemannian metric - satisfies
in vacuum: VRicci(y) = HessV , AV =0,

with 0% = {V = 0}.
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Static vs. stationary and
VS. non-degenerate

Time-independent can be static or stationary; def. of degenerate only in the static case

e static: stationarity
plus time-reversal

isometry &
e Regular, static, black space station

hole exteriors (M, g)
take the fOI’m W@ horizon

M=RxZ,

black hole region

Embedding a non-degenerate space-geometry in higher dimension

g = —V2dt? + ~, and the Riemannian metric - satisfies
in vacuum: VRicci(y) = HessV , AV =0,

with 9 = {V = 0}. 9% = non-degenerate horizons;
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Static vs. stationary and
VS. non-degenerate

Time-independent can be static or stationary; def. of degenerate only in the static case

e static: stationarity
plus time-reversal

isometry &
e Regular, static, black space station

hole exteriors (M, g)
take the fOI’m W@ horizon

M=RxZY,

black hole region

Embedding a non-degenerate space-geometry in higher dimension

g = —V2dt? + ~, and the Riemannian metric - satisfies
in vacuum: VRicci(y) = HessV , AV =0,

with 0L = {V = 0}. 9% = non-degenerate horizons;
asymptotically cylindrical ends = degenerate horizons
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A = 0: "Black Holes have No Hair”

The analytic, nondegenerate,connected classification in space-time dimension four;

contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Stationary,
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A = 0: "Black Holes have No Hair”

The analytic, nondegenerate,connected classification in space-time dimension four;

contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald,

Stationary,
electro-vacuum,
analytic,
non-degenerate,
connected,
regular black hole
Kerr-Newman
in the exterior region
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A = 0: "Black Holes have No Hair”

The analytic, nondegenerate,connected classification in space-time dimension four;

contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald, Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod

Stationary, Static,
electro-vacuum, electro-vacuum,
analytic,
non-degenerate,
connected,
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Kerr-Newman MP or RN
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A = 0: "Black Holes have No Hair”

The analytic, nondegenerate,connected classification in space-time dimension four;

contributions by Israel, Hawking, Carter, Robinson, Bunting, Mazur, PTC-Costa Lopes,
PTC-Sudarsky-Wald, Masood-ul-Alam, Ruback, PTC-Galloway, PTC-Reall-Tod,
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analytic,
non-degenerate,
connected,
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Analyticity? Degenerate?

what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary
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Analyticity? Degenerate?

what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary

@ Consider a nearly-stationary black-hole configuration, one
expects that it will evolve to a stationary solution
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Analyticity? Degenerate?

what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary

@ Consider a nearly-stationary black-hole configuration, one
expects that it will evolve to a stationary solution

@ The end state has no reason to be analytic, and therefore
a uniqueness theorem assuming analyticity is nice but not
useful
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Analyticity? Degenerate?

what’s a uniqueness theorem good for

@ Real-life objects are never exactly stationary

@ Consider a nearly-stationary black-hole configuration, one
expects that it will evolve to a stationary solution

@ The end state has no reason to be analytic, and therefore
a uniqueness theorem assuming analyticity is nice but not
useful

@ Similar problem with the non-degeneracy condition
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Analyticity?

Some progress: Alexakis, lonescu, Klainerman arXiv:0904.0982 [gr-qc]

Theorem (Alexakis, lonescu, Klainerman 2009)

Regular non-degenerate vacuum black holes near non-extreme
Kerr are Kerr
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Analyticity?

Some progress: Alexakis, lonescu, Klainerman arXiv:0904.0982 [gr-qc]

Theorem (Alexakis, lonescu, Klainerman 2009)

Regular non-degenerate vacuum black holes near non-extreme
Kerr are Kerr (no assumption of analyticity)

wiversitat
wien

Piotr T. Chrusciel Black holes



Analyticity? Degeneracy?
Some progress: Alexakis, lonescu, Klainerman arXiv:0904.0982 [gr-qc];
PTC, Szybka, Tod, arXiv:1707.01118 [gr-qc]

Theorem (Alexakis, lonescu, Klainerman 2009)

Regular non-degenerate vacuum black holes near non-extreme
Kerr are Kerr

Theorem (PTC, Szybka, Tod 2017)

Regular near-horizon geometries of degenerate vacuum black
holes near extreme-Kerr are Kerr
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Analyticity? Degeneracy?
Some progress: Alexakis, lonescu, Klainerman arXiv:0904.0982 [gr-qc];
PTC, Szybka, Tod, arXiv:1707.01118 [gr-qc] ; Jezierski, Kaminski arXiv:1206.5136

[gr-qc]

Theorem (Alexakis, lonescu, Klainerman 2009)

Regular non-degenerate vacuum black holes near non-extreme
Kerr are Kerr

Theorem (PTC, Szybka, Tod 2017)

Regular near-horizon geometries of degenerate vacuum black
holes near extreme-Kerr are Kerr

Computer assisted proof using the Jezierski-Kamirnski

potentials: reduce the problem to a (numerical) proof that

explicit linear Fuchsian ODEs on (—1, 1) for eight

complex-valued functions Wy, k = 1,...,8 have no bounded
solutions wiversitdt
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k # 0, second order equation for W

@ W (x) satisfies
8(x—1)2(x+1)2(x2+1) [1/2k2x8+k(i+2k)x6+(ik+3k2—8)x4+(—ik+2k2+16)x2
—ik+1/2K — 8] Wy (x)
+1e(x+1)(x—1)[k(i+k)x3+(4k2—16)xe+(—2ik+6k2+64)x4+(4k2—so)x2+/k+k2+32]xwk’(x)
414 3. 12 o 21K . 10
—2 [1/2K'x " +k“(i+7/2k)x “+ 4k | ik +T—61—11k X+
2 3 35K ) .8 2 35k* 2\ .6
—68K° 464 50k + —— —40ik | x® + (40K% — 128+ =~ + 2401k ) x
+(88k2+256—5ik3+21/2k4+16ik)x“+(4k2—384—4ik3+7/2k4—216ik)x2

- (k2 - 24) (ik —1/2K? +3)} Wje(x) =0
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: regular solutions would produce
closed curves
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Stability, : (on the 25th anniversary of the
Christodoulou-Klainerman theorem, there...)

Dafermos, Imperial College Colloquium,

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in
preparation)

Schwarzschild black holes are stable under non-linear
perturbations
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Stability, : (on the 25th anniversary of the
Christodoulou-Klainerman theorem, there...)

Dafermos, Imperial College Colloquium,

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in
preparation)

Schwarzschild black holes are stable under non-linear
perturbations

More precisely, the authors identify a subset of the set of initial
data of finite co-dimension so that perturbations within this set
evolve asymptotically to some Schwarzschild, while the
remaining do not
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Stability, : (on the 25th anniversary of the
Christodoulou-Klainerman theorem, there...)

Dafermos, Imperial College Colloquium, ; Szeftel, ESI Conference,

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in
preparation)

Schwarzschild black holes are stable under non-linear
perturbations

More precisely, the authors identify a subset of the set of initial
data of finite co-dimension so that perturbations within this set
evolve asymptotically to some Schwarzschild, while the
remaining do not

Theorem (Klainerman, Szeftel; in preparation)

Schwarzschild black holes are stable under axi-symmetric
polarised non-linear perturbations ersitat
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: things are different

¢ Existence of infinite dimensional families of globally well
behaved stationary solutions
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: things are different

¢ Existence of infinite dimensional families of globally well
behaved stationary solutions
e Instabilities
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: the global structure of anti de Sitter space-time

(a) (b)

Figure 5.2.8: The conformal structure of anti-de Siter spacetime. The two-
dimensional projection is the shaded strip 0 < r < oo of figure (a). Since
{r = 0} is a center of rotation, a more faithful representation is provided by
the solid cylinder of figure (b).
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: the global structure of Schwarzschild-anti de
Sitter metrics

Figure: The projection diagrams for the Kerr-Newman - anti de Sitter
metrics with two distinct zeros of A, (left diagram) and one double
zero (right diagram). wiversitat
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. Instability

Formation of singularities in finite time with arbitrarily small perturbations

Bizon and Rostworowski (2011):
Spherically symmetric Einstein-scalar field equations are
(numerically) unstable near the anti-de Sitter space-time
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. Instability

Formation of singularities in finite time with arbitrarily small perturbations

Bizon and Rostworowski (2011):
Spherically symmetric Einstein-scalar field equations are
(numerically) unstable near the anti-de Sitter space-time

Theorem (Moschidis, in preparation)

Spherically symmetric Einstein-Vlasov equations are
unstable near the anti-de Sitter space-time
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A < 0: Static globally regular vacuum black

holes
3+1 dim.: 2002; n+1 dim.: 2005

Theorem (Anderson, PTC, Delay 2002, 2005)

There exists an infinite dimensional family of globally regular
static vacuum black holes with A < 0 near SAdS
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A < 0: Static globally regular vacuum black

holes
3+1 dim.: 2002; n+1 dim.: 2005

Theorem (Anderson, PTC, Delay 2002, 2005)

There exists an infinite dimensional family of globally regular
static vacuum black holes with A < 0 near SAdS

free data: conformal classes of static metrics at the conformal
boundary at infinity R x S"~1;
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A < 0: Static globally regular vacuum black

holes
3+1 dim.: 2002; n+1 dim.: 2005

Theorem (Anderson, PTC, Delay 2002, 2005)

There exists an infinite dimensional family of globally regular
static vacuum black holes with A < 0 near SAdS for almost all
mass parameters

free data: conformal classes of static metrics at the conformal
boundary at infinity R x S"~1; m #mass corresponding to the
“Hawking-Page phase transition”
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A < O: globally regular

holes
3+1 dim.: 2002; n+1 dim.: 2005;

Theorem (Anderson, PTC, Delay 2002, 2005)

There exists an infinite dimensional family of globally regular
static vacuum black holes with A < 0 near SAdS for almost all
mass parameters

free data: conformal classes of static metrics at the conformal
boundary at infinity R x S"~1; m #mass corresponding to the
“Hawking-Page phase transition”

Theorem (PTC, Delay, Klinger 2017)

There exists an infinite dimensional family of globally regular
stationary black hole solutions with A < 0 near non-degenerate
static solutions

ersitat
n
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globally regular black holes

free data: conformal classes of static metrics at the conformal
boundary at infinity R x N, arbitrary compact N, and
asymptotic data for matter fields

Theorem (PTC, Delay, Klinger 2017)

There exists an infinite dimensional family of globally regular
stationary black holes solutions with A < 0 near
non-degenerate static solutions

Piotr T. Chrusciel Black holes
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globally regular black holes

free data: conformal classes of static metrics at the conformal
boundary at infinity R x N, arbitrary compact N, and
asymptotic data for matter fields

non-degenerate: a condition on the spectrum of the
Lichnerowicz Laplacian of the “Wick-rotated” metric

Theorem (PTC, Delay, Klinger 2017)

There exists an infinite dimensional family of globally regular
stationary black holes solutions with A < 0 near
non-degenerate static solutions

Piotr T. Chrusciel Black holes
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globally regular black holes

free data: conformal classes of static metrics at the conformal
boundary at infinity R x N"~', arbitrary compact N"~, and
asymptotic data for matter fields
non-degenerate: a condition on the spectrum of the
Lichnerowicz Laplacian of the “Wick-rotated” metric
true for large classes of Riemannian Birmingham metrics

ar?
r2 + 5 — 20

rn—2

where (N1, h) satisfies Rag(h) = k(n — 2)hag

g=+(rP+r— — +r?h

Theorem (PTC, Delay, Klinger 2017)

There exists an infinite dimensional family of globally regular
stationary black holes solutions with A < 0 near
non-degenerate static solutions

Piotr T. Chrusciel Black holes

ersitat
n




globally regular black holes

Idea of the proof:
e Construct complex-valued tensor and matter fields,

parameterised by a complex-parameter a, solutions of elliptic
equations obtained by a Wick rotation

“t = V-1t
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globally regular black holes

Idea of the proof:
e Construct complex-valued tensor and matter fields,

parameterised by a complex-parameter a, solutions of elliptic
equations obtained by a Wick rotation

“t = V-1t

e Use non-degeneracy, and hence uniqueness of nearby
solutions, to show that solutions are

@ holomorphic in a,
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globally regular black holes

Idea of the proof:
e Construct complex-valued tensor and matter fields,

parameterised by a complex-parameter a, solutions of elliptic
equations obtained by a Wick rotation

“t = V-1t

e Use non-degeneracy, and hence uniqueness of nearby
solutions, to show that solutions are

@ holomorphic in a,
© time-independent,
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globally regular black holes

Idea of the proof:
e Construct complex-valued tensor and matter fields,

parameterised by a complex-parameter a, solutions of elliptic
equations obtained by a Wick rotation

“t = V-1t

e Use non-degeneracy, and hence uniqueness of nearby
solutions, to show that solutions are
@ holomorphic in a,
© time-independent,
© real-valued and Lorentzian for real a after undoing the
Wick rotation. S
Wien

Piotr T. Chrusciel Black holes



globally regular black holes

, example of arguments
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globally regular black holes

, example of arguments

For the purpose of illustration, let us assume vacuum
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globally regular black holes

, example of arguments

For the purpose of illustration, let us assume vacuum

e Let (x') = (x,x*), A=2,..., n, and consider a Lorentzian
non-degenerate static vacuum metric on R x ¥, in local
coordinates (t, x'),

g = x"?(ax® + goo(x")dt* + gas(x")ax“ax”)
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globally regular black holes

, example of arguments

For the purpose of illustration, let us assume vacuum

e Let (x') = (x,x*), A=2,..., n, and consider a Lorentzian
non-degenerate static vacuum metric on R x ¥, in local
coordinates (t, x'),

g = x"2(dx® + goo(x")dt? + gag(x")dx"ax?)

e We wish to construct one-parameter families of vacuum
metrics of the form

g = x2(dx®+goo(a, x")d?+2goa(a, x")dtdx*+gas(a, x, xC)dxAdx")
with asymptotics
G00(a, XC) x50 90o(X€),  Gas(a xC) —x—s0 9as(XC),
Joa(a, xC) —x0 ava(x©),

with given ¢4(x©), a, with a real and small .

Piotr T. Chrusciel Black holes
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globally regular black holes

, example of arguments

e Let P denote the linearisation of
R. —Xgw=0 (1)
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globally regular black holes

, example of arguments

e Let P denote the linearisation of
R. —Xgw=0 (1)

e The hypothesis of non-degeneracy is precisely the
requirement that P has no L2-kernel at the Riemannian metric

g = x3(dx® — Goo(x")dt* + gas(x')dx"ax®)
onS'x X
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globally regular black holes

, example of arguments

e Let P denote the linearisation of
R. —Xgw=0 (1)

e The hypothesis of non-degeneracy is precisely the
requirement that P has no L2-kernel at the Riemannian metric

g = x3(dx® — Goo(x")dt* + gas(x')dx"ax®)
onS'x X

e For all small complex a the implicit function theorem gives
complex-valued solutions of (1)

g = x2(dx®—goo(a, x')dt?+2igoa(a, x")dtdx”+gas(a, x")dx"ax?)
with asymptotics
Joo(a, X') x50 Goo(X€),  Fas(a x') —=x—0 9as(XC),
Joa(a x') —=x0 apa(x©). (niversiat
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globally regular black holes

, example of arguments

e Write a=a + i3, a,8 € R, and let
03 := Oy +i85

be the usual complex derivative operator with respect to the
complex conjugate a of a.
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globally regular black holes

, example of arguments

e Write a=a + i3, a,8 € R, and let
03 := Oy +i85

be the usual complex derivative operator with respect to the
complex conjugate a of a.
e Since g solves the Einstein equation, 0;g satisfies

0 = 83(Ruw — A\guw) = POaguu ,
with vanishing asymptotic data, hence
029 =0

since P has no kernel.
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globally regular black holes

, example of arguments

e Write a=a + i3, a,8 € R, and let
03 := Oy +i85

be the usual complex derivative operator with respect to the
complex conjugate a of a.
e Since g solves the Einstein equation, 0;g satisfies

0 = 83(Ruw — A\guw) = POaguu ,
with vanishing asymptotic data, hence
029 =0

since P has no kernel.
e Thus g is holomorphic in a. \Dienrsitat
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globally regular black holes

, example of arguments

e Since g solves the Einstein equation, d;g satisfies
0 =0:(Ru — Aguv) = PO:Guu »
with vanishing asymptotic data, hence
0:ig=0

since P has no kernel.
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globally regular black holes

, example of arguments

e Since g solves the Einstein equation, d;g satisfies
0 =0:(Ru — Aguv) = PO:Guu »
with vanishing asymptotic data, hence
0:ig=0

since P has no kernel.

e For a=ip, g € R, the boundary conditions are real, and there
exists a (real-valued) Riemannian solution, by uniqueness g(i3)
is a Riemannian metric.
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A <O: globally regular black holes

, example of arguments

e Let ¢ be the time-reversal, t — —t. Then ¢*g(—a) and g(a)
satisfy the same equations and same bouundary conditions. By
uniqueness

¢*9(—a) =g(a).
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A <O: globally regular black holes

, example of arguments

e Let ¢ be the time-reversal, t — —t. Then ¢*g(—a) and g(a)
satisfy the same equations and same bouundary conditions. By
uniqueness

¢*g(—a) = g(a).
Equivalently

gi(—a) = —gi(a), gu(—a)=gu(a), gj(—a)=gja. (2
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globally regular black holes

, example of arguments

e Let ¢ be the time-reversal, t — —t. Then ¢*g(—a) and g(a)
satisfy the same equations and same bouundary conditions. By
uniqueness

¢*g(-a) =9g(a).
Equivalently
gi(—a) = —gi(a), gu(—a)=gu(a), gj(—a)=gja. (2

e For a € R, (2) and the fact that g(/53) is a Riemannian metric
show that

gw(a) e iR, gn(a) eR™, gk(a) eR. 3)
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globally regular black holes

, example of arguments

e Let ¢ be the time-reversal, t — —t. Then ¢*g(—a) and g(a)
satisfy the same equations and same bouundary conditions. By
uniqueness

¢*g(-a) =9g(a).
Equivalently
gi(—a) = —gi(a), gu(—a)=gu(a), gj(—a)=gja. (2

e For a € R, (2) and the fact that g(/53) is a Riemannian metric
show that

gw(a) € iR, gu(a)eR™, gw(a)eR. (3)
e.g.:
gu(@) =) (gwna"= > (gGw)na@ "

neN n=2k+1,keN cic Wiversitt
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globally regular black holes

, example of arguments

¢ This proves that the replacement t — it provides a
one-parameter family of Lorentzian (real-valued) metric solving
the vacuum Einstein equations with a negative cosmological
constant for all small a € R.
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: the global structure of de Sitter space-times

Figure 5.3.4: The generalized Kottler (de Sitter) metrics with positive cosmo-
logical constant and vanishing mass parameter m. Left figure: a conformal
diagram; the lines {r = 0} are centers of rotation. The right figure makes it
clearer that the Cauchy surface {t = 0}, as well as .# T and .#~, have spherical
topology.

Black holes
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: the global structure of Schwarzschild-de Sitter
metrics

Figure: conformal diagram for Schwarzschild-de Sitter metrics
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: the global structure of Kerr-de Sitter
space-times

Figure: A projection diagram for the Kerr-de Sitter spacettimes with
four distinct zeros of A, = (r? + &) (1 — §r?) —2m(1 + §&2)r. wiversitat
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: Stability (32 years of Friedrich’s theorem ...)

Theorem (Friedrich 1986)
de Sitter is stable under non-linear perturbations
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: Stability (32 years of Friedrich’s theorem ...)

Theorem (Friedrich 1986)
de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)

Kerr-de Sitter black holes are stable under non-linear
perturbations in the region between horizons
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: Stability (32 years of Friedrich’s theorem ...)

Theorem (Friedrich 1986)
de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)

Kerr-de Sitter black holes are stable under non-linear
perturbations in the region between horizons

compare Schlue (work in progress) and Ringstrém, Oxford
Univ. Press 2013

wiversitat
wien

Piotr T. Chrusciel Black holes



: Stability (32 years of Friedrich’s theorem ...)

Theorem (Friedrich 1986)
de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)

Kerr-de Sitter black holes are stable under non-linear
perturbations in the region between horizons

compare Schlue (work in progress) and Ringstrém, Oxford
Univ. Press 2013

Corollary (Hintz 2018)

Stationary vacuum black holes near Schwarzschild-de Sitter
are Kerr-de Sitter between the Killing horizons.
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: Uniqueness,

g=—V2d? + gidx'axl, 8V =0=0dg;.

Theorem (Lafontaine, Rozoy 1999)

Schwarzschild-de Sitter black holes are unique in the class of
static black holes with nice level sets of the “lapse function” V
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: Uniqueness,

g=—V2d? + gidx'axl, 8V =0=0dg;.

Theorem (Lafontaine, Rozoy 1999)

Schwarzschild-de Sitter black holes are unique in the class of
static black holes with nice level sets of the “lapse function” V

4

Theorem (Borghini, Mazzieri 2017)
Schwarzschild-de Sitter’s are the only static black holes

near Schwarzschild-de Sitter

and satisfying a “virtual mass” condition

(special case of a more general theorem)
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: Uniqueness,

g=—V2d? + gidx'axl, 8V =0=0dg;.

Theorem (Lafontaine, Rozoy 1999)

Schwarzschild-de Sitter black holes are unique in the class of
static black holes with nice level sets of the “lapse function” V

Theorem (Borghini, Mazzieri )
Schwarzschild-de Sitter’s are the only static black holes

with a nice maximal level set of V

and satisfying a “virtual mass” condition
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