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Menu: 

1st .  General Introduction
✓Why multi-messengers (inc. GW)?
✓Basics of GW Physics and Detection
✓First detection of GW150914 

2nd . Core-collapse supernova theory:
how to solve “numerically”
the space-time evolution of dying stars

3rd . GW signatures from core-collapse         
supernovae: what we can learn from 
future GW observation ?



Before 
After 

SN１９８７A
Progenitor:
２０Msun

Bottom-line : Story about …. ?
“Core-Collapse Supernova (CCSN)” is explosion of massive stars (> ~9 Msun) 



Before 
After 

SN１９８７A
Progenitor:
２０Msun

Bottom-line : Story about …. ?
“Core-Collapse Supernova (CCSN)” is explosion of massive stars (> ~9 Msun) 

Not clear… over 50 years !
(lecture by Foglizzo)



DeLaney et al. (2010)
Why “Multi-Messenger” observations ?
✓Conventionally, “Astronomy” means electromagnetic-wave (EM) 

observation.

From E. Mueller



Hours ~day

DeLaney et al. (2010)

~350 years,
Type IIb

Multidimensionality
(origin of anisotropy)

Exp. Mechanism
Thermodynamics

Dynamics

Neutrino signals 
(Lecture by Mirizzi)

Gravitational wave(GW)
EM waves

✓A Final goal of this field…
⇒Clarify the formation mechanism of compact objects

(Neutron stars and black holes)
via muti-messenger observables
(GW,  neutrinos, multi-wavelength EM waves)

(nucleosynhesis, lecture by Diehl !)

Data
analysis

Self
Consistent
models

Signal Prediction

Why “Multi-Messenger” observations ?
✓Conventionally, “Astronomy” means electromagnetic-wave (EM) 

observation.



Gravitational wave (GW) homework from …?
Einstein’s theory of General relativity (1915)

GWs : a ripple of space-time
propagate at the speed of light

First announcement by LIGO (Laser Interferometer Gravitational Wave Observatory)

Credit: LIGO

2016, Feb,12th 2 am (JST) GWs from merging 
BHs (GW150914) !!!

David Reitze

Second announcement
GW151226, third (GW1701204)

Once is a chance, twice is a coincidence,
thrice is a pattern !



Gravitational wave (GW) ?
Einstein’s theory of General relativity (1915)

charge

⇒ Electro-magnetic wave

Dynamical motion of
electric-magnetic (EM) fields

General Relativitymass

⇒ Gravitational radiation
(Gravitational-wave emission)

Dynamical change in
gravitational fields

Electromagnetics

GWs : a ripple of space-time 
propagate at the speed of light

✓ How to generate GWs  ?



Basics of Gravitational-wave (GW) emission   (1/3)
Naive analogy with Electromagnetics: Quiz1: ”leading term of EM emission” ?!

Quiz 2: Dipole radiation from moving “uncharged” particles ?!

Matter dipole moment

Ans: Electric dipole radiation ! 

Next-order emission in EM; Magnetic dipole radiation from electric current. 
Matter-current dipole moment:

𝑑𝑑2𝜇𝜇
𝑑𝑑𝑡𝑡2 = 0 ang. momentum conservation ⇒ 𝐍𝐍𝐍𝐍 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦

⇒
𝑑𝑑2

𝑑𝑑𝑡𝑡2
(Quadrupole (>) matter moments ) leads to Gravitational-wave (GW emission) ! 



Quadrupole 
formula

Standard Quadrupole formula (SQF)

here Mass quadrupole moment

(e.g., “Gravitation”, Misner, Thorne, Wheeler, 1973）

Einstein equations

Minkowski metric
Weak-field approx,

Metric: expand up to 1st order deviation from Minkowski metric Retarded green function

SQF：

Slow-motion approximation

R: source source

Note 𝑅𝑅𝜇𝜇𝜇𝜇 : 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ~ |𝑔𝑔|
𝑟𝑟2

~ 𝜕𝜕
𝜕𝜕𝑥𝑥

2
ℎ𝜇𝜇𝜇𝜇

Basics of Gravitational-wave (GW) emission   (2/3)

ℎ ∼
𝐺𝐺𝐺𝐺 𝑅𝑅∗2

𝑐𝑐4𝑅𝑅𝑇𝑇∗2
∼
𝐺𝐺𝐺𝐺𝑣𝑣∗2

𝑐𝑐4𝑅𝑅

Order-of-magnitude



Basics of Gravitational-wave (GW) emission   (3/3)
✓ GWs have two polarization states (+, x modes)

x

y

z GW

✓ why “two”  ?: 𝑔𝑔𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= 4ｘ5

2
= 10 - 4 (choice of the gauge freedom: ℎ𝜇𝜇𝜇𝜇,ν = 0 )

- 4 (choice of the coordinates) = 「2」
✓Indirect proof of GWs: Hulse-Taylor pulsar

x

y



Short History: 1st generations of Laser-interferometers
✓ Start Observation ~ 1999 (TAMA of NAOJ)
✓ 6 interferometers by 4 projects -> International Newtorks
✓ Observational range (binary NS, lecture by Bauswein)-> ~20 Mpc:Event rate ~0.01/yr



✓ 2nd generations of Laser-interferometers

✓ International network of LIGO-Virgo (LVC) is working.
-> First joint  GW detection of BH-BH merger (Abbott et al. (2017), PRL)

✓ Obs. Range > 200 Mpc -> Event  rate ~ 10/ yr !



KAGRA =
Kamioka Gravitational Wave
Detector



Mass(M) : 600000 ton
Length    : 300 m
Frequency:  2/s
Observer distance(r): ? m

Can we observe the GWs ??

4

2

rc
GMvh ≈

Koji Murofushi,
Medalist Hammer thrower

✓GW amplitudes by an order-of-magnitude estimation

“h” is a strain. LhL ×=∆

G ～ 6 x 10−8cgs. c ～ 3x1010cm/s

Quiz: How much is your “h”  ?



Can we observe the GW emission from the rotating building ?

(advanced LIGO)

Sensitivity curves of laser interferometrs

10 km long: 
Einstein Telescope (ET)
could start  ~2025.

>2025

(advanced Virgo)



Can we observe the GW emission from the rotating building ?

(advanced LIGO)

Sensitivity curves of laser interferometrs

10 km long: 
Einstein Telescope (ET)
could start  ~2025.

>2025

(advanced Virgo)



More mass ! More velocity ! : Astrophysical GW sources
4

2

rc
GMvh ≈

Ground-based detectorsSpace-based detectors

From M. Ando



More mass ! More velocity ! : Astrophysical GW sources
4

2

rc
GMvh ≈

Ground-based detectorsSpace-based detectors

Long ruler

Short ruler



Why even now, difficult to detect GWs from Hulse-Taylor pulsar (1/4)?

For simplicity, let’s consider a circular orbit (e = 0) !

𝑚𝑚1 = 1.4398 ± 0.0002 𝑀𝑀⊙
𝑚𝑚2 = 1.3886 ± 0.0002 𝑀𝑀⊙
Period:  P   = 7.75 hours
eccentricity: e = 0.671334(5)

Orbital separation: a

a = 𝐺𝐺 𝑚𝑚1+𝑚𝑚2 𝑃𝑃2

4 𝜋𝜋2

1
3
∼ 1.95 × 1011 cm

Distance to the source:
d = 6500 pc ∼ 6500 × 3.1 × 1013km

= 2 × 1022 cm
a ≡ 𝑟𝑟1 + 𝑟𝑟2

Orbital separation:

Weisberg, Nice, Taylor (2010) ApJ

(2).  Kepler’s (third) law:  𝐹𝐹 = 𝐺𝐺𝑚𝑚1𝑚𝑚2
𝑎𝑎2

= 𝑚𝑚1𝑣𝑣12

𝑟𝑟12
= 𝑚𝑚2𝑣𝑣22

𝑟𝑟22
, 𝑣𝑣1 = 𝑟𝑟1𝜔𝜔, 𝑣𝑣2 = 𝑟𝑟2𝜔𝜔⇒

(1).  Positions of the two stars (NSs)

(here we used the relations,𝑚𝑚1 𝑟𝑟1 = 𝑚𝑚2 𝑟𝑟2,𝑎𝑎 = 𝑟𝑟1 + 𝑟𝑟2,⇒ 𝑟𝑟1 = 𝑚𝑚2
𝑚𝑚1+𝑚𝑚2

𝑎𝑎, 𝑟𝑟2 = 𝑚𝑚1
𝑚𝑚1+𝑚𝑚2

𝑎𝑎)



Why even now, difficult to detect GWs from Hulse-Taylor pulsar (2/4)?
For simplicity, let’s consider a circular orbit (e = 0) !

a ≡ 𝑟𝑟1 + 𝑟𝑟2
Orbital separation:

(1).  Positions of the two stars (NSs)

(2).  Kepler’s law

(3).  Quadrupole moments



Why even now, difficult to detect GWs from Hulse-Taylor pulsar (2/4)?
For simplicity, let’s consider a circular orbit (e = 0) !

a ≡ 𝑟𝑟1 + 𝑟𝑟2
Orbital separation:

(1).  Positions of the two stars (NSs)

(2).  Kepler’s law

(3).  Quadrupole moments

cos2𝜃𝜃 =
1
2 (1 + cos2𝜃𝜃)



Why even now, difficult to detect GWs from Hulse-Taylor pulsar (2/4)?
For simplicity, let’s consider a circular orbit (e = 0) !
(4).  The GW amplitude

✓ The frequency of GW emission (2ω) is twice of the orbital frequency of a binary star (ω)

Traceless-transverse

(5).  Angular dependence of GW emission

+ mode x mode

Seen from the spin axis Const
Circular polarization
Quiz:
Seen from equator?

Inclination angle



Why even now, difficult to detect GWs from Hulse-Taylor pulsar (4/4)?
(4).  The GW amplitude

Kepler’s law

✓The GW is not that small for ground detectors. Important: The GW amp. increases with time!
✓The GW frequency is, Period:  P   = 7.75 hours

Too low to detect by interferometers on the earth!
Why did LIGO make it to detect GWs (from BHs) ?

c2 c2
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Success of GR in Hulse-Taylor pulsar (1/5)
(5).  The GW luminosity

[erg/s] 
Quadrupole
(Issacson’s)formula

✓Total gravitational energy

Third time-derivatives of quadrupole moment

✓Energy loss rate due to GW emission 

✓Decreasing rate of the orbital separation 

✓Using the Kepler law, 



(5).  Decrease rate of the orbital spin period (e.g., increase of the orbital frequency)

Success of General Relativity in Hulse-Taylor pulsar (2/5)

On the other hand, 30-year of observation of the Hulse-Taylor pulsar:

~12 times bigger !

The orbit has eccentricity !

Taking “ e = 0.671334(5)” -> 

Accuracy of GR prediction confirmed !

(confirmed also by
perihelion shift of Mercury,
deflection of light by the Sun …)

(6) Important quantity: The Chirp mass 

The GW luminosity; LGW Kepler’s law

The Chirp mass; Mc



Success of General Relativity in Hulse-Taylor pulsar (3/5)
✓The Chirp signal 
by 3.5 Post-Newtonian (PN) techniques

(e.g., Blanchet, Living Reviews, 2013, )
Equation of motion of m1

1PN correction (v/c)2

2PN correction (v/c)4

2.5PN correction 
(v/c)5 :Back reaction



Success of General Relativity in Hulse-Taylor pulsar (4/5)
✓The Chirp GW signal
(e.g., Blanchet, Living Reviews Relativity, 17, 2 (2014) )

By observing The Chirp mass via

By observing The source distance r, inclination angle  𝜄𝜄

By observing the ring-down phase (quasi-normal mode) 

Damping rate, “a” is Kerr parameter  (J/M)

The BH mass M, BH spin, a  



✓Three evolution phases of binary merger
(see lecture by Bauswein !)

Inspiral phase:
h, fGW increases with
time !

Success of General Relativity in Hulse-Taylor pulsar (5/5)

The chirp GW signal:
The waveforms generally well-modeled 
by Post-Newtonian techniques (theory). 

(see, Sathyaprakash &  Schutz (2011) Living review)

For the “real-signal” detection:

✓The signal-to-noise ratio: SNR or S/N 

noise@ the detector

S/N ～
𝑠𝑠(𝑡𝑡)
𝑛𝑛(𝑡𝑡)

, not accurate. . more correctly…

h (f) :template  (= ℎ 𝑁𝑁 (Thorne (1987))
(for quasi-periodic signals of N cycles
, e.g., chirp, matched filtering)

Sn (f)=  spectral noise density 

tc ~108 years

ISCO, tc ~1.5 ms

tc ~300 ms

(𝑠𝑠|ℎ)

< 𝑛𝑛 ℎ 2 >
∼ 10 Better

seismic
isolation

Better
mirrors & suspension

High laser powers

rms



✓Three evolution phases of binary merger
(see lecture by Bauswein !)

Inspiral phase:
h, fGW increases with
time !

Success of General Relativity in Hulse-Taylor pulsar (5/5)
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by Post-Newtonian techniques (theory). 
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Quiz: Can one expect GW emission from axisymmetric (2D) stars ?

2D

(e.g., Takiwaki,KK, Suwa (2012,2014), ApJ)



1st discovery: GW150914

Numerical
Relativity 

Simulation 
by Caltech-
Cornell-CITA 
group

Abbott et al. (PRL), 2016, 116, 061102

𝑀𝑀1 = 36𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠
𝑀𝑀2 = 29 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠
(10-24 for binary NSs)



Abbott et al. (PRL), 2016, 116, 061102

[erg/s] 
Quadrupole
(Issacson’s)formula

Applications to GW formulae to GW150914

~
1
5
𝐺𝐺
𝑐𝑐5

𝑀𝑀 𝑟𝑟2

𝑇𝑇3

2

~
1
5
𝐺𝐺
𝑐𝑐5
𝑀𝑀2𝑟𝑟4 𝜔𝜔6

@ hmax, 𝑟𝑟 = 3 𝑟𝑟s , 𝑣𝑣 = 𝑟𝑟𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 ~ 0.5 𝑐𝑐

|𝐿𝐿𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚~10-4 𝐿𝐿Plank

𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≡
(𝑚𝑚1𝑚𝑚2) �3 5

(𝑚𝑚1 + 𝑚𝑚2) �1 5

Assuming equal mass
M ~ 30 M⨀

⇒ 𝑑𝑑𝐿𝐿 ~ 300Mpc
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Future Roadmaps

✓ 4-detector era  -> Sky-localization ~100-> 2~3 deg2, Polarization

☆ Note; distance to binary-NSs



1st .  General Introduction
✓Why GWs ?

To see the inner-workings of BH/NS forming cites !
✓Basics of GW Physics and Detection

From the Einstein equations (quadrupole formulae),
to applications how to extract  basic information 
of binary parameters (Hulse-Taylor pulsar) 
✓First detection of GW150914 
The GW astronomy started !
(multimessenger analysis important, 

Lectures:G.M. Pinedo, A Bauswein, R.Diehl ! )
2nd . Core-collapse supernova theory:

The space-time evolution of dying stars

One-sentence summary



Useful references:

1. General relativity: textbook by Landau, Lifshitz

2. Concise review of GW physics and detection: 
by Michele Maggiore

3.   Brief overview of GW150914
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