MATTER

Nucleosynthesis in stars and in the big bang – the seeds for the r process

Daniel Bemmerer

MML FROM MATTER TO MATERIALS AND LIFE

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF Nucleosynthesis in stars and in the big bang – the seeds for the r process

- Big Bang nucleosynthesis
 Astrophysical S-Factor
 Thermonuclear Reaction Rate
 Resonance Strength
 LUNA 0.4 MV underground lab in Italy
- Experimental facilities underground LUNA-MV underground lab in Italy Felsenkeller underground lab in Germany
- Asymptotic giant branch stars
 Stellar hydrogen burning
 Neutron sources for the s-process
 Stellar helium burning

Three tools of observational cosmology

BBN, Big Bang Nucleosynthesis, 10² s, 1 GK CMB, Cosmic microwave background, 4 10⁵ yr, 3000 K

SN Ia, type Ia supernovae, 14 10⁹ yr

Daniel Bemmerer Institute of Radiation Physics

Page 3

State of the art of cosmology, Λ CDM model

State of the art (Planck 2015 data release, arXiv:1502.01589)

- The universe is flat, i.e. we have ~100% of the critical energy density.
- There is a cosmological constant ("dark energy"), called Λ
- There is significant dark matter, and it has low energy ("cold").
- The universe shows a recently accelerated expansion.

 $\Omega_{\Lambda} = 0.6911 \pm 0.0062$

 $t_{\rm Universe} = 13.799 \pm 0.021 \,\rm Gyr$

Page 4

01.03.2019

Time t~3 min, temperature T~1 GK: Big Bang Nucleosynthesis (BBN)

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process M	lember of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 5

Microphysics and Macrophysics: Nuclear Structure and Cosmology

Deuterium bottleneck

 Deuterium only stable at sufficiently low temperature

Mass 5 and 8 barriers

- No stable nucleus with mass Z+N = 5
- No stable nucleus with mass Z+N = 8

Nuclear binding energy

 ⁴He has the highest binding energy of all stable light nuclei

Electrostatic repulsion

 Probability for capture of a nuclide drops exponentially for increasing Z and sqrt(Z+N) of the captured nuclide

What happens during Big Bang Nucleosynthesis (BBN)? t (s)

Radioactive ³H (12.3 a) and ⁷Be (53 d) end up as stable ³He, ⁷Li

Isotopic shift for hydrogen absorption lines (Lyman series)

$$\frac{1}{\lambda_{\rm H}} = \frac{R_{\infty}}{1 + m_e/m_{\rm H}} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \qquad \frac{1}{\lambda_{\rm D}} = \frac{R_{\infty}}{1 + m_e/m_{\rm D}} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{\lambda_{\rm D} - \lambda_{\rm H}}{\lambda_{\rm D}} = \frac{\frac{1 + \frac{m_e}{m_{\rm D}} - (1 + \frac{m_e}{m_{\rm H}})}{1 + \frac{m_e}{m_{\rm H}}}}{\frac{1 + \frac{1}{1836} - (1 + \frac{1}{3669})}{1 + \frac{1}{1836}}}$$

$$\approx 3 \times 10^{-4} \equiv 0.03 \,\mathrm{nm}$$

MML IN-HOUSE RESEARCH

Wikipedia

Observed nuclide abundance: ²H

 Observe ²H absorption lines from the Lyman series in gas clouds

 Plot observed ²H abundance as function of the age of the gas cloud, traced by the oxygen abundance O/H

 Fit and extrapolate to zero O/H (=primordial gas cloud)

-2.5

-4.50

-4.55

-4.60

-4.65

-4.70

 $\log(D/H)$

01.03.2019

-1.5

-2.0

[O/H]

Nucleosynthesis in stars and the big bang – the seeds for the r process Member of the Helmholtz Association Page 9

Observed nuclide abundance: ⁴He

Izotov et al., MNRAS 2014

Observed nuclide abundance: ⁷Li and the "Spite plateau"

2.

3.

The Big Bang nuclear reaction network

locco et al. 2009

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 13

Nuclear reaction cross section σ for low-energy charged particles

Typical Coulomb barrier height : ~ MeV

dominated by the tunneling probability.

 $\sigma(E) = \frac{S(E)}{E} \exp\left(-2\pi Z_1 Z_2 \alpha \sqrt{\frac{\mu c^2}{2E}}\right)$

The energy dependence of the cross section is

Definition of the astrophysical S-factor *S*(*E*):

 $= \frac{S(E)}{E} \exp\left(-31.29Z_1Z_2\sqrt{\frac{\mu/\text{amu}}{E/\text{keV}}}\right)$

projectile and target

= center of mass energy

 Z_1, Z_2 = charge numbers of

Typical temperature $k_{\rm B} * T \sim keV$

Nucleus

Neglect angular momentum, which would lead to an additional barrier.

 $\mu = \frac{m_1 m_2}{m_1 + m_2} \text{ = reduced mass}$

Ε

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 14

At which energies do the reactions take place in a plasma?

Thermonuclear reaction rate, nonresonant case

$$N_A \langle \sigma v \rangle = N_A \sqrt{\frac{8}{\mu \pi}} (k_{\rm B} T)^{-\frac{3}{2}} \int_0^\infty \sigma(E) E \exp\left[-\frac{E}{k_{\rm B} T}\right] dE$$
$$= N_A \sqrt{\frac{8}{\mu \pi}} (k_{\rm B} T)^{-\frac{3}{2}} S \int_0^\infty \exp\left[-31.29 Z_1 Z_2 \sqrt{\frac{\mu/\mathrm{amu}}{E/\mathrm{keV}}} - \frac{E}{k_{\rm B} T}\right] dE$$
$$= N_A \sqrt{\frac{8}{\mu \pi}} (k_{\rm B} T)^{-\frac{3}{2}} S \int_0^\infty \exp\left[-\frac{b}{\sqrt{E}} - \frac{E}{k_{\rm B} T}\right] dE$$

Abbreviations for barrier penetrability **b** and Gamow peak energy E_0

$$b/\text{keV} = -31.29Z_1Z_2\sqrt{\frac{\mu}{\text{amu}}}$$
$$E_0/\text{keV} = 122\left(Z_1^2Z_2^2\frac{\mu}{\text{amu}}T_9^2\right)^{\frac{1}{3}}$$

Page 16

MML IN-HOUSE RESEARCH

. .

Thermonuclear reaction rate, nonresonant case

Abbreviation for Gamow peak energy E_0

$$E_0/\text{keV} = 122 \left(Z_1^2 Z_2^2 \frac{\mu}{\text{amu}} T_9^2 \right)^{\frac{1}{3}}$$

Abbreviation au

$$\tau = \frac{3E_0}{k_{\rm B}T} = 4.246 \left(Z_1^2 Z_2^2 \frac{\mu/\text{amu}}{T_9} \right)^{\frac{1}{3}}$$

Thermonuclear reaction rate can then be expressed as:

$$N_A \langle \sigma v \rangle = N_A \sqrt{\frac{8}{\mu \pi}} (k_{\rm B} T)^{-\frac{3}{2}} S \int_0^\infty \exp\left[-\frac{b}{\sqrt{E}} - \frac{E}{k_{\rm B} T}\right] dE$$
$$= 4.33 \times 10^5 \frac{\tau^2}{\frac{\mu}{\rm amu} Z_1 Z_2} \exp(-\tau) \frac{S(E_0)}{\rm keV \, b} \frac{\rm cm^3}{\rm s \ mol}$$

1

Assumption: $S(E) = \text{const.}(E) = S(E_0) \text{ near } E_0$

MML IN-HOUSE RESEARCH

HZDR

Thermonuclear reaction rate, sharp Breit-Wigner resonance

$$N_A \langle \sigma v \rangle = N_A \sqrt{\frac{8}{\mu \pi}} (k_{\rm B} T)^{-\frac{3}{2}} \int_0^\infty \sigma(E) E \exp\left[-\frac{E}{k_{\rm B} T}\right] dE$$
$$= N_A \left(\frac{2\pi}{\mu k_{\rm B} T}\right)^{\frac{3}{2}} \hbar^2 \,\omega\gamma \,\exp\left[-\frac{E_{\rm reso}}{k_{\rm B} T}\right]$$
$$= 1.5394 \times 10^5 \left(\frac{\mu}{\rm amu} T_9\right)^{-\frac{3}{2}} \,\frac{\omega\gamma}{\rm eV} \,\exp\left[-\frac{0.011605}{T_9} \frac{E_{\rm reso}}{\rm keV}\right]$$

Abbreviations for barrier penetrability **b** and Gamow peak energy E_0

Maxweli-Boltzmann distribution

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process Member of the Helmholtz Association	
Institute of Radiation Physics	01.03.2019	Page 18	

Experiment on ⁷Be \rightarrow ⁷Li at LUNA, Gran Sasso (Italy)

MML IN-HOUSE RESEARCH

Page 19

³He(α,γ)⁷Be, LUNA 0.4 MV accelerator deep underground

LUNA = Laboratory Underground for Nuclear Astrophysics

- Italy
- Germany
- Hungary
- UK

LUNA approach: Measure nuclear reaction cross sections at or near the relevant energies (= Gamow peak), using

- high beam intensity
- low background
- great patience

MML IN-HOUSE RESEARCH

Daniel Bemmerer Institute of Radiation Physics

01.03.2019

Nucleosynthesis in stars an

³He(α,γ)⁷Be experiment at LUNA (activation and prompt- γ technique)

³He(α , γ)⁷Be at LUNA, ⁷Be activation spectra

Detected ⁷Be activities: 0.8 - 600 mBq

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 22

³He(α,γ)⁷Be reaction, S-factor results from LUNA and others

MML IN-HOUSE RESEARCH

Page 23

³He(α,γ)⁷Be thermonuclear reaction rate $N_A < \sigma v >$

³He(α,γ)⁷Be reaction, what is needed for even better precision

1. One comprehensive data set spanning a wide energy range.

 Separation of s-wave from d-wave component at 1 – 2 MeV.

When this is given, the uncertainty of the reaction rate will decrease below 3% also for solar temperature.

See the poster by Steffen Turkat!

big bang – the seeds for the r process Member of the Helmholtz Association

Page 25

Experiment on ${}^{2}H(\alpha,\gamma){}^{6}Li$ at LUNA: Experimental setup

Background by a second order process:

Page 26

 $E_{\alpha} = 400 \text{ keV}$

 E_{α} = 280 keV

01.03.2019

Nucleosynthesis in stars and the big bang – the seeds for the r process Member of the Helmholtz Association

²H(α , γ)⁶Li, LUNA results for the S factor and the ⁶Li abundance

- First direct data point in the Big Bang energy window
- Determine primordial ${}^{6}Li/{}^{7}Li$ ratio = (1.5±0.3) * 10⁻⁵ entirely from experimental data
- Astronomical reports of ⁶Li/⁷Li ~ 10⁻² are probably in error
 IN-HOUSE RESEARCH

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physi	ics 01.03.2019		Page 28

Cosmology: The Spite abundance plateau and the lithium problem(s)

- Cosmic ⁷Li problem: Less ⁷Li in old stars than predicted.
 ⁷Li production mainly by ³He(α,γ)⁷Be → ⁷Li LUNA data rules out a nuclear solution for the cosmic ⁷Li problem.
- Reported cosmic ⁶Li problem: Much more ⁶Li in some old stars than predicted.
 LUNA data show that standard BBN produces much less ⁶Li than reported by some observers.

Experiment at HZDR, YELBE bremsstrahlung facility

Neutron capture on exotic nuclei and neutron-rich BBN scenarios

						0 0.55	8.4	1P	7 1054	7 551	0 n.p 20000	10,00 - 0.1	P -0 -000	1012	1003
				10	Ne 20.1797	Ne 16 122 keV	Ne 17 109.2 ms	Ne 18 1.67 s	Ne 19 17.22 s	Ne 20 90.48	Ne 21 0.27	Ne 22 9.25	Ne 23 37.2 s	Ne 24 3.38 m	Ne 25 602 ms
				10	σ 0.042	3.7·10 " s 2p	β ⁺ 8.0, 13.5 βρ 4.80, 3.80, 5.12 βα 1 725 1 495, 9129 ⁺ .	β [*] 3.4 γ 1042	β ⁺ 2.2 γ (110, 197 1357)	o 0.039	ச 0.7 கூ 0.00018	n 0.051	β 4.4 γ 440, 1839	β 2.0 γ 874 m	β 7.3 γ 90, 980
				9	F 18.9984032	F 15 1.2 MeV 380·10 [™] s	F 16 40 keV 11·10 ⁻²¹ s	F 17 64.8 s	F 18 109.728 m	F 19	F 20 11.0 s	F 21 4.16 s	F 22 4.23 s	F 23 2.23 s	F 24 0.34 s
					σ 0.0095	p	р	β ⁺ 1.7 πο γ	β ⁺ 0.633 no γ	в 0.0095	β ⁼ 5.4 γ 1634	β 5.3, 5.7 γ 351, 1395	β 5.5 γ 1275, 2083 2166	γ 1701, 2129 1822, 3431	β γ 1982
		0	O [15.99903;	O 12 580 keV	O 13 8.58 ms	O 14 70.59 s	O 15 2.03 m	O 16 99.757	O 17 0.038	O 18 0.205	O 19 27.1 s	O 20 13.5 s	O 21 3.4 s	O 22 2.25 s	O 23 97 ms
		0	σ 0.00029	2p β*?	β ⁺ 16.7 βp 1.44, 6.44 γ(4439*,3500)	β ⁺ 1.8, 4.1 γ 2313	β ⁺ 1.7 no γ	a 0.00019	ര 0.00054 ദ _ബ 0.257		β 3.3, 4.7 γ 197, 1357	β 2.8 γ 1057	β 6.4 γ 1730, 3517 280, 1787	β γ 72, 637 1862	γ 2243, 4066 3868, 2926 βn
	7	N [14.00643; 14.00728]	N 10 2.3 MeV 200·10 ⁻³⁴ s	N 11 ~0.77 MeV? ~590·10 ⁻²⁴ s?	N 12 11.0 ms	N 13 9.96 m	N 14 99.636	N 15 0.364	N 16 5.3 µs 7.13 s 5 ^{-4.3} 10.4	N 17 4.17 s β ⁻ 3.2, 8.7 80 1 17 0 38	N 18 0.63 s 8 ⁻ 9.4 11.9	N 19 336 ms	N 20 136 ms β ⁻ , γ 1674, 96*	N 21 82.9 ms	N 22 20 ms
		σ _{abs} 2.00	p?	р	γ 4439 βα 0.2	β ⁺ 1.2 no y	α 0.080 σ _{в.р.} 1.93	o 2.4 E-5	μ ₇ 120 β ⁻ β ⁻	γ 871, 2184 βα 1.25, 1.41	γ 1962, 622 1852, 2473 βα 1.08, 1.44 μn 1.35, 2.46	γ 98, 1983°, 38 1376, 2475 βn 1,054, 0,452 2,655	βn 2.071 1.098	4.98, 2.85 7 1874*, 2397* 1222	γ 3196, 1386 1221*, 1874* βn 1.845, 0.783 β2n
	C [12.0096;	C 8 230 keV	C 9 126.5 ms	C 10 19.308 s	C 11 20.38 m			C 14 5730 a	C 15 2.45 s	C 16 0.747 s	C 17 193 ms	C 18 92 ms	C 19 49 ms	C 20 14 ms	C 21 <30 ns
6	12.0116] g 0.0035	2.0·10 ⁻²¹ s	β ⁺ 15.5 βp 8.24, 10.92 βα	β ⁺ 1.9 γ 718, 1022	β ⁺ 1.0 no γ			β ⁼ 0.156 πο γ	β ⁼ 4.5, 9.8 γ 5298	β 4.7, 7.9 βn 0.79, 1.72	β βn 1.82 γ 1375, 1849 1906	β ⁻ γ 2614, 880 2499 βn 0.88, 1.55	β βn 1.01, 0.46 β2n	β βn	n?
5	B [10.806;	B 7 1.4 MeV 250:10 ⁻²⁴ s	B 8 770 ms	B 9 0.54 keV 800:10 ⁻²¹ s	B 10 19,9		B 12 20.20 ms	B 13 17.33 ms	B 14 13.8 ms	B 15 10.4 ms	B 16 <190·10 ⁻¹² s	B 17 5.1 ms	B 18 <26 ns	B 19 2.92 ms	
5	σ _{sbs} 760	p	β ⁺ 14.1 β2α ~1.6, 8.3	p	σ 0.3 σ _{σμ} 3840 σ _{σμ} 0.007		β 13.4 γ 4439 βα 0.2	β [™] 13.4 γ 3684 βn 3.6, 2.4	β 14.0 γ 6090, 6730 βn	β 16.0, 18.4 βn 1.77, 3.20	n?	β βn, β2n β3n, β4n	n?	β βn β2n	
4	Be 9.012182	Be 6 92 keV 5·10 ⁻²¹ s	Be 7 53.22 d	Be 8 5.57 eV 67·10 ⁻¹⁸ s	Be 9 100	Be 10 1.387·10 [°] a	Be 11 13.8 s	Be 12 21.50 ms	Be 13 0.5 ns	Be 14 4.35 ms β ⁻	2.53E-5	12		14	
	σ 0.0088	2р	ε γ 478 σ _{n.p} 38820	α 0.046	rt 0.0078	β 0.8 noγ σ<0.001	β 11.5 γ 2125, 6791 βα 0.77, 0.29	β ⁼ 11.7 βn	n?	βn <0.8, 3.02 3.52, β2n γ 3528*, 3680*					
Li [6.938; 6.997]	Li 4 5.0 MeV 91·10 [™] s	Li 5 1.23 MeV 370·10 ⁻³⁴ s	Li 6 7.59	Li 7 92.41	Li 8 840.3 ms	Li 9 178.3 ms	Li 10 230 keV 2.0·10 ⁻²¹ s	Li 11 8.5 ms β 18.0, 20.4 γ 3368*, 320	Li 12 ? ?	Li 13 2 MeV 230·10 ⁻²⁴ s	1.58E-4 3.01E-4				
σ _{abs} 71	p	p	а 0.039 а _{ни} 940	er 0.045	β 12.5 β2α ~1.6	βη 0.7 βα	n	βn, β2n, β3n βα, βt, βd	n	2n					

Neutron-rich BBN scenarios postulate a nucleosynthesis path on the neutron-rich side of the valley of stability, where data are scarce (Terasawa *et al.*, Sasaqui *et al.*)

1 1007	
N 1	9 N 20
336 1	ns 136 ms
β γ 96, 1983*, 1 1376, 2475 βn 1.054, 0.4	β , γ 1674, 96* 3851 1376* βn 2.071 52 1.098
2.655	
C 1	8 C 19

Reaction of astrophysical interest: ${\rm ^{19}N} + n \rightarrow {\rm ^{20}N} + \gamma$

Reaction that can be studied in the laboratory:

$$^{19}\mathrm{N} + n \leftarrow ^{20}\mathrm{N} + \gamma$$

using... an ion beam of radioactive ²⁰N and virtual photons from a heavy atomic nucleus

Data show no significant effect on heavy nuclei abundances...

contrary to theoretical predictions

The ${}^{2}H(p,\gamma){}^{3}He$ reaction cross section, destroying ${}^{2}H$

Grey circle: CMB (Planck 2015) Blue band: ²H Green band: ³He/⁴He Red circle: ²H and ³He/⁴He combined

R. Cooke et al. 2015

- 1. Currently, CMB (grey) and BBN (red) are in perfect agreement.
- 2. Currently, BBN is much less precise than CMB.
- 3. The BBN precision is mainly limited by the nuclear physics of ²H destruction, more precisely the ²H(p,γ)³He reaction rate.

The ${}^{2}H(p,\gamma){}^{3}He$ reaction cross section, destroying ${}^{2}H$

See the poster by Klaus Stöckel!

2.

3.

What does BBN mean for the chemical elements around us?

Page 36
Nucleosynthesis in stars and in the big bang – the seeds for the r process

- Big Bang nucleosynthesis
 Astrophysical S-Factor
 Thermonuclear Reaction Rate
 Resonance Strength
 LUNA 0.4 MV underground lab in Italy
- Experimental facilities underground LUNA-MV underground lab in Italy Felsenkeller underground lab in Germany
- Asymptotic giant branch stars
 Stellar hydrogen burning
 Neutron sources for the s-process
 Stellar helium burning

Background components in underground laboratories

Page 38

New LUNA-MV 3.5 MV accelerator for ¹H, ⁴He, ¹²C beams: Installation in Gran Sasso hall B from July 2019

01.03.2019

Nucleosynthesis in stars and the big bang – the seeds for the r process Member of the Helmholtz Association

LUNA MV- scientific program (2019 \rightarrow 2024) Commissioning measurement: ¹⁴N(p, γ)¹⁵O. High scientific interest for revised data covering a wide energy range (400 keV- 3.5 MeV).

 $^{12}C+^{12}C$: solid state target. Gamma and particle detection.

¹³ $C(\alpha,n)^{16}O$: enriched ¹³C solid or gas target. Data taking at LUNA 400 kV in 2017-2019.

²²Ne(α ,n)²⁵Mg: enriched ²²Ne gas target.

Next steps (not before 2024...):

¹² $C(\alpha,\gamma)^{16}O$: ¹²C solid target depleted in ¹³C and alpha beam or α jet gas target and ¹²C beam.

New underground ion beam at Felsenkeller, Dresden

- System of nine tunnels built for Felsenkeller brewery in 1856-59
- Cosmic rays attenuated by 45 m rock and by active μ veto

Muon flux and angular distribution with muon tomograph

01.03.2019

Neutron flux and spectrum with moderated ³He counters

- Flux depends on local shielding
- Neutron data informed the construction project

01.03.2019

	Integrated n flux [10 ⁻⁴ cm ⁻² s ⁻¹]	
Tunnel	2.07 ± 0.07	
Pb+Fe bunker	4.56 ± 0.16	
Rock bunker	0.66 ± 0.04	
Above ground	(121)	

Felsenkeller, y-background measurement, with active veto

- One and the same HPGe detector used subsequently at different laboratories
- Background rate at 6-8 MeV γ-ray energy only a factor of 3 higher at Felsenkeller than at Gran Sasso

01.03.2019

Tamás Szücs *et al.* Eur. Phys. J. A 48, 8 (2012) Eur. Phys. J. A 51, 33 (2015)

Daniel Bemmerer

Institute of Radiation Physics

Installations in Felsenkeller

Joint effort HZDR – TU Dresden

- Investment by TU Dresden (Kai Zuber *et al.*) and HZDR (Daniel Bemmerer *et al.*)
- Running cost covered by HZDR
- Engineering and technical staff by HZDR

Two main instruments

- HZDR: 5 MV Pelletron, 50 μA beams of ¹H⁺, ⁴He⁺ (single-ended), ¹²C⁺ (tandem)
- **TU Dresden:** 150% ultra-low-background HPGe detector for offline γ-counting

MM

5 MV Pelletron tank inside the tunnel

Page 46

IN-HOUSE RESEARCH

External (=sputter) ion source for ¹²C beam

Social Voleneiting, Social Scolen VII

PhD project Felix Ludwig (HZDR & TU Dresden) Bachelor's project Julia Steckling

 10^{-5}

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 B_{H all} in T

Page 47

Internal (=radio frequency) ion source for ¹H, ⁴He beams

PhD project Marcel Grieger (HZDR & TU Dresden) Master's project Simon Rümmler

Daniel Bemmerer Institute of Radiation Physics

01.03.2019

Nucleosynthesis in stars and the big bang - the seeds for the r process Member of the Helmholtz Association

Page 48

National Electrostatics 5 MV Tandem, 300 µA upcharge current

Daniel Bemmerer Institute of Radiation Physics

01.03.2019

Nucleosynthesis in stars and the big bang – the seeds for the r process Member of the Helmholtz Association

TU Dresden activity measurement bunker in Felsenkeller

- 150% ultra low background HPGe detector
- Lowest background radioactivity measurement lab in Germany
- Under commissioning, preliminary data very promising

478 κeV γ-ray from 3 He(α , γ)/Be activation study for solar fusion

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 50

Nucleosynthesis in stars and in the big bang – the seeds for the r process

- Big Bang nucleosynthesis
 Astrophysical S-Factor
 Thermonuclear Reaction Rate
 Resonance Strength
 LUNA 0.4 MV underground lab in Italy
- Experimental facilities underground LUNA-MV underground lab in Italy Felsenkeller underground lab in Germany
- Asymptotic giant branch stars
 Stellar hydrogen burning
 Neutron sources for the s-process
 Stellar helium burning

Asymptotic Giant Branch (AGB) stars as a physics laboratory (1)

AGB stars on the Hertzsprung-Russell diagram

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 52

Asymptotic Giant Branch (AGB) stars as a physics laboratory (2)

Elemental abundances in globular cluster stars, example: NGC 6752

3.5" view by the Hubble Space Telescope Image credit: NASA/STScI/WikiSky

- 1. We see Na, Mg, Al imprints of higher hydrogen burning.
- 2. Some abundances are anticorrelated why so?

Abundances [Na/Fe]= log₁₀(N(Na)/N(Fe)) Bastian & Lardo (2018)

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 54

²³Na production by hydrogen burning: ²²Ne(p,γ)²³Na (1)

 Daniel Bernmerer
 Nucleosynthesis in stars and the big bang – the seeds for the r process
 Member of the Helmholtz Association

 Institute of Radiation Physics
 01.03.2019
 Page 55

²³Na production by hydrogen burning: ²²Ne(p,γ)²³Na (2)

Three new resonances, hitherto unobserved.

Resonance strength ωγ [µeV]	<i>E_p</i> = 156.2 keV	$E_p = 156.2 \text{ keV}$ $E_p = 189.5 \text{ keV}$	
Indirect studies	0.009±0.003	≤ 2.6	≤ 0.13
Direct experiment	0.18±0.02	2.2±0.2	8.2±0.7
F. Cavanna <i>et al.</i> (LU D. Bemmerer <i>et al.</i> (NA) Phys. Rev. L LUNA) Europhys. L	ett. 115, 252501 (201) ett. 122, 52001 (2018)	5)

MML IN-HOUSE RESEARCH

Daniel Bemmerer		Nucleosynthesis in stars and the big bang – the seeds for the r process	Member of the Helmholtz Association
Institute of Radiation Physics	01.03.2019		Page 56

²³Na production by hydrogen burning: ²²Ne(p,γ)²³Na (3)

Surface-based experiment at Rossendorf 3 MV Tandetron (IBC) R. Depalo *et al.*, Phys. Rev. C 92, 045807 (2015)

²³Na production by hydrogen burning: ²²Ne(p,γ)²³Na (4)

Thermonuclear reaction rate $\langle \sigma v \rangle$ from resonance strength $\omega \gamma$ and energy E_{reso}

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu k_{\rm B}T}\right)^{\frac{3}{2}} \hbar^2 \,\omega \gamma \,\exp\left(-\frac{E_{\rm reso}}{k_{\rm B}T}\right)$$

MML IN-HOUSE RESEARCH

Institute of Radiation Physics 01.03.2019

The new ²²Ne(p,γ)²³Na data and the Na – O anticorrelation

465, 4817 (2017)

the (previously very bad) description of the Na-O anticorrelation.

Page 59

IN-HOUSE RESEARCH

Asymptotic Giant Branch (AGB) stars as a physics laboratory

²²Ne(α , γ)²⁶Mg, competitor to neutron source ²²Ne(α ,n)²⁵Mg

Bremsstrahlung-based data from γELBE
 R. Schwengner *et al.*,
 Phys. Rev. C 79, 037303 (2009)

- Ongoing experiment at LUNA 0.4 MV on strength of E_x = 10949 keV level
- Experiment planned at Felsenkeller 5 MV on higher-lying levels

¹⁷O(α ,n)²⁰Ne, antidote to neutron poison ¹⁶O(n, γ)¹⁷O

p ?	βα 3.27	βρ 0.83	1.79 Ber 1.98	Y(1012)	p. J.Z 0 1.9/	10.200
Mg 20 95 ms	Mg 21 122.5 ms	Mg 22 3.86 s	Mg 23 11.3 s	Mg 24 78.99	Mg 25 10.00	Mg 2 11.01
β ⁺ γ 984; 275*; 238* βρ 0.77; 1.59	β ⁺ γ332; 1384; 1634* βp 1.94; 1.77	β ⁺ 3.2 γ 583; 74	β ⁺ 3.1 γ 440	rr 0.053	rt 0.20	σ 0.038
Na 19 <40 ns	Na 20 446 ms	Na 21 22.48 s	Na 22 2.603 a	Na 23 100	Na 24 20 ms 14.96 h	Na 2 59.6
p	β ⁺ 11.2 βα 2.15; 4.44 γ 1634	β ⁺ 2.5 γ 351	β ⁺ 0.5; 1.8 γ 1275 σ _{n, p} 28000 σ _{n, α} 260	or 0.43 + 0.1	β ⁻ 1.4 γ 2754; β ⁻ ~6 1369	β ⁺ 3.8 γ 975; 390; 585; 1612
Ne 18 1.67 s	Ne 19 17.22 s	Ne 20 90.48	Ne 21 0.27	Ne 22 9.25	Ne 23 37.2 s	Ne 24 3.38 r
β ⁺ 3.4 γ 1042	β ⁺ 2.2 γ (110; 197; 1357)	(<u>1</u> 9.039	σ 0.7 σ _{n, α} 0.00018	ır 0.051	β 4.4 γ 440; 1639	β 2.0 γ874 m
F 17 64.8 s	F 18 109.7 m	F 19 100	F 20 11.0 s	F 21 4.16 s	F 22 4	F 23
β ⁺ 1.7 no γ	β ⁺ 0.6 no γ	σ 0.0095	β 5.4 γ 1634	β 5.3; 5.7 γ 351; 1395	β 5.5 γ 1275 2166.	8
O 16 99.757	O 17 0.038	O 18 0.205	O 19 27.1 s	O 20 13.5 s	C	
or 0.00019	σ 0.00054 σ _{n. α} 0.257	от 0.0001 6	β 3.3; 4.7 γ 197; 1357	β 2.8 γ 1057	β 6.4 γ 1730 280; 1	G
NITE	NIC		NITO	NI 10	N	0

 Neutron time of flight data from nELBE using the time-reversed reaction
 J. Görres (Notre Dame), A. Junghans *et al.*

Asymptotic Giant Branch (AGB) stars as a physics laboratory

The production of the chemical elements

Stellar helium burning and the Holy Grail ${}^{12}C(\alpha,\gamma){}^{16}O$

Produce ¹²C: ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{8}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$

Destroy ¹²C and produce ¹⁶O:

- ¹²C production and destruction controls the ¹²C / ¹⁶O ratio.
- The ¹²C(α,γ)¹⁶O reaction was called the "holy grail of nuclear astrophysics" by 1983 Physics Nobel Laureate William A. Fowler.

The ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction and the level structure of ${}^{16}O$

The ¹²C(α , γ)¹⁶O rate affects the production of many elements!

MML IN-HOUSE RESEARCH

Page 67

State of the art on ${}^{12}C(\alpha,\gamma){}^{16}O$ and potential for Felsenkeller... ...using ¹²C⁺ beam, windowless gas target, γ-calorimeter

Page 68

Structure of the Sun red: Observable

- Corona
- Chromosphere
- Photosphere
 Fraunhofer lines
- Convection zone Helioseismology
- Radiation zone
- Core Neutrinos

Data on the Sun: Elemental abundances from the model-based interpretation of the Fraunhofer lines

MML IN-HOUSE RESEARCH

3-dimensional models of the photosphere lead to lower derived abundances:

1D: 2.29% (by mass) of the Sun are "metals" (Li...U)

3D: 1.78% (by mass) of the Sun are "metals" (Li...U)

The solar abundance problem:

Contradiction between elemental abundances and helioseismology

Solar models computed with different sets of elemental abundances:

3D: 1.78% (by mass) of the Sun are "metals" (Li...U)

1D: 2.29% (by mass) of the Sun are "metals" (Li...U)

The proton-proton chain and solar neutrinos

Institute of Radiation Physics

Page 72
How precise are the neutrino data?

Borexino (Gran Sasso/Italy): pp neutrino flux measured to 10% precision! ⁷Be neutrino flux measured to 5% precision!

01.03.2019

SNO (Sudbury/Canada): ⁸B neutrino flux measured to 3% precision!

MML IN-HOUSE RESEARCH

Daniel Bemmerer Institute of Radiation Physics Nucleosynthesis in stars and the big bang - the seeds for the r process Member of the Helmholtz Association

Page 73

Solar neutrino fluxes: Data and model predictions

Neutrino Energy in MeV

Nuclear physics drives the uncertainties in the predicted solar neutrino fluxes

Dominant Theoretical Error Sources for Neutrino Fluxes and the Main Characteristics of the SSM

COST action ChETEK [ketek] on Nuclear Astrophysics

EUROPEAN COOPERATION

IN SCIENCE & TECHNOLOGY

Chemical Elements as Tracers of the Evolution of the Cosmos

A network to bring European research, science and business together to further our understanding of the early universe

http://www.chetec.eu

- ~150 k€/year 2017-2021
- 30 European countries

Meetings:

- Conference on "Nuclear Physics of Stellar Explosions", Debrecen/ HU 12-14 September
- This School!

Short-term scientific missions (STSMs)

Chair:

 Raphael Hirschi, Keele University/UK

Nucleosynthesis in stars and in the big bang – the seeds for the r process

- Big Bang nucleosynthesis
 Astrophysical S-Factor
 Thermonuclear Reaction Rate
 Resonance Strength
 LUNA 0.4 MV underground lab in Italy
- Experimental facilities underground LUNA-MV underground lab in Italy Felsenkeller underground lab in Germany
- Asymptotic giant branch stars
 Stellar hydrogen burning
 Neutron sources for the s-process
 Stellar helium burning

01.03.2019

Three points to take home

- Low-energy charged particle reactions set the stage for all future nucleosynthesis
- New laboratory data have a direct effect on predictions matched to astronomical observations
- Interdisciplinary links are essential to advance understanding

MML IN-HOUSE RESEARCH