#### Supported by ERC through Starting Grant no. 759253



European Research Council Established by the European Commission



#### Phase transitions in neutron star mergers

40<sup>th</sup> Max Born Symposium – Three Days of Strong Correlations in Dense Matter

Wroclaw, 11/10/2019

#### Andreas Bauswein (GSI Darmstadt)

with N.-U. Bastian, S. Blacker, D. Blaschke, K. Chatziioannou, J.A. Clark,T. Fischer, M. Oertel



# Some insights from GW170817

- ► From chirp-like inspiral GW signal:
  - $\rightarrow$  Binary masses
  - $\rightarrow$  distance 40 Mpc  $\rightarrow$  rate is presumably high !
  - $\rightarrow$  Approximate sky location
- ► Triggered follow-up observations

 $\mathcal{M}_{chirp} = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}}$ 

$$q = M_1/M_2$$

Abbott et al. 2017

|                | Low-spin priors $( \chi  \le 0.05)$ | High-spin priors $( \chi  \le 0.89)$ |
|----------------|-------------------------------------|--------------------------------------|
| Drimour man in | 1.26.1.60 M                         | <u>1.36.2.76 M</u>                   |

## Interpretation of UV/opt/IR - implications

- heating and derived opacities are compatible with r-processing ejecta !!!
  (not surprising for a theorist, see earlier work on r-process and em counterparts)
- ► 0.02 0.05 Msun ejecta (red and blue component) somewhat model-dependent
- Ejecta velocities and masses in ballpark of simulation results
- Derived ejecta masses are compatible with mergers being the main source of heavy rprocess elements in the Universe

 $\rightarrow$  overall strong evidence that NS mergers play a prominent role for heavy element formation

Only A>130

#### **EoS constraints**

- ► EoS of high-density matter not precisely known ↔ stellar properties of NSs
- ► Affects dynamics of mergers and thus obseravbles like GWs, em transients
- ► 3 different complementary ideas
  - finite-size effects during the inspiral affect orbital dynamics and GWs
  - multi-messenger interpretation (different ideas some pretty model dependent)
  - postmerger GW oscillations (not yet detectable for GW170817 but a lot of future potential)

#### Finite-size effects during late inspiral

## Measurement

► Lambda < ~650

 $\rightarrow$  Means that very stiff EoSs are excluded

 $\rightarrow$  NS radius < ~13.5 km

- Somewhat model-dependent
- Better constraints expected in future as sensitivity increases

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

Abbott et al. 2017, 2019 see also later publications by Ligo/Virgo collaboration, De et al. 2018

# NS radius constraint from GW170817

- ► R<sub>max</sub> > 9.6 km
- ► R<sub>1.6</sub> > 10.7 km
- Excludes very soft nuclear matter
- Based on simple, robust, conservative argument (testable in futrue)



Tidal deformability

- A lot of potential for future when new events become available
  - stronger radius constraints
  - Prompt collapse will constrain Mmax !!!

Bauswein et al. 2017

#### **Future: Postmerger GW oscillations**



 $1.35\text{-}1.35~\text{M}_{_{\text{sun}}}$  , 20 Mpc

inspiral

Dominant postmerger oscillation frequency f<sub>peak</sub> Very characteristic (robust feature in all models)

#### Future: postmerger oscillations

Dominant frequency of postmerger GW oscillations scales tightly with NS radii

(not yet detected for GW170817, but in reach at design sensitivity for that distance)



#### Ladek Zdroj 2008, 44th Karpacz Winter School of Theoretical Physics & Compstar:

**D.B.:** "We give you a hybrid EOS and you run a merger simulation!"  $\rightarrow$  Does a phase transition leave a observable impact on NS mergers?

Answer: A. Bauswein, N.-U. Bastian, D. Blaschke, K. Chatziioannou, J.A. Clark, T. Fischer, M. Oertel, PRL 122, 061102 (2019)

For core-collapse SNe see: T. Fischer, N.-U. F. Bastian, M.-R. Wu, P. Baklanov,E. Sorokina, S. Blinnikov, S. Typel, T. Klähn, and D. B. Blaschke, Nat. Astron. 2, 980 (2018)

#### Phase diagram of matter



Does the phase transition to quark-gluon plasma occur (already) in neutron stars or only at higher densities ?

#### **Phase transition**

- ► Even strong phase transitions leave relatively weak impact on tidal deformability
  - $\rightarrow$  Difficult to measure transition in mergers through inspiral: Lambda very small, high mass star probably less frequent



 7 different models for quark matter: different onset density, different density jump, different stiffness of quark matter phase



EoSs from Wroclaw group

Bauswein et al. 2019

#### **Merger simulations**

#### ► GW spectrum 1.35-1.35 Msun



Bauswein et al. 2019

But: a high frequency on its own may not yet be characteristic for a phase transition

- $\rightarrow$  unambiguous signature
- $(\rightarrow$  show that all purely baryonic EoS behave differently)

### Signature of 1<sup>st</sup> order phase transition



Bauswein et al. 2019

- Tidal deformability measurable from inspiral to within 100-200 (Adv. Ligo design)
- Postmerger frequency measurable to within a few 10 Hz @ a few 10 Mpc (either Adv. Ligo or upgrade: e.g Clark et al. 2016, Chatzioannou et al 2017, Bose et al 2018, Torres-Rivas et al 2019)
- ▶ Important: "all" purely hadronic EoSs (including hyperonic EoS) follow fpeak-Lambda relation  $\rightarrow$  deviation characteristic for strong 1<sup>st</sup> order phase transition

## Model-agnostic data analysis

Based on wavelets



Chatziioannou et al. 2017, Torres-Riva et al 2019

#### **Constraints on onset density**

- ► In detail slightly more complicated → two opposite effects
  - Core quark can be too small to lead to a strong frequency shift  $\rightarrow$  quark matter undetected
  - Quark matter can occur already at lower densities than the T=0 onset density that we want to constrain (merger probes finite T, we attempt to constrain transition at T=0)
  - $\rightarrow$  both can be effectively captured (work in progress)

### **Probed densities / NS masses**

Dots: NS mass with central density = maximum density during early postmerger evolution

Bauswein et al. 2019

For 1.35-1.35 Msun merger – higher binary masses probe higher densities / NS masses

### Impact on collapse behavior - preliminary

- Threshold mass for direct black-hole formation
- Observable by measuring total binary mass during inspiral and check outcome based on em or psotmerger GWs
- Even strong phase transitions do not leave a too strong impact on collapse (in comparison to hadronic EoSs – Bauswein et al. 2013)



## Conclusions

- ► NS radius smaller than ~13.5 km (from GW inspiral)
- ▶ NS radius must be larger than 10.7 km (very robust and conservative)
- More stringent constraints from future detections
- Strong 1<sup>st</sup> order phase transitions leave characteristic imprint on GW (postmerger frequency higher than expected from inspiral because of "unexpected" effective softening of EoS)
- Postmerger signal detectable in a few years
- Constraints on onset density of phase transition !!!
- ► Other observables may be more subtly affected by presence of phase transition

#### Semi-analytic model: details

- Stellar equilibrium models computed with RNS code (diff. Rotation, T=0, many different microphysical EoS) => turning points => M<sub>stab</sub>(J)
- ► Compared to J(M<sub>tot</sub>) of merger remnants from simulations (very robust result) → practically independent from simulations



Bauswein & Stergioulas 2017

#### Semi-analytic model reproducing collapse behavior

×

0.32



Bauswein et al 2013: numerical determination of collapse threshold through hydrodynamical simulations



Solid line fit to numerical data Crosses stellar equilibrium models:

- prescribed (simplistic) diff. rotation
- many EoSs at T=0
- detailed angular momentum budget !
- => equilibrium models qualitatively reproduce collapse behavior
- even quantitatively good considering the adopted approximations

## Em counterpart / nucleosynthesi

- Electromagnetic transient powered by radioactive decays (during / after r-process)
  - $\rightarrow$  quasi-thermal emission in UV, optical, infrared
- ► Different ejecta components: dynamical, disk ejecta
- No obvious qualitative differences differences quantitaive differences within expected "hadronic" scatter (simplistic considerations)
- More subtle impact possible, but unlikely (simple model wo neutrinos, network, disk evolution ...) - also other characteristic similar: outflow veocity, disk mass, ...



Bauswein et al 2019 – only dynamical ejecta

## **GW data analysis**

► Injected simulations with SNR 5 (postmerger only, at design sensitivity)

 $\rightarrow$  recovery through BayesWave (based on wavelets)

- minimum assumptions about signal morphology
- ► DD2 1.35-1.35 Msun





Chatzioannou et al 2017