

Emergence of Mass in Hadronic Systems

Craig Roberts

David Blaschke

- > 1995, Summer: David visited ANL following a Quark Matter meeting in CA
 - 24 years and counting
- > 1995, September: CDR visits Rostock
 - Guest in David's apartment
 - Celebrates David's 36th birthday
- > 1995, September: At David's 36th birthday party, CDR meets Almut, his future wife
- > 1996, March: CDR visits Rostock to complete work on first joint publication
 - Continuum study of deconfinement at finite temperature, A. Bender, D. Blaschke, Yu. Kalinovsky and C. D. Roberts, <u>nucl-th/9606006</u>
 Phys. Rev. Lett. **77**, pp. 3724 (1996)

> Now:

- 10 joint publications
- Organised quite a few conferences/workshops together

David's qualities

- ➤Constructive
- ➤Enthusiastic
- >Optimistic
- >Imaginative
- Collaboration Builder
- >>Adventurous
- Exceedingly Hospitable and Generous
- ≻...
- Developed into a snappy dresser

Craig Roberts. Emergence of Mass

2013: Englert & Higgs

The 2013 Nobel Prize in Physics was awarded to Peter Higgs and Francois Englert following discovery of the Higgs boson at the Large Hadron Collider.

> With this discovery the Standard Model of Particle Physics became complete.

Where to now?

2013: Englert & Higgs

> "The Higgs boson is often said to give mass to everything."

- "However, that is wrong. It only gives mass to some very simple particles, accounting for only *confinement* one or two percent of the mass of more complex things ..."
- The vast majority of mass comes from the energy needed to hold quarks together inside hadrons

2013: Englert & Higgs

- The most important chapter of the Standard Model is the least understood.
- Quantum Chromodynamics (QCD) is that part of the Standard Model which is supposed to describe all of nuclear physics
 - Matter = quarks
 - Gauge bosons = gluons
- Yet, fifty years after the discovery of quarks, we are only just beginning to understand how QCD moulds the basic bricks for nuclei: pions, neutrons, protons, etc.

Emergent Phenomena in the Standard Model

Existence of our Universe depends critically on the following empirical facts:

- > Proton is massive
 - *i.e.* the mass-scale for strong interactions is vastly different to that of electromagnetism
- > Proton is absolutely stable
 - Despite being a composite object constituted from three valence quarks
- Pion is unnaturally light (not massless, but lepton-like mass)
 - Despite being a strongly interacting composite object built from a valence-quark and valence antiquark

 Duilt
 Emergence: low-level rules

 producing high-level
 phenomena, with

 phenomena, with
 enormous apparent

 40th Max BornOmport
 8

F. Wilczek, <u>QCD Made Simple</u> Physics Today 53N8 22-28, (2000) Quantum Chromodynamics

4g2 Guy Guy + 5 8; (18 mDu where $G_{\mu\nu}^{a} \equiv \partial_{\mu} \mathcal{A}_{\nu}^{a} - \partial_{\nu} \mathcal{A}_{\mu}^{a} + i f_{\nu a}^{a} \mathcal{A}_{\mu}^{b} \mathcal{A}_{\nu}^{c}$ and $D_{\mu} \equiv \partial_{\mu} + i t^{a} \mathcal{A}_{\mu}^{a}$ That's it!

Quite possibly, the most remarkable theory we have ever invented
 One line and two definitions are responsible for the origin, mass and size of (almost) all visible matter!

F. Wilczek, <u>QCD Made Simple</u> Physics Today **53N8** 22-28, (2000) **Quantum Chromodynamics**

4g2 Guy Guy + 5 8, (18 m Du + m;) 8; where $G_{\mu\nu}^{a} \equiv \partial_{\mu} R_{\nu}^{a} - \partial_{\nu} R_{\mu}^{a} + i f_{ba}^{a} R_{\mu}^{b} R_{\nu}^{c}$ and $D_{\mu} \equiv \partial_{\mu} + i t^{a} R_{\mu}^{a}$ That's it!

 Quite possibly, the most remarkable theory we have be One line and two definitions are responsible for the <u>origin, mass</u> and <u>size</u> of (almost) all visible matter

Strong Interactions in the Standard Model

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \,\delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

> Only apparent scale in chromodynamics' is mass of the quark field

> Quark mass is said to be generated by Higgs boson.

In connection with everyday matter, that mass is less-then 0.5% of the empirical scale for strong interactions,

viz. more-than two orders-of-magnitude smaller

- Plainly, the Higgs-generated mass is very far removed from the natural scale for strongly-interacting matter
- Nuclear physics mass-scale 1 GeV is an emergent feature of the Standard Model
 No amount of staring at L_{OCD} can reveal that scale
- > Contrast with quantum electrodynamics, e.g. spectrum of hydrogen levels measured in units of m_e , which appears in L_{QED}

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - \right) \psi_j$$

- Classical chromodynamics ... non-Abelian local gauge theory
- > Remove the current mass ... there's no energy scale left
- No dynamics in a scale-invariant theory; only kinematics ... the theory looks the same at all length-scales ... there can be no clumps of anything ... hence bound-states are impossible.
- > Our Universe can't exist
- > Higgs boson doesn't solve this problem ...
 - normal matter is constituted from light-quarks
 - the mass of protons and neutrons, the kernels of all visible matter, are 100-times larger than anything the Higgs can produce

> Where did it all begin? ... becomes ... Where did it all come from?

 $T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu}$

> In a scale invariant theory Poincaré invariance entails

the energy-momentum tensor must be traceless: $T_{\mu\mu} = 0$

- \succ Regularisation and renormalisation of (ultraviolet) divergences in <u>Quantum</u> Chromodynamics introduces a mass-scale
 - ... dimensional transmutation:

Lagrangian's constants (couplings and masses) become dependent on a mass-scale, ζ

 $> a \rightarrow a(\zeta)$ in QCD's (massless) Lagrangian density, L(m=0)

 $\Rightarrow \partial_{\mu} D_{\mu} = \delta L / \delta \sigma = a \beta(a) dL / da = \beta(a) \frac{1}{4} G_{\mu\nu} G_{\mu\nu} = T_{\rho\rho} =: \Theta_0$ Trace

anomaly

Quantisation of renormalisable four-dimensional theory forces nonzero value for trace of energy-momentum tensor

 $T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu}$

Trace Anomaly

 \succ Knowing that a trace anomaly exists does not deliver a great deal ... Indicates only that a mass-scale must exist

 \succ Key Question:

- Can one compute and/or understand the magnitude of that scale? > One can certainly *measure* the magnitude ... consider proton:

> $\langle p(P)|T_{\mu\nu}|p(P)\rangle = -P_{\mu}P_{\nu}$ $\langle p(P)|T_{\mu\mu}|p(P)\rangle = -P^2 = m_p^2$... In QCD, σ_0 inclusions the strength of gradient set inclusion $\Theta_0 | \Theta_0 | p(P) \rangle^{\text{aly}, \Theta_0}$

... so, from one perspective, m_p is (somehow) completely generated by glue.

> In the chiral lin

Confinement & Origin of Mass

The vast majority of mass comes from the energy needed to hold quarks together inside nuclei

15

 $T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu}$

> In the chiral limit

 $\langle \pi(q)|T_{\mu\nu}|\pi(q)\rangle = -q_{\mu}q_{\nu} \implies \langle \pi(q)|T_{\mu\nu}|\pi(q)\rangle = -q_{\mu}q_{\nu}$

- Might mean that the scale anomaly vanishes trivially in the pion state, i.e. gluons contribute nothing to the pion mass.
- > But that is difficult way to obtain "zero"!
- > Easier to imagine that "zero" owes to cancellations between different operator contributions to the expectation value of Θ_0 .
- Solution of some symmetry and/or symmetry-breaking pattern.
 Of course, such precise cancellation should not be an accident.

17

Trace Anomaly

Whence "1" and yet "0"?

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

➤No statement of the question "How does the mass of the proton arise?" is complete without the additional clause "How does the pion remain massless?"

- Natural visible-matter mass-scale must emerge simultaneously with apparent preservation of scale invariance in related systems
 - Expectation value of Θ_0 in chiral-limit pion is always zero, irrespective of the size of the natural mass-scale for strong interactions
 - $= m_p$

Whence "1" and yet "0"?

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

>No statement of the question "How does the mass of the proton arise?" is complete without the additional clause "How does the pion remain massless?" Modern Physics must >Elucidate the Entire Array of Empirical Consequences of the Mechanism responsible so that the Standard Model can be Validated

IS

Vrocław

(pgs =

Ideas: Old & New

 \succ Gluons are *supposed* to be massless

> Not preserved non-perturbatively!

 $q\mu \Pi \mu \nu(q) \equiv 0$

No symmetry in Nature protects four-

 \succ This is true in perturbation theory

transverse gluon modes ...

IR Behaviour of QCD

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

g or gluon

SU(3) color octet

$$I(J^P) = 0(1^-)$$

Mass $m \neq 0$. Theoretical value. A mass as large as a few MeV may not be precluded, see YNDURAIN 95.

ALUE	DOCUMENT ID		TECN	COMMENT	
• • We do not use the follow	ving data for averages	, fits,	limits, e	etc. • • •	
	ABREU	92E	DLPH	Spin 1, not 0	
	ALEXANDER	91H	OPAL	Spin 1, not 0	
	BEHREND	82D	CELL	Spin 1, not 0	
	BERGER	80D	PLUT	Spin 1, not 0	

gluon REFERENCES

BRANDELIK

YNDURAIN	95	PL B345 524	F.J. Yndurain	(MADU)
ABREU	92E	PL B274 498	P. Abreu et al.	(DELPHI Collab.)
ALEXANDER	91H	ZPHY C52 543	G. Alexander et al.	(OPAL Collab.)
BEHREND	82D	PL B110 329	H.J. Behrend et al.	(CELLO Collab.)
BERGER	80D	PL B97 459	C. Berger et al.	(PLUTO Collab.)
BRANDELIK	80C	PL B97 453	R. Brandelik et al.	(TASSO Collab.)

Craig Roberts. Emergence of Mass

40th Max Born Symposium ... 2019.10.9-12 ... University of Wrocław (pgs =

80C TASS Spin 1, not 0

- > Running gluon mass $d(k^2) = \frac{\alpha(\zeta)}{k^2 + m_g^2(k^2;\zeta)}$ $\alpha_s(0) = 2.77 \approx 0.9\pi, \ m_g^2(0) = (0.46 \,\text{GeV})^2$
- Gluons are cannibals a particle species whose members become massive by eating each other!

Dynamical mass generation in continuum quantum chromodynamics J.M. Cornwall, Phys. Rev. D **26** (1981) 1453 The Gluon Mass Generation Mechanism: A Concise Primer A.C. Aguilar, D. Binosi, J. Papavassiliou, Front. Phys. **11** (2016) 111203

IR Behaviour of QCD

QCD's Running Coupling

The QCD Running Coupling, A. Deur, S. J. Brodsky and G. F. de Teramond, Prog. Part. Nucl. Phys. **90** (2016) 1-74 *Process independent strong running coupling* Daniele Binosi *et al.*, arXiv:1612.04835 [nucl-th], Phys. Rev. D 96 (2017) 054026/1-7 *Process-independent effective coupling. From QCD Green functions to phenomenology*, Jose Rodríguez-Quintero *et al.*, arXiv:1801.10164 [nucl-th]. Few Body Syst. **59** (2018) 121/1-9

> Modern continuum & lattice methods for analysing gauge sector enable "Gell-Mann - Low"

running charge to be defined in QCD

- Combined continuum and lattice analysis of QCD's gauge sector yields a parameterfree prediction
- > N.B. Qualitative change in $\hat{\alpha}_{PI}(k)$ at $k \approx \frac{1}{2}$

uij. rew body syst. 39 (2016)

Process-<u>independent</u> effective-charge in QCD

Craig Roberts. Emergence of Mass

 m_p

Process independent strong running coupling Binosi, Mezrag, Papavassiliou, Roberts, Rodriguez-Quintero arXiv:1612.04835 [nucl-th], Phys. Rev. D 96 (2017) 054026/1-7 The QCD Running Coupling, A. Deur, S. J. Brodsky and G. F. de Teramond, Prog. Part. Nucl. Phys. **90** (2016) 1-74 Process-independent effective coupling. From QCD Green functions to phenomenology, Jose Rodríguez-Quintero et al., arXiv:1801.10164 [nucl-th]. Few Body Syst. **59** (2018) 121/1-9

- $> \hat{\alpha}_{PI}$ is a new & unique type of effective charge
 - completely determined by the gauge-boson two-point function.

 $> \hat{\alpha}_{PI}$ is

- process-independent
- unifies a vast array of observables
- $> \hat{\alpha}_{PI}$ possesses an infrared saturation point
 - Nonperturbative analysis demonstrating absence of a Landau pole in QCD
- > QCD is IR finite, owing to dynamical generation of gluon mass-scale
- > Asymptotic freedom \Rightarrow QCD is well-defined at UV momenta

> QCD is therefore unique amongst known 4D quantum field theories

- Potentially, defined & internally consistent at all momenta

Craig Roberts. Emergence of Mass

Process-<u>independent</u> effective-charge in QCD

Quark Fragmentation

- > A quark begins to propagate
- > But after each "step" of length σ ≈ 1/m_g, on average, an interaction occurs, so that the quark *loses* its identity, sharing it with other partons
- Finally, a cloud of partons is produced, which coalesces into colour-singlet final states

Craig Roberts. Emergence of Mass

27

Maris, Roberts and Tandy <u>nucl-th/9707003</u>, Phys.Lett. B**420** (1998) 267-273

Pion's Goldberger -Treiman relation

Pion's Bethe-Salpeter amplitude Solution of the Bethe-Salpeter equation

$$\pi^{j}(k;P) = \tau^{\pi^{j}}\gamma_{5}\left[iE_{\pi}(k;P) + \gamma \cdot PF_{\pi}(k;P) + \gamma \cdot k k \cdot P G_{\pi}(k;P) + \sigma_{\mu\nu} k_{\mu}P_{\nu} H_{\pi}(k;P)\right]$$

$$S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} \blacktriangleleft$$

-1

Axial-vector Ward-Takahashi identity entails

Miracle: two body problem solved, almost completely, once solution of one body problem is known

 $f_{\pi}E_{\pi}(k; P=0) = \mathbf{B}(k^{\bar{2}})$

Rudimentary version of this relation is apparent in Nambu's Nobel Prize work

Model independent Gauge independent Scheme independent

The most full montal expression of Goldstore's Theorem and DCSB

Rudimentary version of this relation is apparent in Nambu's Nobel Prize work

Model independent Gauge independent Scheme independent

NG Pion exite in and only if, mass emeter in an ically

Rudimentary version of this relation is apparent in Nambu's Nobel Prize work

Model independent Gauge independent Scheme independent

Cor Entitins are strong In and or ly if, emerged mass is large

La d

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

Whence "0" ?

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

Whence "0" ?

The answer is algebraic

Craig Roberts. Emergence of Mass

Munczek, H. J., Phys. Rev. D 52 (1995) pp. 4736-4740

- Bender, A., Roberts, C.D. and von Smekal, L., Phys. Lett. B 380 (1996)
- pp. 7-12
- Maris, P., Roberts, C.D. and Tandy, P.C., Phys. Lett. B 420 (1998) pp.
- 267-273

Binosi, ChangObtainasaliao, uple ebsets of hgapevands Bethe - Salpeter equations

- 096010/1-7 Bethe-Salpeter Kernel:
 - valence-quarks with a momentum-dependent running mass produced by self-interacting gluons, which have given themselves a running mass
 - Interactions of arbitrary but enumerable complexity involving these "basis vectors"
 - Chiral limit:
 - Algebraic proof
 - at any & each finite order in symmetry-preserving construction of kernels for
 - » the gap (quark dressing)
 - » and Bethe-Salpeter (bound-state) equations,
 - there is a precise cancellation between
 - » mass-generating effect of dressing the valence-quarks
 - » and attraction introduced by the scattering events
 - Cancellation guarantees that
 - simple system, which began massless,
 - becomes a complex system, with
 - » a nontrivial bound-state wave function
 - » attached to a pole in the scattering matrix, which remains at $P^2=0$...
 - Interacting, bound system remains massless!

Pion masslessness

Empirical Consequences of Emergent Mass

- > QCD's interactions are universal ... same in all hadrons
 - Hence, similar cancellations must take place within the proton
- However, in the proton, no symmetry requires cancellations to be complete Thus, value of proton's mass is typical of the magnitude of scale breaking in one body sectors = dressed-gluon and -quark mass scales
- > This "DCSB paradigm" provides basis for understanding why:
 - mass-scale for strong interactions is vastly different to that of electromagnetism
 - proton mass expresses that scale
 - pion is nevertheless unnaturally light
- > No significant mass-scale is possible unless one of similar size is expressed in the dressedpropagators of gluons and quarks.
- Follows that the mechanism(s) responsible for emergence of mass can be exposed by measurements sensitive to such dressing
- > This potential is offered by many observables ... Three (particularly clean) Examples

π & K Valence-quark Distribution Functions

Deep inelastic processes

- > Quark discovery experiment at SLAC (1966-1978, Nobel Prize in 1990)
- > Completely different to elastic scattering
 - Blow the target to pieces instead of keeping only those events where it remains intact.
- \succ Cross-section serves as measurement of the momentumfraction probability distribution for quarks and gluons within the target hadron: q(x), g(x)

Probability that a quark/gluon within the target will carry a fraction x of the bound-state's light offentermomentum

Distribution Functions of the Nucleon and Pion in the Valence Region, Roy J. Holt and Craig D. Roberts, arXiv:1002.4666 [nucl-th], Rev. Mod. Phys. 82 (2010) pp. 2991-3044 Parton momentum and helicity distributions in the nucleon P. Jimenez-Delgado, W. Melnitchouk and J.F. Owens arXiv:1306.6515, J.Phys. G 40 (2013) 093102 39 40th Max Born Symposium ... 2019.10.9-12 ... University of Wrocław (pgs =

QCD prediction of π valence-quark distributions

- > Owing to absence of stable pion targets, the pion's valence-quark distribution functions have hitherto been measured via the Drell-Yan process: $\pi p \rightarrow \mu^+ \mu^- X$
- > Consider a theory in which quarks scatter via a vector-boson exchange interaction whose $k^2 > m_G^2$ behaviour is $(1/k^2)^{\beta}$
- > Then at a resolving scale $\zeta_H \dots U_{\pi}(x; \zeta_H) \sim (1-x)^{2B}$

namely, the large-x behaviour of the quark distribution function is a direct measure of the momentum-dependence of the underlying interaction.

> In QCD, B=1 and hence

Empirical status of the Pion's valence-quark distributions

- > Owing to absence of pion targets, the pion's valence-quark distribution functions have hitherto been measured via the Drell-Yan process: $\pi p \rightarrow \mu^+ \mu^- X$
- 0.4 > Three experiments: - CERN (1983 & 1985) (X)[/]bX 0.21 - FNAL (1989). > None more recent > Conway *et al*. Phys. Rev. D 39, 92 (1989) 0.0 - Leading-order analysis of the Drell-Yan data 2 0.4 0.8 0.6 1.0 - ~ 400 citations Х

Empirical status of the Pion's valence-quark distributions

- > Owing to absence of pion targets, the pion's valence-quark distribution functions have hitherto been measured via the Drell-Yan process:
- $\pi p \rightarrow \mu^+ \mu^- X$ > Three experiments: 0.4 - CERN (1983 & 1985) - FNAL (1989). (×) [⊬]b) 0.2 > None more recent > Conway *et al*. Phys. Rev. D 39, 92 (1989) - Leading-order analysis of the Drell-Yan data Factor of 2 discrepancy With QCD!^{0.6} 0.8 1.0 >Controversial! Х

π valence-quark distributions 20 Years of Evolution

- ➤ 1989 ... Conway et al. Phys. Rev. D 39, 92 (1989)
 - Leading-order analysis of Drell-Yan data
- > Ensuing years, great deal of fog
- Perceptions ebbed and flowed
 - Is this data a fundamental challenge to Standard Model?

π valence-quark distributions 20 Years of Evolution → 2019

- > Renewed pressure being applied by theory advances
- > Novel lattice-QCD algorithms beginning to yield results for pointwise behaviour of $u\pi(x; \zeta)$
- Developments in continuum-QCD have enabled 1st parameter-free predictions of valence, glue and sea distributions within the pion
 - Reveal that $u\pi(x;\zeta)$ is <u>hardened</u> by emergent mass
- > Agreement between

new continuum prediction for $u\pi(x; \zeta)$ [Ding: 2019[we] and recent lattice-QCD result [Sufian: 2019bol]

- > Now -structure years new era dawning in which the ultimate experimental checks can be made
- Standard Model prediction is stronger than ever

 $B^{contm}(\zeta_5) = 2.66(12)$ $B^{lattice}(\zeta_5) = 2.45(58)$

Daf Olees. Emergence of Mass

Meson Wave Functions

40th Max Born Symposium ... 2019.10.9-12 ... University of Wrocław

45

Parton distribution amplitudes of S-wave heavy-quarkonia Minghui Ding, Fei Gao, Lei Chang, Yu-Xin Liu and Craig D. Roberts <u>arXiv:1511.04943 [nucl-th]</u>, Phys. Lett. B **753** (2016) pp. 330-335

Emergent Mass vs. Higgs Mechanism

- When does Higgs mechanism begin to influence mass generation?
- > limit $m_{\text{quark}} \rightarrow \infty$

 $\varphi(x) \to \delta(x \text{-} \frac{1}{2})$

- > limit $m_{quark} \rightarrow 0$
 - $\varphi(x) \sim (8/\pi) [x(1-x)]^{\frac{1}{2}}$
- Transition boundary lies just above m_{strange}
- Hence ... Comparisons between distributions of truly light quarks and those describing strange quarks are ideally suited to exposing measurable signals.of.e.emergent mass in
 counterpoint to Higgs-driven effects

Emergent Mass vs. Higgs Mechanism

- > Striking example found in contrast between $u\pi(x;\zeta)$ & $uK(x;\zeta)$ at large x
- Significant disparity between these distributions would point to big difference between fractions of pion and kaon momentum carried by other bound state participants, particularly gluons.
- > Prediction for ratio $uK(x; \zeta) / u\pi(x; \zeta)$ is available [Chen:2016sno].
- > Confirms assessment:
 - gluon content of kaon at hadronic scale = 5 \pm 5 %
 - Pion more-than 30%
- > Persists to large resolving scales, e.g. at ζ=2 GeV, $\langle x \rangle_{g^{\pi}} \approx 1.5 \quad \langle x \rangle_{g^{K}}$

Difference in gluon content expressed clearly in large-x behaviour of

 $uK(x;\zeta)/u\pi(x;\zeta)$

Valence-quark distribution functions in the kaon and pion, Chen Chen, Lei Chang *et al.* arXiv:1602.01502 [nucl-th], Phys. Rev. D**93** (2016) 074021/1-11

Empirical signal of almost-pure Nambu-Goldstone-boson character of pion
 Marking near perfect expression of

 $M_{\rm quark}^{\rm dressed} + M_{\rm antiquark}^{\rm dressed} + U_{\rm quark-antiquark}^{\rm dressed} \stackrel{\rm chiral limit}{\equiv} (m_{\rm rest})$ in the almost-massless pion

- Compared to incomplete cancellation in the strange-quark-containing kaon.
- ➤ Big Issue, however:
 - Only one forty-year-old measurement of $uK(x;\zeta)$ / uz
 - CERN [Badier:1980jq].

 $\pi \& K PDFs$

π & K PDFs

- INSIGHT
 - Cannot claim understanding of Standard Model until explanation is provided for <u>emergence</u> and <u>structure</u> of Nambu-Goldstone (NG) modes
 - > NG modes are far more complex than is typically thought.
 - Not pointlike;
 - Intimately connected with the origin of mass;
 - Probably play an essential part in any answer to the question of gluon and quark confinement in the *physical* Universe.
 - Internal structure of NG modes is very complicated; and that structure provides the clearest window onto the emergence of mass in the Standard Model.
 - Cleanest expression is found in following statement
 - The gluon content of Nature's only near-pure Nambu-Goldstone mode, the pion, is far greater than that in any other hadron

- Cleanest expression is found in following statement
 - The gluon content of Nature's only near-pure Nambu-Goldstone mode, the pion, is far greater than that in any other hadron
- > Observably expressed in $u\pi(x;\zeta)$ & accentuated in $uK(x;\zeta)/u\pi(x;\zeta)$
- New-era experiments, capable of validating these predictions, are of highest priority.
 Why Validation?
 - Pion properties are critical to the formation of everything:
 - From nucleons, to nuclei, and on to neutron stars.
- A chapter of the Standard Model, for which Yukawa wrote the opening sentences more than eighty years ago, can be closed.
 - Elucidation of structural details of the Standard Model's only NG modes

INSIGHT

Approved & Planned Experiments

- > JLab 12 ... Tagged Deep Inelastic Scattering
 - Pion and Kaon PDFs at large x
 - Sullivan Process ...
 - $\gamma + p \rightarrow n + X$
 - $\gamma + p \rightarrow \Lambda + X$
 - *Approved* ... R. A. Montgomery *et al.*, AIP Conf. Proc. **1819** (2017) 030004
 - (a) $\gamma(q)$ $\gamma(q)$ $\gamma(\pi^*)$ p(k) t n(k')

Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS (COMPASS++/ AMBER), B. Adams, arXiv:1808.00848 [hepex]

- Pion and Kaon Structure at the EIC, A. C. Aguilar et al., arXiv:1907.08218 [nucl-ex]
 - 5 key experiments:
 - i. pion and kaon PDFs;
 - ii. pion and kaon GPDs;
 - iii. open charm production;
 - iv. pion form factor to 35 GeV²;
 - V. pion and kaon fragmentation functions Wrocław (pgs =

Epilogue

Craig Roberts. Emergence of Mass

Epilogue

LHC has NOT found the "God Particle" ... the Higgs boson is NOT the origin of mass

- Higgs-boson only produces a little bit of mass
- Higgs-generated light-quark mass-scales explain neither nor the pion's (*near*-) masslessness

Strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of the vast bulk of all known matter BEYOND — THE — GOD PARTICLE

Epilogue

> Challenge: <u>Explain</u> the Origin & Distribution of the Bulk of Visible Mass

- > Current Paradigm: Quantum Chromodynamics
- > QCD is plausibly a mathematically well-defined quantum field theory, The only one we've ever produced
 - Consequently, it potentially defines a new paradigm for developing Beyond-SM theories
- \succ Challenge is to reveal the content of strong-Q^A New QCD facility at the M2 beam line of the CERN SPS^{*}
- > Progress and Insights
 - being delivered by amalgam of
 - Experiment ... Phenomenology ... Theory
- Continued exploitation of synergies essential to capitalise on new opportunities provid by existing & planned facilities

40th Max Born Symposium ... 2019.10.9-12 ... University of Wrocław (pgs =

COMPASS++[†]/AMBER[‡]

Selected Contributors: 2017 - Now

Students, Postdocs, Profs.

Thankyou!

- 1. Zhao-Qian YAO (Nanjing U.)
- 2. Yin-Zhen XU (Nanjing U.)
- 3. Marco BEDOLLA (Genova, U Michoácan)
- 4. Chen CHEN (Giessen, UNESP São Paulo, USTC & IIT);
- 5. Muyang CHEN (NKU, PKU)
- 6. Zhu-Fang CUI (Nanjing U.);
- 7. Minghui DING (ECT*, ANL, Nankai U.);
- 8. Fei GAO (Heidelberg, Valencia, Peking U.);
- 9. Bo-Lin LI (Nanjing U.)
- 10. Ya LU (Nanjing U.)
- 11. Cédric MEZRAG (INFN-Roma, ANL, IRFU-Saclay);
- 12. Khépani RAYA (Nankai U., U Michoácan);
- 13. Adnan Bashir (U Michoácan);
- 14. Daniele Binosi (ECT*)
- 15. Volker Burkert (JLab)
- 16. Lei Chang (Nankai U.)

17. Chiraroo Mutemerhor(Minling Inst. Tech., Nanjing)

- 18. Feliciano C. De Soto Borrero (UPO);
- 19. Tanja Horn (Catholic U. America)
- 20. Gastão Krein (UNESP São Paulo)
- 21. Yu-Xin Liu (PKU);
- 22. Joannis Papavassiliou (U.Valencia)
- 23. Jia-Lun Ping (Nanjing Normal U.)
- 24. Si-xue Qin (Chongqing U.);
- 25. Jose Rodriguez Quintero (U. Huelva);
- 26. Elena Santopinto (Genova)
- 27. Jorge Segovia (U. Pablo de Olavide = UPO);
- 28. Sebastian Schmidt (IAS-FZJ & JARA);
- 29. Shaolong Wan (USTC);
- 30. Qing-Wu Wang (Sichuan U)
- 31. Shu-Sheng XU (NJUPT, Nanjing U.)
- 32. Pei-Lin Yin (NJUPT)
- 33. Hong-Shi Zong (Nanjing U)
- 34. ... and many more ...