QCD Phase Structure and Compact Objects

Bernd-Jochen Schaefer

Bundesministerium für Bildung und Forschung

Germany

Germany

October 11th, 2019

Germany

40th Max Born Symposium – Three Days on Strong Correlations in Dense Matter 9-12 October 2019

University of Wrocław

Yerevan, 22.9.2019

Thank you, David, for an unforgettable birthday

Yerevan, 22.9.2019

QCD Phase Structure and Compact Objects

Bernd-Jochen Schaefer

Bundesministerium für Bildung und Forschung

Germany

Germany

October 11th, 2019

Germany

40th Max Born Symposium – Three Days on Strong Correlations in Dense Matter 9-12 October 2019

University of Wrocław

QC₃**D** phase structure

vacuum → nuclear matter/transition & only corners of the QCD phase diagram are known from "first principles" QCD

knowledge so far

mostly based on model calculations

assumptions:

equilibrium, homogeneous phases,

infinite volume,

knowledge so far

mostly based on model calculations

assumptions:

equilibrium, homogeneous phases,

infinite volume,

Open issues

- CEP: existence/location/number
- relation between chiral & deconfinement?
 chiral ⇔ deconfinement CEP?
- Quarkyonic phase: coincidence of both transitions at μ=0 & μ>0?
- inhomogeneous phases? → more favored?
- axial anomaly restoration around chiral transition?
- finite volume effects? → lattice comparison/ influence boundary conditions
- role of fluctuations? so far mostly Mean-Field results
 - → effects of fluctuations important

examples: size of crit reg. around CEP

- What are good experimental signatures?
 - → cumulants?

knowledge so far

mostly based on model calculations

assumptions:

equilibrium, homogeneous phases,

infinite volume,

Theory:

- → Lattice: but simulations restricted to small µ
- → Models: effective theories

parameter dependency

→ Functional QFT approaches: FRG, DSE, nPI, Variational Methods

Theoretical aim:

deeper understanding & more realistic HIC description

→ solution of QCD for all densities

our method of choice

Functional Renormalization Group (FRG)

RSITAT

Functional Renormalization Group

Ansatz for Γ_k : Example: Quark-Meson truncation in leading order derivative expansion

$$\Gamma_{k} = \int d^{4}x \bar{q} [i\gamma_{\mu}\partial^{\mu} - g(\sigma + i\vec{\tau}\vec{\pi}\gamma_{5})]q + \frac{1}{2}(\partial_{\mu}\sigma)^{2} + \frac{1}{2}(\partial_{\mu}\vec{\pi})^{2} + V_{k}(\phi^{2})$$

$$V_{k=\Lambda}(\phi^{2}) = \frac{\lambda}{4}(\sigma^{2} + \vec{\pi}^{2} - v^{2})^{2} - c\sigma$$
arbitrary potential

11.10.2019 | B.-J. Schaefer | Giessen University |

ERSITÄT

RG scale evolution

11.10.2019 | B.-J. Schaefer | Giessen University |

UNIVERSITÄT

FRG and QCD

pure Yang Mills flow + matter back-coupling

FRG: quark-meson truncation

chiral phase transition:

Phase diagram N_f=2

Phase diagram N_f=2

11.10.2019 | B.-J. Schaefer | Giessen University |

•

UNIVERSITÄT

Phase diagram N_f=2

11.10.2019 | B.-J. Schaefer | Giessen University |

•

UNIVERSITÄT

FRG: Quark-Meson with Polyakov

N_f =2 quark flavor

without back reaction $(T_0(\mu) = \text{const})$

[[]Herbst, Pawlowski, BJS 2010,2013]

JUSTUS-LIEBIG-

JNIVERSITÄT

GIESSEN

 $(T_0(\mu))$

17

with back reaction

Critical Endpoint?

we can exclude CEP for small densities: $\mu_B/T<3$

Higher densities: dynamical baryons needed! → relevant for neutron star EoS

Critical Endpoint?

we can exclude CEP for small densities: $\mu_B/T<3$

Higher densities: dynamical baryons needed! → relevant for neutron star EoS

FRG and truncations

FRG has a controlled truncation scheme

Compare different orders

Different FRG truncations

• different truncations:

[Rennecke, BJS 2018]

$$\Gamma_{k} = \int_{x} \left\{ \bar{q} \, Z_{q,k} \big(\gamma_{\mu} \partial_{\mu} + \gamma_{0} \mu \big) q + \bar{q} h_{k} \cdot \Sigma_{5} q + \operatorname{tr} \big(Z_{\Sigma,k} \, \partial_{\mu} \Sigma \cdot \partial_{\mu} \Sigma^{\dagger} \big) + \tilde{U}_{k}(\Sigma) \right\}$$

truncation	running couplings		
LPA'+Y	$ar{ ilde{U}}_{k},ar{h}_{l,k},ar{h}_{s,k},Z_{l,k},Z_{s,k},Z_{\phi,k}$		
LPA+Y	$ar{ ilde{U}}_k,ar{h}_{l,k},ar{h}_{s,k}$		
LPA	$ ilde{U}_k$		

LPA = local potential approximation = leading order derivative expansion

Y = Yukawa coupling running

LPA' = beyond local potential approximation include wave function renormalization

Chiral Phase Diagram

• Critical Endpoint for different truncations:

[Rennecke, BJS 2018]

11.10.2019 | B.-J. Schaefer | Giessen University |

Masses

11.10.2019 | B.-J. Schaefer | Giessen University |

Chiral multiplets

11.10.2019 | B.-J. Schaefer | Giessen University |

24

UNIVERSITÄT

Neutron Stars

Equation of State

[Baym 2018]

Experimental constraints:

Radius ~ 10 - 14 km

Mass > 2 Msol

constraints on tidal deformability

Nuclear phase:	Quark phase:		
restrictions on EoS at low densities from nuclear physics	mostly mean-field investig like NJL-type or phenomer models	ations nological	
		[Hebeler, Lattimer, Pethi	ck,Schwenk et al. 2010]
combination: Maxwell construction or continuous interpolation		[Scha	ffner-Bielich et al. 2008]
		[Blaschke, Fischer, Oertel et al. 2018]	
11.10.2019 BJ. Schaefer Giessen University		26	JUSTUS-LIEBIG-

Mass-Radius relation

General issues:

many EoS look similar → similar mass-radius relation
 → masquerade problem [Alvarez-Castillo, Blaschke 2014]

onset of strangeness in hadronic / quark phase or not at all?

→ hyperon puzzle [Djapo, BJS, Wambach 2010]

Phase diagrams

11.10.2019 | B.-J. Schaefer | Giessen University |

28

UNIVERSITÄT

EoSs for quark matter

[Otto, Oertel, BJS to be publish]

29

JNIVERSITÄT

Hadronic and Quark EoSs

[Otto, Oertel, BJS to be publish]

s = constant speed of sound

hadronic EoSs

hadronic and quark matter

Speed of sound

[Otto, Oertel, BJS to be publish]

Mass-Radius relation

[Otto, Oertel, BJS to be publish]

Summary

quantum and thermal fluctuations on QCD phase diagram via

FRG investigation with different truncations: LPA, LPA', LPA'+Y

- → fluctuations are important (beyond LPA)
- → mass sensitivity of the chiral phase structure (Columbia plot)
- → neutron star matter with the FRG

JUSTUS-LIEBIG-

Columbia plot

For physical quark masses: smooth phase transitions \rightarrow deconfinement: analytic change of d.o.f.

→ associated global QCD symmetries only exact in two mass limits

11.10.2019 | B.-J. Schaefer | Giessen University |

Columbia plot

location of tri-critical point still an open question (maybe shifts to infinite strange quark mass)

35

JNIVERSITÄT

Columbia plot

location of tri-critical point still an open question (maybe shifts to infinite strange quark mass)

11.10.2019 | B.-J. Schaefer | Giessen University |

36

UNIVERSITÄT

Columbia plot (MFA)

Nf=2+1 FRG QM truncation:

initial action in the UV: 7 parameters, (4 couplings, 2 explicit symmetry breaking, 1 't Hooft determinant) axial $U_A(1)$ symmetry: on or off

How to fix initial action in the UV away from the physical mass point?

a=1 physical mass point

 α =0 chiral limit

[Resch, Rennecke, BJS 2019]

Columbia plot with the FRG

GIESSEN

11.10.2019 | B.-J. Schaefer | Giessen University |