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Motivation

What if we have twins

I Does hybrid neutron star exist?

I Does NS twin exist?

I Does CEP exist on QCD phase diagram?

I etc.



Neutron star mass-radius relation

Seidov criterion for instability:
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Credit: Mark G. Alford, Sophia Han, and Madappa Prakash. Phys. Rev. D 88,

083013 (2013)



Finite-size effects

Coulomb interaction vs Surface tension
Tends to break up the

like-charged regions into
smaller ones

Requires minimization of the
surface

The surface tension σ is unknown and used as free parameter.

Yasutake, Maruyama, Tatsumi, Phys. Rev. D80 (2009) 123009



Mimicking the Pasta phase. The idea

Baryonic chemical potential
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Schematic representation of the interpolation function PM(µ), it
has to go though three points: PH(µH), Pc + ∆P and PQ(µQ).



The Interpolation Method

PM (µ) =
N∑

q=1

αq (µ− µc)q + (1 + ∆P)Pc

where ∆P is a free parameter representing additional pressure of
the mixed phase at µc .

PH (µH) = PM (µH) PQ (µQ) = PM (µQ)

∂q

∂µq
PH (µH) =

∂q

∂µq
PM (µH)

∂q

∂µq
PQ (µQ) =

∂q

∂µq
PM (µQ)

where q = 1, 2, . . . , k . All N + 2 parameters (µH , µQ and αq, for
q = 1, . . . ,N) can be found by solving the above system of
equations, leaving one parameter (∆P) as a free one.

Ayriyan and Grigorian, EPJ Web Conf. 173, 03003 (2018)

Abgaryan, Alvarez-Castillo, Ayriyan et al. Universe 4(9), 94 (2018)



The Interpolation Method
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The results of pasta mimicking
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The results of pasta effects
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Third family robust against ∆P up to around 5%!
Abgaryan, Alvarez-Castillo, Ayriyan et al. Universe 4(9), 94 (2018)



The realistic hadron and quark matter models

The hadron EoS model KVOR with

modification of stiffness

The quark EoS model SFM with

available volume fraction parameter

Maslov, Kolomeitsev, Voskresensky,

Nucl.Phys. A950 (2016)

Kaltenborn, Bastian, Blaschke, Phys.

Rev. D 96, 056024 (2017)

Kolomeitsev & Voskresensky, Nuc.

Phys. A 759 (2005)



Robustness of third family solutions
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Robustness of third family solutions
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Relation with surface tension parameter

1200 1250 1300 1350
B [MeV]

80

100

120

140

160

180

200

P
 [M

eV
/fm

3 ]
 = 0 MeV/fm2

homogeneous
H2
Q1
Interpolation

1200 1250 1300 1350
B [MeV]

 = 40 MeV/fm2

drop
rod
slab

1200 1250 1300 1350 1400
B [MeV]

 = 80 MeV/fm2

1100 1120 1140
B [MeV]

30

35

40

45

50

55

60

P
 [M

eV
/fm

3
]

= 0 MeV/fm2

homogeneous

H1

Q2

Interpolation

1100 1120 1140
B [MeV]

= 16 MeV/fm2

rod

slab

1100 1120 1140
B [MeV]

= 32 MeV/fm2



Relation with surface tension parameter
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Relation with surface tension parameter
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σc = d (Pc − P0) + σ0: d = 0.45± 0.02 fm,
σc = d (Pc − P0) + σ0: P0 = 40 MeV/fm3,
σc = d (Pc − P0) + σ0: and σ0 = 31.6± 1.19 MeV/fm2

∆P(σ) = ∆P(0)S(σ/σc ;β): β = 0.64

S(x ;β) = e−x(1− xβ)θ(1− x)

Maslov, Yasutake, Blaschke, Ayriyan, Grigorian, Maruyama, Tatsumi,

Voskresensky. PRC100, 025802 (2019)



How to mimic pasta phase for given σ

1. Maxwell constructio to obtain Pc and µc

2. Glendaning construction to find ∆P(0)

3. Use the fit formulas of Maslov et al PRC100 (2019) to
obtain ∆P(0).

4. Use the interpolation formulas of Ayriyan et al PRC98
(2018) to obtain the pasta-equivalent hybrid EoS with a
mixed phase for a given choice of the surface tension σ

D. Blaschk. Cooking book for mimicking the pasta phase presented at

MPCS2019 (20.09.2019, Yerevan)



Bayesian Analysis

Bayesian analysis is a statistical paradigm that shows the most
expected hypotheses using probability statements and current
knowledge.
One of the most frequent case is analysis of probable values of
model parameters.

Generally, maximum likelihood (parameters which maximize the
probability for data) does not give the most likely parameters!!!



Bayesian Analysis



Equation of State
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Equation of State at M − R diagram
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Equation of State at Λ1–Λ2 diagram
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Equation of State at Λ1–Λ2 diagram
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Equation of State at Λ1–Λ2 diagram
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Equation of State at Λ1–Λ2 diagram
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Equation of State at Λ1–Λ2 diagram
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Equation of State at Λ1–Λ2 diagram
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The same phenomena were found in Montana, Tolos, Hanauske, Rezzolla.

PRD99, 103009 (2019) for politropic models

More interesting results have been achieved by Prof. Armen Sedrakian for

triplet of compact stars produced by the forth family.

The region Λ2 < Λ1 was called unphysical at Abbott et al. PRL121 (2018).



Vector of Parameters

The set of parameters of models could be represented in the
parameter space with introduction of the vector of parameters,
each vector is one fixed model from considered types of EoS model
and transition construction:

−→π i =
{
µ<(j),∆P (k)

}
,

where i = 0..N − 1 and i = N2 × j + k and j = 0..N1 − 1,
k = 0..N2 − 1 and N1 and N2 are number of values of model
parameters µ< and ∆P correspondingly.



Likelihood of a EoS model for the mass constraint

2.14 +0.10
–0.09

Cromartie et. al. Nature Astronomy (2019),
doi: 10.1038/s41550-019-0880-2



Likelihood of a EoS model for the mass constraint

P (EM |πi ) = Φ(Mi , µA, σA)

here Mi is maximum mass of the given by πi , and µA = 2.17 M�
and σA = 0.105 M� is the mass measurement of PSR J0740+6620
2.17+0.11

−0.10 M� [Cromartie et al., arXiv:1904.06759 (2019)].

Note, that here we replace previously used mass measurement for two

solar mass pulsar J0348+0432 2.01+0.04
−0.04 M� [Antoniadis et al., Science

340, 6131 (2013)].



Likelihood of a EoS model for the Λ1–Λ2 constraint

P (EGW |πi ) =

∫

l22

β(Λ1(τ),Λ2(τ))dτ +

∫

l23

β(Λ1(τ),Λ2(τ))dτ

+

∫

l32

β(Λ1(τ),Λ2(τ))dτ +

∫

l33

β(Λ1(τ),Λ2(τ))dτ,

where lps are the length of the line at Λ1–Λ2, the indecies p and s
determine to which family of compact stars the GW170817
components belong. The parameter τ is, for instance, central
density of a star.

Credt: Abbott et al. PRL121 (2018)
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The PDF β(Λ1,Λ2) has been reconstructed by the method
Gaussian kernel density estimation with Λ1–Λ2 data given at LIGO
web-page https://dcc.ligo.org/LIGO-P1800115/public.

https://dcc.ligo.org/LIGO-P1800115/public


Likelihood of a model for the fictitious M-R constraint
Preliminary results for dual-temperature 
two polar caps model.
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Likelihood of a model for the fictitious M-R constraint
Preliminary results for dual-temperature 
two polar caps model.
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Likelihood of a model for the fictitious M-R constraint
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Likelihood of a model for the fictitious M-R constraint
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Likelihood of a model for the fictitious M-R constraint

The fictitious M-R measurement has been implemented, inspired
by the preliminary results of NICER observation of M-R of the
PSR J0030+0451.

P (EMR |πi ) =

∫

l2

N (µR , σR , µM , σM , ρ)dτ

+

∫

l3

N (µR , σR , µM , σM , ρ)dτ,

where µR = 13.84, σR = 1.2276, µM = 1.44, σM = 0.18, and the
correlation parameter ρ = 0.9566, winch corresponds to 8o of th
ellipse rotation. l2 and l3 are length of the lines at M-R diagram of
the second and third families correspondingly.



Posterior distribution

The full likelihood for the given πi can be calculated as a product
of all likelihoods, since the considered constraints are independent
of each other

P (E |−→π i ) =
∏

m

P (Em |−→π i ) .

where m is index of the constraints.
The posterior distribution of models on parameter diagram is given
by Bayes’ theorem

P (−→π i |E ) =
P (E |−→π i )P (−→π i )

N−1∑
j=0

P (E |−→π j )P (−→π j)

,

where P (−→π j) is a prior distribution of a models taken to be
uniform: P (−→π j) = 1/N.



BA results

Ayriyan, Alvarez-Castillo, Blaschke, Grigorian. In preparation.



Conclusions

The mixed phase interpolation method is very simple and well
describes quark-hadron pasta phase for any give possible
surface tension value.

The third family survives against pasta phase for the
considered EoS models.

Λ1 − Λ2 relation from GW170817 favours softer EoS and
hybrid stars with strong phase order transitions (even with no
third family due to the mixed phase).

The region Λ2 < Λ1 has physical meaning in case of low-mass
twins, when heavier companion belongs to the second family
and the lighter one to the third family.

If NICER will approve the “fictitious radius measurement” it
will support the low-mass twin stars around 1.4 M� for
considered models.
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