Bayesian analysis for extracting properties of the nuclear equation of state from observational data

Alexander Ayriyan

Division of Computational Physics
Laboratory of IT, Joint Institute for Nuclear Research (JINR)

Computational Physics and IT Division,
A. Alikhanyan National Science Laboratory (AANL)

40th Max Born Symposium - Three Days on Strong
Correlations in Dense Matter, October 9-12, 2019 Wroclaw, Poland

The research was carried out under financial support of the Russian Science Foundation (project \#17-12-01427)

Collaborators

Hovik Grigorian (LIT \& YSU \& AANL),
David Blaschke (UW \& JINR \& MEPhI),
Dmitry Voskresensky (MEPhI \& JINR),
Konstantin Maslov (MEPhI \& JINR)
David-Edwin Alvarez-Castillo (JINR),
Nobutoshi Yasutake (Chiba Institute of Technology),
Vahagn Abgaryan (JINR \& AANL)

Outline

I. Motivation
II. Mixed phase construction for cold and dense nuclear matter
III. Bayesian analysis for extracting properties of the nuclear equation of state from observational data
IV. Conclusions

Motivation

What if we have twins

- Does hybrid neutron star exist?
- Does NS twin exist?
- Does CEP exist on QCD phase diagram?
- etc.

Neutron star mass-radius relation

Seidov criterion for instability:

$$
\frac{\Delta \varepsilon}{\varepsilon_{c r i t}} \geq \frac{1}{2}+\frac{3}{2} \frac{P_{c r i t}}{\varepsilon_{c r i t}}
$$

Credit: Mark G. Alford, Sophia Han, and Madappa Prakash. Phys. Rev. D 88, 083013 (2013)

Finite-size effects

Coulomb interaction Tends to break up the like-charged regions into
 vS
 Surface tension
 Requires minimization of the surface smaller ones

The surface tension σ is unknown and used as free parameter.

Mimicking the Pasta phase. The idea

Baryonic chemical potential
Schematic representation of the interpolation function $P_{M}(\mu)$, it has to go though three points: $P_{H}\left(\mu_{H}\right), P_{c}+\Delta P$ and $P_{Q}\left(\mu_{Q}\right)$.

The Interpolation Method

$$
P_{M}(\mu)=\sum_{q=1}^{N} \alpha_{q}\left(\mu-\mu_{c}\right)^{q}+\left(1+\Delta_{P}\right) P_{c}
$$

where Δ_{P} is a free parameter representing additional pressure of the mixed phase at μ_{c}.

$$
\begin{array}{cc}
P_{H}\left(\mu_{H}\right)=P_{M}\left(\mu_{H}\right) & P_{Q}\left(\mu_{Q}\right)=P_{M}\left(\mu_{Q}\right) \\
\frac{\partial^{q}}{\partial \mu^{q}} P_{H}\left(\mu_{H}\right)=\frac{\partial^{q}}{\partial \mu^{q}} P_{M}\left(\mu_{H}\right) & \frac{\partial^{q}}{\partial \mu^{q}} P_{Q}\left(\mu_{Q}\right)=\frac{\partial^{q}}{\partial \mu^{q}} P_{M}\left(\mu_{Q}\right)
\end{array}
$$

where $q=1,2, \ldots, k$. All $N+2$ parameters $\left(\mu_{H}, \mu_{Q}\right.$ and α_{q}, for $q=1, \ldots, N$) can be found by solving the above system of equations, leaving one parameter (ΔP) as a free one.

Ayriyan and Grigorian, EPJ Web Conf. 173, 03003 (2018)
Abgaryan, Alvarez-Castillo, Ayriyan et al. Universe 4(9), 94 (2018)

The Interpolation Method

The squared speed vs chemical potential given by the interpolation with $k=1$ (upper left) $k=2$ (upper right) and $k=3$ (right).

Abgaryan, Alvarez-Castillo, Ayriyan, Blaschke and Grigorian. Universe 4(9) (2018), 94

The results of pasta mimicking

The results of pasta effects

Third family robust against Δ_{P} up to around 5% ! Abgaryan, Alvarez-Castillo, Ayriyan et al. Universe 4(9), 94 (2018)

The realistic hadron and quark matter models

The hadron EoS model KVOR with modification of stiffness

Maslov, Kolomeitsev, Voskresensky, Nucl.Phys. A950 (2016)
Kolomeitsev \& Voskresensky, Nuc.
Phys. A 759 (2005)

The quark EoS model SFM with available volume fraction parameter

Kaltenborn, Bastian, Blaschke, Phys. Rev. D 96, 056024 (2017)

Robustness of third family solutions

Ayriyan, Bastian, Blaschke, Grigorian, Maslov, Voskresensky. PRC 97, 045802 (2018)

Robustness of third family solutions

Relation with surface tension parameter

Relation with surface tension parameter

Relation with surface tension parameter

$$
\sigma_{c}=d\left(P_{c}-P_{0}\right)+\sigma_{0}
$$

$$
d=0.45 \pm 0.02 \mathrm{fm}
$$

$$
P_{0}=40 \mathrm{MeV} / \mathrm{fm}^{3}
$$

$$
\text { and } \sigma_{0}=31.6 \pm 1.19 \mathrm{MeV} / \mathrm{fm}^{2}
$$

$\Delta_{P}(\sigma)=\Delta_{P}(0) S\left(\sigma / \sigma_{c} ; \beta\right): \quad \bar{\beta}=0.64$
$S(x ; \beta)=e^{-x}\left(1-x^{\beta}\right) \theta(1-x)$
Maslov, Yasutake, Blaschke, Ayriyan, Grigorian, Maruyama, Tatsumi, Voskresensky. PRC100, 025802 (2019)

How to mimic pasta phase for given σ

1. Maxwell constructio to obtain P_{c} and μ_{c}
2. Glendaning construction to find $\Delta_{P}(0)$
3. Use the fit formulas of Maslov et al PRC100 (2019) to obtain $\Delta_{P}(0)$.
4. Use the interpolation formulas of Ayriyan et al PRC98 (2018) to obtain the pasta-equivalent hybrid EoS with a mixed phase for a given choice of the surface tension σ
D. Blaschk. Cooking book for mimicking the pasta phase presented at MPCS2019 (20.09.2019, Yerevan)

Bayesian Analysis

Bayesian analysis is a statistical paradigm that shows the most expected hypotheses using probability statements and current knowledge.
One of the most frequent case is analysis of probable values of model parameters.
Bayes' theorem:
Likelihood Prior

$$
p\left(H_{1} \mid D, I\right)=\frac{p\left(D \mid H_{1}, I\right) p\left(H_{1} \mid I\right)}{p(D \mid I)}
$$

Prior: knowledge before experiment (logically)
Likelihood: Probability for data if the hypothesis was true
Posterior: Probability that the hypothesis is true given the data
Evidence: normalization; important for model comparison

Generally, maximum likelihood (parameters which maximize the probability for data) does not give the most likely parameters!!!

Bayesian Analysis

Formulation of set of models (set of hypothesis): π_{i} here $i=0 . . N-1$
\downarrow
Finding the a priori probabilities of the models:

$$
P\left(\pi_{i}\right)=1 / N \quad \text { for } \quad \forall i=0 . . N-1
$$

Calculating the coditional probabilities of the events:

$$
P\left(E \mid \vec{\pi}_{i}\right)=\prod_{\alpha} P\left(E_{\alpha} \mid \vec{\pi}_{i}\right)
$$

where α is the index of the observational constraints.

Calculating the a posteriori probabilities of the models:

$$
P\left(\vec{\pi}_{i} \mid E\right)=\frac{P\left(E \mid \vec{\pi}_{i}\right) P\left(\vec{\pi}_{i}\right)}{\sum_{j=0}^{N-1} P\left(E \mid \vec{\pi}_{j}\right) P\left(\vec{\pi}_{j}\right)}
$$

Equation of State

Equation of State at $M-R$ diagram

Equation of State at $\Lambda_{1}-\Lambda_{2}$ diagram

Equation of State at $\Lambda_{1}-\Lambda_{2}$ diagram

Equation of State at $\Lambda_{1}-\Lambda_{2}$ diagram

Equation of State at $\Lambda_{1}-\Lambda_{2}$ diagram

Equation of State at $\Lambda_{1}-\Lambda_{2}$ diagram

Equation of State at $\Lambda_{1}-\Lambda_{2}$ diagram

The same phenomena were found in Montana, Tolos, Hanauske, Rezzolla. PRD99, 103009 (2019) for polytropic models
More interesting results have been achieved by Prof. Armen Sedrakian for triplet of compact stars produced by the fourth family.
The region $\Lambda_{2}<\Lambda_{1}$ was called unphysical at Abbott et al. PRL121 (2018).

Vector of Parameters

The set of parameters of models could be represented in the parameter space with introduction of the vector of parameters, each vector is one fixed model from considered types of EoS model and transition construction:

$$
\vec{\pi}_{i}=\left\{\mu_{<(j)}, \Delta_{P(k)}\right\}
$$

where $i=0 . . N-1$ and $i=N_{2} \times j+k$ and $j=0 . . N_{1}-1$, $k=0 . . N_{2}-1$ and N_{1} and N_{2} are number of values of model parameters $\mu_{<}$and Δ_{P} correspondingly.

Likelihood of a EoS model for the mass constraint

Cromartie et. al. Nature Astronomy (2019), doi: $10.1038 / \mathrm{s} 41550-019-0880-2$

Likelihood of a EoS model for the mass constraint

$$
P\left(E_{M} \mid \pi_{i}\right)=\Phi\left(M_{i}, \mu_{A}, \sigma_{A}\right)
$$

here M_{i} is maximum mass of the given by π_{i}, and $\mu_{A}=2.17 \mathrm{M}_{\odot}$ and $\sigma_{A}=0.105 \mathrm{M}_{\odot}$ is the mass measurement of PSR J0740+6620 $2.17_{-0.10}^{+0.11} \mathrm{M}_{\odot}$ [Cromartie et al., arXiv:1904.06759 (2019)].

Note, that here we replace previously used mass measurement for two solar mass pulsar J0348+0432 $2.01_{-0.04}^{+0.04} \mathrm{M}_{\odot}$ [Antoniadis et al., Science 340, 6131 (2013)].

Likelihood of a EoS model for the $\Lambda_{1}-\Lambda_{2}$ constraint

$$
\begin{aligned}
P\left(E_{G W} \mid \pi_{i}\right) & =\int_{1_{22}} \beta\left(\Lambda_{1}(\tau), \Lambda_{2}(\tau)\right) d \tau+\int_{1_{23}} \beta\left(\Lambda_{1}(\tau), \Lambda_{2}(\tau)\right) d \tau \\
& +\int_{1_{32}} \beta\left(\Lambda_{1}(\tau), \Lambda_{2}(\tau)\right) d \tau+\int_{1_{33}} \beta\left(\Lambda_{1}(\tau), \Lambda_{2}(\tau)\right) d \tau,
\end{aligned}
$$

where $I_{p s}$ are the length of the line at $\Lambda_{1}-\Lambda_{2}$, the indecies p and s determine to which family of compact stars the GW170817 components belong. The parameter τ is, for instance, central density of a star.

$\beta\left(\Lambda_{1}, \Lambda_{2}\right)$

The PDF $\beta\left(\Lambda_{1}, \Lambda_{2}\right)$ has been reconstructed by the method Gaussian kernel density estimation with $\Lambda_{1}-\Lambda_{2}$ data given at LIGO web-page https://dcc.ligo.org/LIGO-P1800115/public.

Likelihood of a model for the fictitious $M-R$ constraint

[Guillot. Talk at the Workshop "NSs and their environments", (April 8, 2019)]

Likelihood of a model for the fictitious $M-R$ constraint

[Guillot. Talk at the Workshop "NSs and their environments", (April 8, 2019)]

Likelihood of a model for the fictitious $M-R$ constraint

Likelihood of a model for the fictitious $M-R$ constraint

Likelihood of a model for the fictitious $M-R$ constraint

The fictitious $M-R$ measurement has been implemented, inspired by the preliminary results of NICER observation of $M-R$ of the PSR J0030+0451.

$$
\begin{aligned}
P\left(E_{M R} \mid \pi_{i}\right) & =\int_{I_{2}} \mathcal{N}\left(\mu_{R}, \sigma_{R}, \mu_{M}, \sigma_{M}, \rho\right) d \tau \\
& +\int_{I_{3}} \mathcal{N}\left(\mu_{R}, \sigma_{R}, \mu_{M}, \sigma_{M}, \rho\right) d \tau
\end{aligned}
$$

where $\mu_{R}=13.84, \sigma_{R}=1.2276, \mu_{M}=1.44, \sigma_{M}=0.18$, and the correlation parameter $\rho=0.9566$, winch corresponds to 8° of th ellipse rotation. I_{2} and I_{3} are length of the lines at $M-R$ diagram of the second and third families correspondingly.

Posterior distribution

The full likelihood for the given π_{i} can be calculated as a product of all likelihoods, since the considered constraints are independent of each other

$$
P\left(E \mid \vec{\pi}_{i}\right)=\prod_{m} P\left(E_{m} \mid \vec{\pi}_{i}\right)
$$

where m is index of the constraints.
The posterior distribution of models on parameter diagram is given by Bayes' theorem

$$
P\left(\vec{\pi}_{i} \mid E\right)=\frac{P\left(E \mid \vec{\pi}_{i}\right) P\left(\vec{\pi}_{i}\right)}{\sum_{j=0}^{N-1} P\left(E \mid \vec{\pi}_{j}\right) P\left(\vec{\pi}_{j}\right)}
$$

where $P\left(\vec{\pi}_{j}\right)$ is a prior distribution of a models taken to be uniform: $P\left(\vec{\pi}_{j}\right)=1 / N$.

BA results

Ayriyan, Alvarez-Castillo, Blaschke, Grigorian. In preparation.

Conclusions

The mixed phase interpolation method is very simple and well describes quark-hadron pasta phase for any given surface tension value.

The third family survives mixed phase effects for the pasta phase for the considered EoS models.
$\Lambda_{1}-\Lambda_{2}$ relation from GW170817 favours softer EoS and hybrid stars with strong first order phase transitions (even with no third family due to the mixed phase).

The region $\Lambda_{2}<\Lambda_{1}$ has physical meaning in case of low-mass twins, when heavier companion belongs to the second family and the lighter one to the third family.

If NICER approves the "fictitious radius measurement" it will support late onset for the considered models.

References

A. Ayriyan, D. Alvarez-Castillo, D. Blaschke and H. Grigorian, Bayesian Analysis for Extracting Properties of the Nuclear Equation of State from Observational Data including Tidal Deformability from GW170817, Universe 5, 61 (2019), doi 10.3390/universe5020061
K. Maslov, N. Yasutake, A. Ayriyan, D. Blaschke, H. Grigorian, T. Maruyama, T. Tatsumi, D. N. Voskresensky. Hybrid equation of state with pasta phases, and third family of compact stars Physical Review C 100, 025802 (2019), doi 10.1103/PhysRevC.100.025802
V. Abgaryan, D. Alvarez-Castillo, A. Ayriyan, D. Blaschke and H. Grigorian. Two Novel Approaches to the Hadron-Quark Mixed Phase in Compact Stars. Universe 4(9), 94 (2018), doi 10.3390/universe4090094
A. Ayriyan, N.-U. Bastian, D. Blaschke, H. Grigorian, K. Maslov, and D. N. Voskresensky. Robustness of third family solutions for hybrid stars against mixed phase effects. Physical Review C 97, 045802 (2018), doi 10.1103/PhysRevC. 97.045802
A. Ayriyan and H. Grigorian. Model of the Phase Transition Mimicking the Pasta Phase in Cold and Dense Quark-Hadron Matter. European Physical Journal WoC 173, 03003 (2018), doi 10.1051/epjconf/201817303003
D. Alvarez-Castillo, A. Ayriyan, S. Benic, D. Blaschke, H. Grigorian and S. Typel, New class of hybrid EoS and Bayesian M-R data analysis, European Physical Journal A 52, 69 (2016), doi 10.1140/epja/i2016-16069-2

Great Days of Wroclaw!

Olga Tokarczuk
Nobel laureate in Literature

Great Days of Wroclaw!

Olga Tokarczuk Nobel laureate in Literature

David Blaschke 60th Anniversary

