Influence of quark masses and strangeness degrees of freedom on inhomogeneous chiral phases

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt

40th Max Born Symposium - Three Days on Strong Correlations in Dense Matter, Wrocław, Poland, October 9-12, 2019

Introduction

- QCD phase diagram (standard picture):

Introduction

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space

Introduction

- QCD phase diagram (standard picture):

- assumption: $\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- How about non-uniform phases?

Introduction

[D. Nickel, PRD (2009)]

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]

Introduction

NJL model, including inhomogeneous phase

[D. Nickel, PRD (2009)]

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations [MB, S. Carignano, PPNP (2015)]

Questions addressed in this talk:

- What is the effect of nonzero bare quark masses?
[MB, S. Carignano, PLB (2019); arxiv:1809.10066 [hep-ph]]
- What is the influence of strange quarks?
[S. Carignano, MB, arxiv:1910.03604 [hep-ph]]

Nonzero bare masses

- What is the effect of going away from the chiral limit?

Nonzero bare masses

- What is the effect of going away from the chiral limit?
- Quark-meson model
[Andersen, Kneschke, PRD (2018)]:

No inhomogeneous phase for $m_{\pi}>37.1 \mathrm{MeV}$

Nonzero bare masses

- What is the effect of going away from the chiral limit?
- Quark-meson model [Andersen, Kneschke, PRD (2018)]:

No inhomogeneous phase for $m_{\pi}>37.1 \mathrm{MeV}$

- NJL model [Nickel, PRD (2009)]:

Inhomogeneous phase gets smaller but still reaches the CEP

Nonzero bare masses

- What is the effect of going away from the chiral limit?
- Quark-meson model [Andersen, Kneschke, PRD (2018)]:

No inhomogeneous phase for $m_{\pi}>37.1 \mathrm{MeV}$

- NJL model [Nickel, PRD (2009)]:

Inhomogeneous phase gets smaller but still reaches the CEP

- Can we investigate this more systematically?

NJL Model

- Lagrangian: $\quad \mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$

NJL Model

- Lagrangian: $\quad \mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- Bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

NJL Model

- Lagrangian: $\quad \mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- Bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- Mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv \phi_{S}(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv \phi_{P}(\vec{x}) \delta_{a 3}
$$

- $\phi_{S}(\vec{X}), \phi_{P}(\vec{X})$ time independent classical fields
- retain space dependence !

NJL Model

- Lagrangian: $\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- Bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- Mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv \phi_{S}(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv \phi_{P}(\vec{x}) \delta_{a 3}
$$

- $\phi_{S}(\vec{X}), \phi_{P}(\vec{X})$ time independent classical fields
- retain space dependence !
(towards studying inhomogeneous phases beyond mean-field approximation:
\rightarrow Martin Steil's talk after the coffee break)

Mean-field thermodynamic potential

- Mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \log \mathcal{Z}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- Tr: functional trace over Euclidean $V_{4}=\left[0, \frac{1}{T}\right] \times V$, Dirac, color, and flavor
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial+\mu \gamma^{0}-m+2 G_{S}\left(\phi_{S}(\vec{x})+i \gamma_{5} \tau_{3} \phi_{P}(\vec{X})\right)
$$

Mean-field thermodynamic potential

- Mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \log \mathcal{Z}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{s^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- Tr: functional trace over Euclidean $V_{4}=\left[0, \frac{1}{T}\right] \times V$, Dirac, color, and flavor
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial+\mu \gamma^{0}-m+2 G_{S}\left(\phi_{S}(\vec{x})+i \gamma_{5} \tau_{3} \phi_{P}(\vec{x})\right)
$$

$\Rightarrow \quad \Omega_{M F}=\Omega_{M F}\left[\phi_{S}(\vec{X}), \phi_{P}(\vec{X})\right] \quad$ minimization extremly difficult !

Mean-field thermodynamic potential

- Mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \log \mathcal{Z}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(\frac{S^{-1}}{T}\right)+G \frac{1}{V} \int d^{3} x\left(\phi_{S}^{2}(\vec{x})+\phi_{P}^{2}(\vec{x})\right)
$$

- Tr: functional trace over Euclidean $V_{4}=\left[0, \frac{1}{T}\right] \times V$, Dirac, color, and flavor
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial+\mu \gamma^{0}-m+2 G_{S}\left(\phi_{S}(\vec{x})+i \gamma_{5} \tau_{3} \phi_{P}(\vec{X})\right)
$$

$\Rightarrow \quad \Omega_{M F}=\Omega_{M F}\left[\phi_{S}(\vec{x}), \phi_{P}(\vec{x})\right] \quad$ minimization extremly difficult !

- Ginzburg-Landau expansion:
= expansion in small amplitudes and gradients of the order parameter function
(2) valid only near the LP
(-) no ansatz functions for $\phi_{S}(\vec{x})$ and $\phi_{P}(\vec{X})$ needed

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{s}(\vec{x})+i \phi_{P}(\vec{x})$

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{S}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{S}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- $\alpha_{2}>0 \Rightarrow$ restored phase

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{S}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- $\alpha_{2}<0 \Rightarrow$ hom. broken phase

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{S}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{S}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{S}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{s}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$

case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

$\Rightarrow \quad$ tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{S}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
$\Rightarrow \quad$ tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{s}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
$\Rightarrow \quad$ tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible

Tricritical and Lifshitz point in the chiral limit

- GL expansion: $\Omega[M]=\Omega[0]+\frac{1}{V} \int_{V} d^{3} x\left\{\alpha_{2}|M|^{2}+\alpha_{4, a}|M|^{4}+\alpha_{4, b}|\vec{\nabla} M|^{2}+\ldots\right\}$
- order-parameter function: $M(\vec{x}) \propto \phi_{s}(\vec{x})+i \phi_{P}(\vec{x})$
- case 1: $\alpha_{4, b}>0 \Rightarrow$ gradients disfavored \Rightarrow homogeneous
case 1.1: $\alpha_{4, a}>0$
- 2nd-order p.t. at $\alpha_{2}=0$
\Rightarrow tricritical point (TCP): $\quad \alpha_{2}=\alpha_{4, a}=0$
case 1.2: $\alpha_{4, a}<0$
- 1st-order phase trans. at $\alpha_{2}>0$
- case 2: $\alpha_{4, b}<0$
- inhomogeneous phase possible

Lifshitz point (LP): $\quad \alpha_{2}=\alpha_{4, b}=0$

Away from the chiral limit

- $m \neq 0$: no chirally restored solution $M=0$
\rightarrow expand about a priory unknown spatially constant mass $M_{0}(T, \mu)$:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{1} \delta M+\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- small parameters: $\delta M(\vec{x}) \equiv M(\vec{x})-M_{0}, \quad|\nabla \delta M(\vec{x})|$
- GL coefficients: $\alpha_{j}=\alpha_{j}\left(T, \mu, M_{0}\right)$
- odd powers allowed
- require $M_{0}=$ extremum of Ω at given T and μ

$$
\Rightarrow \alpha_{1}\left(T, \mu, M_{0}\right)=0 \quad \rightarrow \quad M_{0}=M_{0}(T, \mu) \quad(=\text { homogeneous gap equation })
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima +1 maximum $\rightarrow 1$ minimum

$$
\Rightarrow \quad \text { critical endpoint (CEP): } \quad \alpha_{2}=\alpha_{3}=0
$$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous

- no restored phase, but 1st-order ph. trans. between different minima possible
- 2 minima +1 maximum $\rightarrow 1$ minimum

$$
\Rightarrow \quad \text { critical endpoint (CEP): } \quad \alpha_{2}=\alpha_{3}=0
$$

- spinodals: left: $\alpha_{2}=0, \alpha_{3}<0$, right: $\alpha_{2}=0, \alpha_{3}>0$,

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous CEP: $\quad \alpha_{2}=\alpha_{3}=0$
- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous CEP: $\quad \alpha_{2}=\alpha_{3}=0$
- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous CEP: $\quad \alpha_{2}=\alpha_{3}=0$
- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- 2nd-order phase boundary between inhom. and hom. phase: $\delta M(\vec{x}) \rightarrow 0$

CEP and pseudo Lifshitz point

- GL expansion:

$$
\Omega[M]=\Omega\left[M_{0}\right]+\frac{1}{V} \int d^{3} x\left(\alpha_{2} \delta M^{2}+\alpha_{3} \delta M^{3}+\alpha_{4, a} \delta M^{4}+\alpha_{4, b}(\nabla \delta M)^{2}+\ldots\right)
$$

- case 1: $\alpha_{4, b}>0 \Rightarrow$ homogeneous CEP: $\quad \alpha_{2}=\alpha_{3}=0$
- case 2: $\alpha_{4, b}<0 \Rightarrow$ inhomogeneous phases possible
- strictly: only two phases - homogeneous and inhomogeneous \Rightarrow no LP
- 2nd-order phase boundary between inhom. and hom. phase: $\delta M(\vec{x}) \rightarrow 0$
- pseudo Lifshitz point (PLP): $\quad \delta M(\vec{x}) \rightarrow 0, \nabla \delta M(\vec{x}) \rightarrow 0$

$$
\Rightarrow \quad \text { PLP: } \quad \alpha_{2}=\alpha_{4, b}=0
$$

Summarizing:
 GL analysis of critical and Lifshitz points

- chiral limit ($m=0$):
- expansion about $M=0$
- TCP: $\alpha_{2}=\alpha_{4, a}=0$
- LP: $\alpha_{2}=\alpha_{4, b}=0$
- away from the chiral limit ($m \neq 0$):
- expansion about $M_{0}(T, \mu)$ solving $\alpha_{1}\left(T, \mu, M_{0}\right)=0$
- CEP: $\alpha_{2}=\alpha_{3}=0$
- PLP: $\alpha_{2}=\alpha_{4, b}=0$

GL coefficients

$$
\begin{aligned}
\alpha_{1} & =\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
\alpha_{4, a} & =\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3}
\end{aligned}
$$

- $F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T$

GL coefficients

$$
\begin{aligned}
\alpha_{1} & =\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
\alpha_{4, a} & =\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3}
\end{aligned}
$$

- $F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T$
- chiral limit:
- $m=0 \Rightarrow M_{0}=0$ solves gap equation $\alpha_{1}=0$
- $M_{0}=0 \Rightarrow \alpha_{3}=0$ (no odd powers)
- $M_{0}=0 \Rightarrow \alpha_{4, a}=\alpha_{4, b} \Rightarrow$ TCP = LP [Nickel, PRL (2009)]

GL coefficients

$$
\begin{aligned}
\alpha_{1} & =\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
\alpha_{4, a} & =\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3}
\end{aligned}
$$

- $F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T$
- towards the chiral limit:
- $M_{0} \rightarrow 0 \Rightarrow \alpha_{3}, \alpha_{4 b a}, \alpha_{4, b} \propto F_{2} \Rightarrow$ CEP \rightarrow TCP $=\mathrm{LP}$

GL coefficients

$$
\begin{aligned}
\alpha_{1} & =\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
\alpha_{4, a} & =\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3}
\end{aligned}
$$

- $F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T$
- away from the chiral limit:
- $M_{0} \neq 0 \Rightarrow \alpha_{3}=4 M_{0} \alpha_{4, b} \Rightarrow$ CEP $=$ PLP

GL coefficients

$$
\begin{aligned}
\alpha_{1} & =\frac{M_{0}-m}{2 G}+M_{0} F_{1}, \quad \alpha_{2}=\frac{1}{4 G}+\frac{1}{2} F_{1}+M_{0}^{2} F_{2}, \quad \alpha_{3}=M_{0}\left(F_{2}+\frac{4}{3} M_{0}^{2} F_{3}\right), \\
\alpha_{4, a} & =\frac{1}{4} F_{2}+2 M_{0}^{2} F_{3}+2 M_{0}^{4} F_{4}, \quad \alpha_{4, b}=\frac{1}{4} F_{2}+\frac{1}{3} M_{0}^{2} F_{3}
\end{aligned}
$$

- $F_{n}=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M_{0}^{2}\right]^{n}}, \quad \omega_{j}=(2 j+1) \pi T$
- away from the chiral limit:
- $M_{0} \neq 0 \Rightarrow \alpha_{3}=4 M_{0} \alpha_{4, b} \Rightarrow$ CEP $=$ PLP

The CEP coincides with the PLP!

Results

[MB, S. Carignano, PLB (2019)]

TECHNISCHE UNIVERSITATT DARMSTADT

- phase diagram for $m=10 \mathrm{MeV}$:

Results

[MB, S. Carignano, PLB (2019)]

- phase diagram for $m=10 \mathrm{MeV}$:

- dominant instability in the scalar channel

Mass dependence

- position of the CEP=PLP for different m :

Quark-meson model

[L. Kurth, Master's theis project, ongoing]

- Instability in the scalar channel remains well beyond physical masses.

Including strange quarks

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP

[D. Nickel, PRD (2009)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?

[D. Nickel, PRD (2009)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies

[D. Müller et al. PLB (2013)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?

[D. Müller et al. PLB (2013)]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
- CEP reaches T-axis
$\stackrel{?}{\Rightarrow}$ PLP reaches T-axis
- chance to study the inhomogeneous phase

[from de Forcrand et al., POSLAT 2007]

Motivation

- 2-flavor NJL: TCP \rightarrow LP, CEP \rightarrow PLP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
- CEP reaches T-axis
$\stackrel{?}{\Rightarrow}$ PLP reaches T-axis
- chance to study the inhomogeneous phase on the lattice!
- Here: Ginzburg-Landau study for 3-flavor NJL

3-flavor NJL model

- Lagrangian: $\quad \mathcal{L}=\bar{\psi}(i \not \partial-\hat{m}) \psi+\mathcal{L}_{4}+\mathcal{L}_{6}$
- fields and bare masses: $\psi=(u, d, s)^{T}, \quad \hat{m}=\operatorname{diag}_{f}\left(m_{u}, m_{d}, m_{s}\right)$
- 4-point interaction: $\quad \mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{\psi} \tau_{a} \psi\right)^{2}+\left(\bar{\psi} i \gamma_{5} \tau_{a} \psi\right)^{2}\right]$
- 6-point ('t Hooft) interaction: $\mathcal{L}_{6}=-K\left[\operatorname{det}_{f} \bar{\psi}\left(1+\gamma_{5}\right) \psi+\operatorname{det}_{f} \bar{\psi}\left(1-\gamma_{5}\right) \psi\right]$

3-flavor NJL model

- Lagrangian: $\quad \mathcal{L}=\bar{\psi}(i \not \partial-\hat{m}) \psi+\mathcal{L}_{4}+\mathcal{L}_{6}$
- fields and bare masses: $\psi=(u, d, s)^{T}, \quad \hat{m}=\operatorname{diag}_{f}\left(m_{u}, m_{d}, m_{s}\right)$
- 4-point interaction: $\quad \mathcal{L}_{4}=G \sum_{a=0}^{8}\left[\left(\bar{\psi} \tau_{a} \psi\right)^{2}+\left(\bar{\psi} i \gamma_{5} \tau_{a} \psi\right)^{2}\right]$
- 6-point ('t Hooft) interaction: $\mathcal{L}_{6}=-K\left[\operatorname{det}_{f} \bar{\psi}\left(1+\gamma_{5}\right) \psi+\operatorname{det}_{f} \bar{\psi}\left(1-\gamma_{5}\right) \psi\right]$
- Mean fields:
- light sector: $\langle\bar{u} u\rangle=\langle\bar{d} d\rangle \equiv \sigma_{\ell}, \quad\left\langle\bar{u} i \gamma_{5} u\right\rangle=-\left\langle\bar{d} i \gamma_{5} d\right\rangle \equiv \pi_{\ell}$
- strange sector: $\langle\bar{s} s\rangle \equiv \sigma_{s}, \quad\left\langle\bar{s} i \gamma_{5} s\right\rangle=0$
- no flavor-nondiagonal mean fields
- allow for inhomogeneities: $\quad \sigma_{\ell}=\sigma_{\ell}(\vec{x}), \quad \pi_{\ell}=\pi_{\ell}(\vec{x}), \quad \sigma_{s}=\sigma_{s}(\vec{x})$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} \times \mathcal{V}(\vec{x})$
- $\hat{M}_{u, d}(\vec{X})=m_{\ell}-\left[4 G-2 K \sigma_{s}(\vec{x})\right]\left(\sigma_{\ell}(\vec{x}) \pm i \gamma^{5} \pi_{\ell}(\vec{x})\right)$
- $\hat{M}_{s}(\vec{x})=m_{s}-4 G \sigma_{s}(\vec{x})+2 K\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right)$
- $\mathcal{V}(\vec{x})=2 G\left[2\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right)+\sigma_{s}^{2}(\vec{x})\right]-4 K\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right) \sigma_{s}(\vec{x})$

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} x \mathcal{V}(\vec{x})$
- $\hat{M}_{u, d}(\vec{X})=m_{\ell}-\left[4 G-2 K \sigma_{s}(\vec{x})\right]\left(\sigma_{\ell}(\vec{x}) \pm i \gamma^{5} \pi_{\ell}(\vec{x})\right)$
- $\hat{M}_{s}(\vec{x})=m_{s}-4 G \sigma_{s}(\vec{x})+2 K\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right)$
- $\mathcal{V}(\vec{x})=2 G\left[2\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right)+\sigma_{s}^{2}(\vec{x})\right]-4 K\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right) \sigma_{s}(\vec{x})$
- $K=0$: light and strange sectors decouple!

Mean-field Thermodynamic Potential

- $\Omega_{M F}(T, \mu)=-\frac{T}{V} \operatorname{Tr} \log \left(i \not \partial+\mu \gamma^{0}-\hat{M}\right)+\frac{1}{V} \int d^{3} x \mathcal{V}(\vec{x})$
- $\hat{M}_{u, d}(\vec{X})=m_{\ell}-\left[4 G-2 K \sigma_{s}(\vec{x})\right]\left(\sigma_{\ell}(\vec{x}) \pm i \gamma^{5} \pi_{\ell}(\vec{x})\right)$
- $\hat{M}_{s}(\vec{x})=m_{s}-4 G \sigma_{s}(\vec{x})+2 K\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right)$
- $\mathcal{V}(\vec{x})=2 G\left[2\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right)+\sigma_{s}^{2}(\vec{x})\right]-4 K\left(\sigma_{\ell}^{2}(\vec{x})+\pi_{\ell}^{2}(\vec{x})\right) \sigma_{s}(\vec{x})$
- $K=0$: light and strange sectors decouple!
- Chiral density wave ansatz for the light sector:

$$
\begin{aligned}
& \sigma_{\ell}(\vec{x})=\sigma_{0} \cos (\vec{q} \cdot \vec{x}), \quad \pi_{\ell}(\vec{x})=\sigma_{0} \sin (\vec{q} \cdot \vec{x}), \quad m_{\ell}=0 \\
& \sigma_{s}=\text { const. } \\
& \Rightarrow \quad \hat{M}_{\ell}=M_{0} \exp \left(i \gamma^{5} \tau^{3} \vec{q} \cdot \vec{x}\right), \quad M_{0}=-\left(4 G-2 K \sigma_{s}\right) \sigma_{0}, \\
& M_{s}=\text { const., }
\end{aligned}
$$

consistent with the literature [Moreira et al., PRD (2014)]

Ginzburg-Landau expansion

- Difficulty for $\hat{m} \neq 0$: no restored solution

Ginzburg-Landau expansion

- Difficulty for $\hat{m} \neq 0$: no restored solution
- Simplification: $m_{u}=m_{d}=0$
\Rightarrow expand about two-flavor restored solution $\sigma_{\ell}=\pi_{\ell}=0$.

Ginzburg-Landau expansion

- Difficulty for $\hat{m} \neq 0$: no restored solution
- Simplification: $m_{u}=m_{d}=0$
\Rightarrow expand about two-flavor restored solution $\sigma_{\ell}=\pi_{\ell}=0$.
- Strange condensate: $\sigma_{s}(\vec{x})=\sigma_{s}^{(0)}+\delta \sigma_{s}(\vec{x})$,
$\sigma_{s}^{(0)}$: homogeneous solution of the gap equation for $\sigma_{\ell}=\pi_{\ell}=0$.

Ginzburg-Landau expansion

- Difficulty for $\hat{m} \neq 0$: no restored solution
- Simplification: $m_{u}=m_{d}=0$
\Rightarrow expand about two-flavor restored solution $\sigma_{\ell}=\pi_{\ell}=0$.
- Strange condensate: $\sigma_{s}(\vec{x})=\sigma_{s}^{(0)}+\delta \sigma_{s}(\vec{x})$,
$\sigma_{s}^{(0)}$: homogeneous solution of the gap equation for $\sigma_{\ell}=\pi_{\ell}=0$.
- Order parameters: $\quad \Delta_{\ell}(\vec{x})=-4 G\left(\sigma_{\ell}(\vec{x})+i \pi_{\ell}(\vec{x})\right), \quad \Delta_{s}(\vec{x})=-4 G \delta \sigma_{s}(\vec{x})$

$$
\rightarrow \quad \Omega_{M F}\left[\sigma_{\ell}, \pi_{\ell}, \sigma_{s}\right]=\Omega\left[0,0, \sigma_{s}^{(0)}\right]+\frac{1}{V} \int d^{3} x \omega_{G L}\left(\Delta_{\ell}, \Delta_{s}\right),
$$

Ginzburg-Landau expansion

- Difficulty for $\hat{m} \neq 0$: no restored solution
- Simplification: $m_{u}=m_{d}=0$
\Rightarrow expand about two-flavor restored solution $\sigma_{\ell}=\pi_{\ell}=0$.
- Strange condensate: $\sigma_{s}(\vec{x})=\sigma_{s}^{(0)}+\delta \sigma_{s}(\vec{x})$,
$\sigma_{s}^{(0)}$: homogeneous solution of the gap equation for $\sigma_{\ell}=\pi_{\ell}=0$.
- Order parameters: $\quad \Delta_{\ell}(\vec{x})=-4 G\left(\sigma_{\ell}(\vec{x})+i \pi_{\ell}(\vec{x})\right), \quad \Delta_{s}(\vec{x})=-4 G \delta \sigma_{s}(\vec{x})$

$$
\rightarrow \quad \Omega_{M F}\left[\sigma_{\ell}, \pi_{\ell}, \sigma_{s}\right]=\Omega\left[0,0, \sigma_{s}^{(0)}\right]+\frac{1}{V} \int d^{3} x \omega_{G L}\left(\Delta_{\ell}, \Delta_{s}\right),
$$

- Expand $\omega_{G L}$ in $\Delta_{\ell}, \Delta_{s}$ and their gradients.
- $\left[\Delta_{i}\right]=$ (mass) \rightarrow counting scheme: $\mathcal{O}(\vec{\nabla})=\mathcal{O}\left(\Delta_{i}\right)$

Ginzburg-Landau potential

- Resulting structure:

$$
\begin{aligned}
\omega_{G L} & =\alpha_{2}\left|\Delta_{\ell}\right|^{2}+\alpha_{4, a}\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +\beta_{1} \Delta_{s}+\beta_{2} \Delta_{s}^{2}+\beta_{3} \Delta_{s}^{3}+\beta_{4, a} \Delta_{s}^{4}+\beta_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +\gamma_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+\gamma_{4}\left|\Delta_{\ell}\right|^{2} \Delta_{s}^{2}+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

Ginzburg-Landau potential

- Resulting structure:

$$
\begin{aligned}
\omega_{G L} & =\alpha_{2}\left|\Delta_{\ell}\right|^{2}+\alpha_{4, a}\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +\beta_{1} \Delta_{s}+\beta_{2} \Delta_{s}^{2}+\beta_{3} \Delta_{s}^{3}+\beta_{4, a} \Delta_{s}^{4}+\beta_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +\gamma_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+\gamma_{4}\left|\Delta_{\ell}\right|^{2} \Delta_{s}^{2}+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G L}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad \beta_{1}=0$

Ginzburg-Landau potential

- Resulting structure:

$$
\begin{aligned}
\omega_{G L}= & \alpha_{2}\left|\Delta_{\ell}\right|^{2}+\alpha_{4, a}\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +\beta_{2} \Delta_{s}^{2}+\beta_{3} \Delta_{s}^{3}+\beta_{4, a} \Delta_{s}^{4}+\beta_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +\gamma_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+\gamma_{4}\left|\Delta_{\ell}\right|^{2} \Delta_{s}^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G L}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad \beta_{1}=0$

Ginzburg-Landau potential

- Resulting structure:

$$
\begin{aligned}
\omega_{G L}= & \alpha_{2}\left|\Delta_{\ell}\right|^{2}+\alpha_{4, a}\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +\beta_{2} \Delta_{s}^{2}+\beta_{3} \Delta_{s}^{3}+\beta_{4, a} \Delta_{s}^{4}+\beta_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +\gamma_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+\gamma_{4}\left|\Delta_{\ell}\right|^{2} \Delta_{s}^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G l}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad \beta_{1}=0$
- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{s}(\vec{x}): \frac{\partial \omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0 \quad$ (Euler-Lagrange eq.)
$\Rightarrow \quad \Delta_{s}=-\frac{\gamma_{3}}{2 \beta_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$

Ginzburg-Landau potential

- Resulting structure:

$$
\begin{aligned}
\omega_{G L}= & \alpha_{2}\left|\Delta_{\ell}\right|^{2}+\alpha_{4, a}\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +\beta_{2} \Delta_{s}^{2}+\beta_{3} \Delta_{s}^{3}+\beta_{4, a} \Delta_{s}^{4}+\beta_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +\gamma_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+\gamma_{4}\left|\Delta_{\ell}\right|^{2} \Delta_{s}^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\quad \frac{\partial \Omega_{G l}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad \beta_{1}=0$
- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{s}(\vec{x}): \frac{\partial \omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0 \quad$ (Euler-Lagrange eq.)

$$
\begin{array}{ll}
\Rightarrow & \Delta_{s}=-\frac{\gamma_{3}}{2 \beta_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right) \\
\Rightarrow \quad \omega_{G L}=\alpha_{2}\left|\Delta_{\ell}\right|^{2}+\left(\alpha_{4, a}-\frac{\gamma_{3}^{2}}{4 \beta_{2}}\right)\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)
\end{array}
$$

Ginzburg-Landau potential

- Resulting structure:

$$
\begin{aligned}
\omega_{G L} & =\alpha_{2}\left|\Delta_{\ell}\right|^{2}+\alpha_{4, a}\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2} \\
& +\beta_{2} \Delta_{s}^{2}+\beta_{3} \Delta_{s}^{3}+\beta_{4, a} \Delta_{s}^{4}+\beta_{4, b}\left(\vec{\nabla} \Delta_{s}\right)^{2} \\
& +\gamma_{3}\left|\Delta_{\ell}\right|^{2} \Delta_{s}+\gamma_{4}\left|\Delta_{\ell}\right|^{2} \Delta_{s}^{2} \quad+\mathcal{O}\left(\Delta_{i}^{5}\right)
\end{aligned}
$$

- Stationarity condition: $\left.\frac{\partial \Omega_{G l}}{\partial \Delta_{s}}\right|_{\Delta_{\ell}=\Delta_{s}=0}=0 \quad \Leftrightarrow \quad \beta_{1}=0$
- Extremizing $\Omega_{M F}$ w.r.t. $\Delta_{s}(\vec{x}): \frac{\partial \omega_{G L}}{\partial \Delta_{s}}-\partial_{i} \frac{\partial \omega_{G L}}{\partial \partial_{i} \Delta_{s}}=0 \quad$ (Euler-Lagrange eq.)
$\Rightarrow \quad \Delta_{s}=-\frac{\gamma_{3}}{2 \beta_{2}}\left|\Delta_{\ell}\right|^{2}+\mathcal{O}\left(\left|\Delta_{\ell}\right|^{4}\right)$
$\Rightarrow \quad \omega_{G L}=\alpha_{2}\left|\Delta_{\ell}\right|^{2}+\left(\alpha_{4, a}-\frac{\gamma_{3}^{2}}{4 \beta_{2}}\right)\left|\Delta_{\ell}\right|^{4}+\alpha_{4, b}\left|\vec{\nabla} \Delta_{\ell}\right|^{2}+\mathcal{O}\left(\Delta_{\ell}^{6}\right)$
- CP: $\alpha_{2}=\alpha_{4, a}-\frac{\gamma_{3}^{2}}{4 \beta_{2}}=0, \quad$ LP: $\alpha_{2}=\alpha_{4, b}=0 \quad$ CP and LP split for $\gamma_{3} \neq 0$!

GL coefficients

$$
\begin{aligned}
\alpha_{2} & =(1+\delta)\left[\frac{1}{4 G}+\frac{1}{2}(1+\delta) F_{1}(0)\right] \\
\alpha_{4, a} & =\frac{1}{4}(1+\delta)^{4} F_{2}(0)+\frac{1}{4} \kappa^{2}\left(F_{1}\left(M_{s, 0}\right)+2 M_{s, 0}^{2} F_{2}\left(M_{s, 0}\right)\right) \\
\alpha_{4, b} & =\frac{1}{4}(1+\delta)^{2} F_{2}(0) \\
\gamma_{3} & =\kappa\left\{\frac{1}{2 G}+(1+\delta) F_{1}(0)+\frac{1}{2}\left(F_{1}\left(M_{s, 0}\right)+2 M_{s, 0}^{2} F_{2}\left(M_{s, 0}\right)\right)\right\}
\end{aligned}
$$

- $F_{n}(M)=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M^{2}\right]^{n}}, \quad M_{s, 0}=m_{s}-2 G M_{s, 0} F_{1}\left(M_{s, 0}\right)$
- $\kappa=\frac{K}{8 G^{2}}, \quad \delta=\kappa\left(M_{s, 0}-m_{s}\right)$

GL coefficients

$$
\begin{aligned}
\alpha_{2} & =(1+\delta)\left[\frac{1}{4 G}+\frac{1}{2}(1+\delta) F_{1}(0)\right] \\
\alpha_{4, a} & =\frac{1}{4}(1+\delta)^{4} F_{2}(0)+\frac{1}{4} \kappa^{2}\left(F_{1}\left(M_{s, 0}\right)+2 M_{s, 0}^{2} F_{2}\left(M_{s, 0}\right)\right) \\
\alpha_{4, b} & =\frac{1}{4}(1+\delta)^{2} F_{2}(0) \\
\gamma_{3} & =\kappa\left\{\frac{1}{2 G}+(1+\delta) F_{1}(0)+\frac{1}{2}\left(F_{1}\left(M_{s, 0}\right)+2 M_{s, 0}^{2} F_{2}\left(M_{s, 0}\right)\right)\right\}
\end{aligned}
$$

$-F_{n}(M)=8 N_{c} \int \frac{d^{3} p}{(2 \pi)^{3}} T \sum_{j} \frac{1}{\left[\left(i \omega_{j}+\mu\right)^{2}-\vec{p}^{2}-M^{2}\right]^{n}}, \quad M_{s, 0}=m_{s}-2 G M_{s, 0} F_{1}\left(M_{s, 0}\right)$

- $\kappa=\frac{K}{8 G^{2}}, \quad \delta=\kappa\left(M_{s, 0}-m_{s}\right)$
- Interesting limit: $K=0 \Rightarrow \kappa=\delta=0 \Rightarrow \alpha_{4, a}=\alpha_{4, b}, \quad \gamma_{3}=0 \Rightarrow$ CP=LP

Results

[S. Carignano, MB, arXiv:1910.03604]

- realistic parameters (fitted to vacuum meson spectrum):

Results

[S. Carignano, MB, arXiv:1910.03604]

- realistic parameters (fitted to vacuum meson spectrum):

- splitting between CP and LP small

Results

[S. Carignano, MB, arXiv:1910.03604]

- realistic parameters (fitted to vacuum meson spectrum):

- splitting between CP and LP small
- hom. 1st-order phase boundary completely covered by inhom. phase

Parameter dependence

- sizeable splitting between CP and LP at small $m_{s}, \mathrm{CP} \rightarrow T$-axis, as expected
- very weak K dependence at physical m_{s}

Conclusions

- Ginzburg-Landau analysis of the effect of bare quark masses and strange quarks the inhomogeneous chiral phase in the NJL model
- nonzero $m_{u, d}$:
- PLP coincides with CEP
- dominant instability towards inhomogeneities in the scalar channel
- numerical result: inhomogeneous phase survives large (higher than physical) quark masses
- similar results for the quark-meson model
- strange quarks:
- CP and LP no longer agree as a consequence of the axial anomaly
- numerical result: effect small for realistic m_{s}
- QCD?

Inhomogeneous chiral phases in QCD?

DSE (2 flavors)

[Müller et al. PLB 2013]

FRG (2+1 flavors)
[Fu et al. arXiv:1909.02991]

- DSE (simple truncation): similar to NJL
- FRG: region with $Z_{\phi}(0) \propto \alpha_{4, b}<0$

