# Applications of the NJL model to the partonic structure of the pion

#### Wojciech Broniowski<sup>1,2</sup> and Enrique Ruiz Arriola<sup>3</sup>

<sup>1</sup>Institute of Nuclear Physics PAN, Cracow <sup>2</sup>Jan Kochanowski U., Kielce <sup>3</sup>U. of Granada

40th Max Born Symposium Three Days on Strong Correlations in Dense Matter

9-12 October 2019, University of Wrocław

## Dedication to David

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

W. Broniowski (IFJ PAN & UJK)

э

Hadron Structure 88 14-18 Nov 1988, Pešťany, Czechoslovakia Hadron Structure 88 14-18 Nov 1988, Pešťany, Czechoslovakia

On the chiral transition temperature in bilocal effective QCD D. Blaschke, Yu.L. Kalinovsky, V.N. Pervushin, G. Roepke, S.M. Schmidt Z.Phys. A346 (1993) 85

Electric polarizability of the nucleon in the Nambu-Jona-Lasinio model Emil N. Nikolov, Wojciech Broniowski, Klaus Goeke, NPA579 (1994) 398 Hadron Structure 88 14-18 Nov 1988, Pešťany, Czechoslovakia

On the chiral transition temperature in bilocal effective QCD D. Blaschke, Yu.L. Kalinovsky, V.N. Pervushin, G. Roepke, S.M. Schmidt Z.Phys. A346 (1993) 85

Electric polarizability of the nucleon in the Nambu-Jona-Lasinio model Emil N. Nikolov, Wojciech Broniowski, Klaus Goeke, NPA579 (1994) 398

NJL \*1961

#### As young as the NJL model!

## NJL in high-energy processes

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Chiral quark models



- $\chi {
  m SB}$  breaking ightarrow massive quarks
- Point-like interactions
- Soft matrix elements with pions (and photons, *W*, *Z*)
- Large- $N_c \rightarrow$  one-quark loop
- Regularization

pion – Goldstone boson of  $\chi {\rm SB}$ , fully relativistic  $q\bar{q}$  bound state of the Bethe-Salpeter equation

Simplest covariant field-theoretic model for the pion!

#### Parton distributions



$$Q^2=-q^2, \ x=rac{Q^2}{2p\cdot q}, \ Q^2 o\infty$$
  
Factorization of soft and hard processes,  
Wilson's OPE

$$\langle J(q)J(-q)\rangle \!=\! \sum_{i} C_{i}(Q^{2};\mu) \langle \mathcal{O}_{i}(\mu)\rangle$$

Twist expansion  $\rightarrow F(x,Q) = F_0(x,\alpha(Q)) + \frac{F_2(x,\alpha(Q))}{Q^2} + \dots$ 

 $\begin{array}{l} \mbox{Bjorken limit} \rightarrow \mbox{light-cone} \\ \mbox{momentum is constrained:} \\ \mbox{$k^+ \equiv k^0 + k^3 = xP^+$} \quad x \in [0,1] \end{array}$ 



#### Distribution amplitude (DA) of the pion



Enters various measures of exclusive processes, e.g., pion-photon transition form factor

```
[Anikin, Dorokhov, Tomio 2000]
[Praszałowicz, Rostworowski 2001, + Bzdak 2003, + Kotko 2009]
[ERA, WB 2002]
```

#### Chiral quark models



- $\chi {
  m SB}$  breaking ightarrow massive quarks
- Point-like interactions
- Soft matrix elements with pions (and photons, *W*, *Z*)
- Large- $N_c 
  ightarrow$  one-quark loop
- Regularization

pion – Goldstone boson of  $\chi {\rm SB},$  fully relativistic  $q\bar{q}$  bound state of the Bethe-Salpeter equation

Quantities evaluated at the quark model scale (where constituent quarks are the only degrees of freedom)

#### Chiral quark models



- $\chi {
  m SB}$  breaking ightarrow massive quarks
- Point-like interactions
- Soft matrix elements with pions (and photons, *W*, *Z*)
- Large- $N_c 
  ightarrow$  one-quark loop
- Regularization

pion – Goldstone boson of  $\chi {\rm SB},$  fully relativistic  $q\bar{q}$  bound state of the Bethe-Salpeter equation

#### Need for QCD evolution

Gluon dressing, renorm-group improved

#### PDF in NJL

[Davidson, Arriola, 1995]



 $q_{\rm val}(x;Q_0) = 1 \times \theta[x(1-x)]$ 

(proper treatment of symmetries with regularization)

Quarks are the only degrees of freedom, hence saturate the PDF sum rules:  $\int_0^1 dx \, q_{\rm val}(x;Q_0) = 1$  (valence),  $2 \int_0^1 dx \, x q_{\rm val}(x;Q_0) = 1$  (momentum)

#### Scale and evolution

QM provide non-perturbative result at a low scale  $Q_0$ 

$$F(x, Q_0)|_{\text{model}} = F(x, Q_0)|_{\text{QCD}}, \quad Q_0 - \text{the matching scale}$$

Quarks carry 100% of momentum at  $Q_0$ , adjusted such that when evolved to Q = 2 GeV, they carry the experimental value of 47% (radiative generation of gluons and sea quarks)





points: Fermilab E615 Drell-Yan,  $\pi^{\pm}W \rightarrow \mu^{+}\mu^{-}X$ 

dashed line: 2005 NLO reanalysis [Wijesoorija et al.]

band: QM + LO DGLAP from  $Q_0 = 313^{+20}_{-10}$  MeV to Q = 4 GeV

#### Pion valence quark DF, QM vs JAM analysis

[P. C. Barry, N. Sato, W. Melnitchouk, C.-R. Ji, PRL 121 (2018) 152001, arXiv:1804.01965]



Many predictions for related quantities: DA, GPD, TDA, TMD, quasi/pseudo DA/PDF...



points: transverse lattice [Dalley, van de Sande 2003] yellow: QM evolved to 0.35 GeV pink: QM evolved to 0.5 GeV dashed: GRS param. at 0.5 GeV

#### Pion DA, NJL vs. E791



points: E791 data from dijet production in  $\pi + A$  solid line: QM at Q = 2 GeV

dashed line: asymptotic form 6x(1-x) at  $Q \to \infty$ 

#### Pion DA, NJL vs. transverse lattice



points: transverse lattice data [Dalley, van de Sande 2003]

Double parton distributions (new stuff)

> WB at LC2019 Courtoy, Noguera, Scopetta, arXiv:1909.09530 WB, ERA, arXiv:1910.03707

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

#### Motivation for multi-parton distributions

- Old story (Fermilab), renewed interest (e.g., ATLAS measurement for pp→ W+2 jets 2013) [Kuti, Weiskopf 1971, Konishi, Ukwa, Veneziano 1979, Gaunt, Stirling 2010, Diehl, Ostermeier, Schäfer 2012, ..., reviews: Bartalani et al. 2011, Snigirev 2011, Rinaldi, Ceccopieri 2018]
- Model exploration [MIT bag: Chang, Manohar, Waalewijn 2013], valon [WB+ERA 2013], constituent quarks: Rinaldi, Scopetta, Vento 2013, Rinaldi, Scopetta, Traini, Vento 2018]
- Questions: factorization, interference of single- and double-parton scattering [Manohar, Waalewijn 2012, Gaunt 2013], longitudinal-transverse decoupling, positivity bounds [Diehl, Casemets 2013], transverse momentum dependence [Casemets, Gaunt 2019]
- Gaunt-Stirling sum rules [Gaunt, Stirling 2010, WB+ERA 2013, Diehl, Plöß, Schäfer 2019]

#### Double parton scattering

[example from Łuszczak, Maciuła, Szczurek 2011]



DPS can be comparable to SPS at the LHC Assumption:  $D_{gg}(x_1, x_2, \mathbf{b}) = g(x_1)g(x_2)F(\mathbf{b})$ – no correlations, transverse-longitudinal factorization

#### Definition

Intuitive probabilistic definition:

Multi-parton distribution = probability distribution that struck partons have LC momentum fractions  $x_i$ 

Field-theoretic definition of (spin-averaged) PDF and dPDF [Diehl, Ostermeier, Schaeffer 2012] of a hadron with momentum p:

$$D_{j}(x) = \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixz^{-}p^{+}} \langle p | \mathcal{O}_{j}(0, z) | p \rangle |_{z^{+}=0, z=0}$$

$$F_{j_{1}j_{2}}(x_{1}, x_{2}, y) = 2p^{+} \int \mathrm{d}y^{-} \frac{\mathrm{d}z_{1}^{-}}{2\pi} \frac{\mathrm{d}z_{2}^{-}}{2\pi} e^{i(x_{1}z_{1}^{-}+x_{2}z_{2}^{-})p^{+}}$$

$$\times \langle p | \mathcal{O}_{j_{1}}(y, z_{1}) \mathcal{O}_{j_{2}}(0, z_{2}) | p \rangle |_{z_{1}^{+}=z_{2}^{+}=y^{+}=0, z_{1}=z_{2}=0}$$

 $v^{\pm} = (v^0 \pm v^3)/\sqrt{2}$  $\mathcal{O}_{q}(y,z) = \frac{1}{2} \bar{q}(y-\frac{z}{2})\gamma^{+}q(y+\frac{z}{2}), \dots$  (LC gauge) y plays the role of the transverse distance between the two quarks 40. Max Born 19 / 29

#### dPDF in momentum space

Fourier transform in  $\boldsymbol{y}$ 

$$F_{j_1j_2}(x_1, x_2, \boldsymbol{y}) \rightarrow \tilde{F}_{j_1j_2}(x_1, x_2, \boldsymbol{q})$$



Special case of q = 0:

$$D_{j_1 j_2}(x_1, x_2) = \tilde{F}_{j_1 j_2}(x_1, x_2, \boldsymbol{q} = \boldsymbol{0})$$

[Gaunt, Stirling, JHEP (2010) 1003:005, Gaunt, PhD Thesis]

Fock-space decomposition on LC + conservation laws  $\rightarrow$ 

$$\begin{split} |P\rangle &= \sum_{N} \int d[x, \boldsymbol{k}]_{N} \Phi(\{x_{i}, \boldsymbol{k}_{i}\}) |\{x_{i}, \boldsymbol{k}_{i}\}\rangle_{N} \\ d[x, \boldsymbol{k}]_{N} &= \prod_{i=1}^{N} \left[ \frac{dx_{i} d^{2} k_{i}}{\sqrt{2(2\pi)^{3} x_{i}}} \right] \delta \left( 1 - \sum_{i=1}^{N} x_{i} \right) \delta^{(2)} \left( 1 - \sum_{i=1}^{N} \boldsymbol{k}_{i} \right) \end{split}$$

#### Gaunt-Stirling sum rules

[Gaunt, Stirling, JHEP (2010) 1003:005, Gaunt, PhD Thesis] Fock-space decomposition on LC + conservation laws  $\rightarrow$ 

$$\sum_{i} \int_{0}^{1-x_{2}} dx_{1} x_{1} D_{ij}(x_{1}, x_{2}) = (1-x_{2}) D_{j}(x_{2}) \quad (\text{momentum})$$
$$\int_{0}^{1-x_{2}} dx_{1} D_{i_{\text{val}}j}(x_{1}, x_{2}) = (N_{i_{\text{val}}} - \delta_{ij} + \delta_{\bar{i}j}) D_{j}(x_{2}) \quad (\text{quark number})$$
$$\equiv A_{i} - A_{\bar{i}}) \qquad N_{i_{\text{val}}} = \int_{0}^{1} dx D_{i_{\text{val}}}(x)$$

- Preserved by DGLAP evolution
- Non-trivial to satisfy with the (guessed) function
- Checked in light-front perturbation theory and in lowest-order covariant calculations in [Diehl, Plößl, Schäfer 2019]

#### Important and fundamental constraints!

 $(A_{i_{wal}})$ 

#### dPDF of the pion in NJL model



$$D_{u\bar{d}}(x_1, x_2) = 1 \times \delta(1 - x_1 - x_2)\theta[x_1(1 - x_1)]$$

- GS sum rules satisfied (preserved by the evolution)
- $\bullet$  Results at the quark-model scale  $\rightarrow$  need for evolution

#### DGLAP evolution in the Mellin space

[Kirschner 1979, Shelest, Snigirev, Zinovev 1982]: method of solving DGLAP based on the Mellin moments, similarly to single PDF simplification for valence distributions



 $t = \frac{1}{2\pi\beta} \log \left[1 + \alpha_s(\mu)\beta \log(\Lambda_{\rm QCD}/\mu)\right]$  (single scale for simplicity),  $\beta = \frac{11N_c - 2N_f}{12\pi}$ 

#### Valence:

$$\begin{aligned} dPDF: \quad & \frac{d}{dt} M_{j_1 j_2}^{n_1 n_2}(t) = \left( P_{j_1 \to j_1}^{n_1} + P_{j_2 \to j_2}^{n_2} \right) M_{j_1, j_2}^{n_1 n_2}(t) \\ PDF: \quad & \frac{d}{dt} M_j^n(t) = P_{j \to j}^n M_j^n(t) \end{aligned}$$

W. Broniowski (IFJ PAN & UJK)

 $x_1 x_2 D_{u\bar{d}}^{\pi^+}(x_1, x_2)$ 



W. Broniowski (IFJ PAN & UJK)

dPDF

40. Max Born 24 / 29

æ

### $D_{u\bar{d}}^{\pi^+}(x_1,x_2) - \log$ scale



#### Correlation



W. Broniowski (IFJ PAN & UJK)

dPDF

40. Max Born 26 / 29

$$\frac{\langle x_1^n x_2^m \rangle}{\langle x_1^n \rangle \langle x_2^m \rangle} = \frac{(1+n)!(1+m)!}{(1+n+m)!} \quad (\text{NJL, any scale})$$

(independent of the evolution scale)



Double moments reduced compared to product of single moments [lattice results coming shortly, Zimmermann et al.]

- NJL: simplest field theory of the pion in the soft regime
- $\bullet\,$  Covariant calculations, all symmetries preserved  $\rightarrow\,$  good features
- Exploration of quantities accessible on the lattice
- dPDF in NJL =  $1 \times \delta(1 x_1 x_2)$  + DGLAP evolution
- Moments measure the  $x_1 x_2$  factorization breaking; will be verified in forthcoming lattice calculations

## 120 years, David!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?