# How, how much, and when are $U_A(1)$ and chiral

## symmetry restored: $\eta'$ , $\eta$ and axions

Talk presented in honor of 60<sup>th</sup> birthday of David Blaschke at 40. Max Born Symposium "Three days on correlations in dense matter"

Wroclaw, Poland, 9.-12. October 2019.

Dubravko Klabučar $^{(1)}$  in collaboration with Davor Horvatić $^{(1)}$  & Dalibor Kekez $^{(2)}$ 

<sup>(1)</sup>Physics Department, Faculty of Science – PMF, University of Zagreb, Croatia <sup>(2)</sup>Rudjer Bošković Institute, Zagreb, Croatia



## The issue of the (effective) restoration of the $U_A(1)$ symmetry

• In QCD,  $U_A(1)$  and  $SU_A(3)$  chiral symmetry are explicitly broken by current quark masses: only slightly by  $m_u$  and  $m_d$  & not too badly by *s*-quark mass  $m_s \rightarrow$  chiral limit(s) make sense [with 3 (or 2)  $m_q \rightarrow 0$ ].

• But approximate chiral  $SU_A(3)$  symmetry = absent due to DChSB, signaled by  $\langle \bar{q}q \rangle$  condensates and by the octet of very light (almost) Goldstone bosons:  $\pi^{0,\pm}, K^{0,\pm}, \bar{K^0}, \eta$ .

... But as lattice now agrees, chiral symmetry should be restored as a crossover (for  $\mu \sim 0$ ) around  $T_{\rm Ch} \sim 155$  MeV:  $\langle \bar{q}q \rangle(T) \rightarrow 0$ .

•  $\eta'$  very massive, as even in chiral limit,  $m_q \rightarrow 0$ ,  $U_A(1)$  is broken explicitly on the quantum level by nonabelian ("gluon") axial anomaly:

$$\partial_{\alpha} \bar{\psi}(x) \gamma^{\alpha} \gamma_{5} \frac{\lambda^{0}}{2} \psi(x) \propto F^{a}(x) \cdot \tilde{F}^{a}(x) \equiv F^{a}_{\mu\nu}(x) \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F^{a}_{\rho\sigma}(x) \neq 0,$$

which holds at any E and  $T \Rightarrow$ ? Would **only**  $T \rightarrow \infty$  restore  $U_A(1)$ ?!?!

NO, since DChSB and  $U_A(1)$  anomaly are tied through quark bilinears such as  $\langle \bar{q}q \rangle$  and QCD topological susceptibility  $\chi \Rightarrow$ Expect an effective restoration signaled by vanishing or diminishing of  $U_A(1)$ -violating quantities (e.g., large  $M_{\eta'}$ , difference  $\pi$ - $a_0(980), ...)$ over the chiral symmetry crossover ... BUT ...

## ... still debatable what happens with $U_A(1)$ symmetry restoration!

• Presently, no consensus within lattice community whether  $U_A(1)$  is badly broken or effectively restored at the chiral crossover critical temper.  $T = T_{Ch}$ 

[Sharma for HotQCD collaboration, e-Print: arXiv:1801.08500]

- Already older works found sizable  $U_A(1)$  breaking above  $\mathcal{T}_{\mathrm{Ch}}$  [Bernard+al, PRL78

(1997)598, Chanrasekharan+al, PRL82(1999)2463, Ohno+al, PoS LATTICE 2011(2011)210 arXiv:1111.1939]

... and, this is confirmed by some recent works: notably by HotQCD collab. [Bazavov+al,PRD86(2012)9094503] and by Karsch & collaborators [Buchoff+al,PRD89(2014) 054514, Sharma+al, NPA956(2016)793, Dick+al,PRD91(2015)095504] as high as  $T = 1.5 T_{Ch}$ .

• BUT, some recent works claim that  $U_A(1)$  breaking above  $T_{\rm Ch}$  is overestimated in the continuum limit (blaming lattice artifacts near ChLim). Some then conclude that  $U_A(1)$  anomaly is consistent with zero above  $T_{\rm Ch}$ , including also Graz group Rohrhofer+al, Phys.Rev.D96(2017)094501 arXiv 1707.01881, but most vocal were researchers around JLQCD collaboration [Cossu+al,

PRD93(2016)034507 arXiv:1510.07395, PRD87&88 (2013)114514&019901 ....

These disappearances of  $U_A(1)$  anomaly seem to be associated with the chiral limit - see, *e.g.*, Tomiya+al, PRD96(2017)034509.

• Then our model<sup>\*</sup> approach to  $\eta$ - $\eta'$  may show that these two kinds of results can be reconciled, since it is consistent with both - depending whether one uses "massless"  $\langle \bar{q}q \rangle_0$  or "massive"  $q\bar{q}$  condensates: Horvatić, Kekez & D.K., Phys.Rev. D99 (2019) 014007, and spinoff for axions in Universe 5 (2019) 208.

#### What happens with $U_A(1)$ symmetry restoration matters a lot - see Columbia plot!

Left:  $U_A(1)$  broken by anomaly, right:  $U_A(1)$  restored (C.Fischer arXiv1810.12938)



General renorm-group arguments (Pisarski:1983ms)  $\Rightarrow$  QCD with 3 degenerate light flavors has a 1<sup>st</sup> order phase transition in chiral limit, whereas in QCD with (2+1) flavors (*i.e., s*-quark significantly more massive), a 2<sup>nd</sup> order chiral-limit transition is also possible and even more likely (*e.g.,* Ejiri:2009ac,Ding:2019fzc). A 2<sup>nd</sup> order chiral-limit transition is exhibited by most DSE models – *e.g.,* clearly through the characteristic drop of their "massless" condensates  $\langle \bar{q}q \rangle_0$ .

## Quantum-level breaking of $U_A(1)$ causes anomalously high $\eta' \approx \eta_0$ mass

QCD chiral behavior (reproduced by, e.g., DS approach) of the non-anomalous parts of masses of light  $q\bar{q}'$  pseudoscalars:  $M_{a\bar{q}'}^2 = \operatorname{const}(m_q + m_{q'})$ .

 $\Rightarrow$  non-anomalous parts of the masses cancel in Witten-Veneziano rel. (WVR):

$$M_{\eta'}{}^2 + M_{\eta}{}^2 - 2M_{\kappa}{}^2 = \frac{2N_f}{f_{\pi}^2}\chi_{\rm YM} = \text{anomalous mass}^2 \equiv M_{U_A(1)}{}^2 \approx \Delta M_{\eta_0}{}^2,$$

$$\chi = \int d^4x \left\langle 0 | Q(x) Q(0) | 0 \right\rangle, \quad Q(x) = \frac{g^2}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x)$$

QCD topological susceptibility  $\chi = a$  direct measure of  $U_A(1)$  breaking  $\Rightarrow$  (partial)  $U_A(1)$  restoration is indicated by vanishing or reduction of  $\chi$  and related quantities, like  $M_{U_A(1)} \approx \Delta M_{\eta_0} \approx \Delta M_{\eta'}$ .

- Q(x) = topological charge density operator
- In WVR, χ is pure-gauge, YM one, χ<sub>YM</sub> ↔ χ<sub>quench</sub>, obtained long ago by lattice - harder for χ of light-flavorQCD, but can use DiVecchia-Veneziano

relation: 
$$\chi = \frac{-\langle \bar{q}q \rangle_0}{\sum\limits_{q=u,d,s} \frac{1}{m_q}} + C_m(\text{unknown corrections, higher } \mathcal{O} \text{ in small } m_q)$$

=  $1^{st}$  & simplest example of  $U_A(1)$  breaking given by chiral symmetry breaking

# The $2^{nd}$ example of tied breaking of $U_A(1)$ and chiral symmetries:

Leutwyler-Smilga relation (LS), also connecting YM and full QCD quantities (like WVR), "making"  $\chi_{YM}$  out of much smaller  $\chi$ :

$$At \quad T = 0 \qquad \chi_{\text{YM}} = \frac{\chi}{1 + \frac{\chi}{\langle \bar{q}q \rangle_0} \sum_{q=u,d,s} \frac{1}{m_q}} \equiv \tilde{\chi} \to \tilde{\chi}(T)$$

where for the light quarks

$$\chi = \frac{-1}{\sum\limits_{q=u,d,s} \frac{1}{m_q \langle \bar{q}q \rangle_0}} + \mathcal{C}_m$$

- C<sub>m</sub> = small corrections of higher orders in small m<sub>q</sub>. However, neglecting it, *i.e.*, C<sub>m</sub> = 0, would imply χ<sub>YM</sub> = ∞. Conversely, χ<sub>YM</sub> = ∞ in LS returns the leading term of χ. For axions, χ<sub>YM</sub> is not needed ⇒ the leading term of χ will suffice.
- LS relation fixes the value of the correction at T = 0:

$$\frac{1}{\mathcal{C}_m} = \sum_{q=u,d,s} \frac{1}{m_q \langle \bar{q}q \rangle_0} - \chi_{\rm YM}(0) \left( \sum_{q=u,d,s} \frac{1}{m_q \langle \bar{q}q \rangle_0} \right)^2$$

• The conjecture on  $\tilde{\chi}(T)$  supported by Shore's generalization of WV relation.

### Chiral condensate $\langle q\bar{q}\rangle_0(T)$ and resulting $\tilde{\chi}(T)$



This sharp chiral transition enforces at  $T = T_c \equiv T_{Ch}$  the abrupt transition to the NS-S asymptotic regime of vanishing  $U_A(1)$  anomaly influence:  $M_{\eta'}(T) \rightarrow M_{s\bar{s}}(T)$ , and  $M_{\eta}(T) \rightarrow M_{NS}(T) \rightarrow M_{\pi}(T)$ , and  $\phi(T) \rightarrow 0$ . Acceptable or even good for  $\eta'$ , but  $\eta$  would be in conflict with experiment.

## Prediction good for $\eta'$ , but for $\eta$ not supported by any experiment

[Benić, Horvatić, Kekez and Klabučar, Phys. Rev. D 84 (2011) 016006.]:

#### Anomalous contribution from WVR:



## Shore's generalized WV = $3^{rd}$ example of tying $U_A(1)$ and $SU_A(3)$

$$(f_{\eta'}^{0})^{2}M_{\eta'}^{2} + (f_{\eta}^{0})^{2}M_{\eta}^{2} = \frac{1}{3}(f_{\pi}^{2}M_{\pi}^{2} + 2f_{K}^{2}M_{K}^{2}) + 2N_{f}A$$
(1)

$$f_{\eta'}^0 f_{\eta'}^8 M_{\eta'}^2 + f_{\eta}^0 f_{\eta}^8 M_{\eta}^2 = \frac{2\sqrt{2}}{3} \left( f_{\pi}^2 M_{\pi}^2 - f_{K}^2 M_{K}^2 \right)$$
(2)

$$(f_{\eta'}^{8})^{2}M_{\eta'}^{2} + (f_{\eta}^{8})^{2}M_{\eta}^{2} = -\frac{1}{3}(f_{\pi}^{2}M_{\pi}^{2} - 4f_{K}^{2}M_{K}^{2})$$
(3)

The role of  $\chi_{\mathbf{YM}}$  taken over by the full QCD topological charge parameter A ,

$$A = \frac{\chi}{1 + \chi(\frac{1}{\langle \bar{u}u \rangle m_u} + \frac{1}{\langle \bar{d}d \rangle m_d} + \frac{1}{\langle \bar{s}s \rangle m_s})}$$
(4)

*A* behaves with *T* as a full QCD quantity, **but**, at *T* = 0,  $A = \chi_{YM} + O(\frac{1}{N_c})$ Again,  $A = \infty$  returns the leading term of

$$\chi = \frac{-1}{\frac{1}{m_u \langle \bar{u}u \rangle} + \frac{1}{m_d \langle \bar{d}d \rangle} + \frac{1}{m_s \langle \bar{s}s \rangle}} + \mathcal{C}'_m$$
(5)

Massive-quark condensates employed  $\Rightarrow$  crossover around  $T \sim T_{Ch}$ (Large  $N_c$  limit & approximating 3 condensates by  $(\bar{q}q)_0$ , returns the LS relation.)

## Axion mass given by $\chi(T)$

• For all temperatures:  $m_{\rm a}^2(T) f_{\rm a}^2 = \chi(T) =$  QCD topological susceptibility

• At 
$$T = 0$$
,  $m_{\rm a}^2 f_{\rm a}^2 = \frac{m_u m_d}{(m_u + m_d)^2} f_{\pi}^2 M_{\pi}^2 \rightarrow \frac{\rm isospin}{\rm limit} \rightarrow (78.9 \, {\rm MeV})^4$ 

• This agrees well with results, including  $\chi(T)$ , from "our" DS-BSE chirally well-behaved model (separable: simplified, but phenomenologically successful)

• Agrees well with  $\chi(T)$  from lattice studies of axion mass: Petreczky & al. PLB (2016) and Borsany & al. Nature (2016)

•  $\chi(T)$  from our usual DS-BSE model: successful at T = 0, no additional fitting for T > 0: condensates  $\langle \bar{q}q \rangle(T)$  of massive q = u, d, s essential to yield good **crossover** T-dependence of  $\chi(T)$  for good T-dependence of  $\eta$  and  $\eta'$  masses.



### Briefly on axions as solutions for Strong CP problem

• QCD has the Strong CP problem: no experimental evidence of any CP-symmetry violation in strong interactions, in spite of its  $\theta$ -term:

$$\mathcal{L}_{\rm QCD} = \mathcal{L}_{\rm CPsymmetric}^{\rm QCD} + \frac{\overline{\theta}}{32\pi^2} \frac{g^2}{32\pi^2} F^b_{\mu\nu} \widetilde{F}^{b\mu\nu} \qquad (\widetilde{F}^{b\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F^b_{\rho\sigma})$$

• The  $\theta$ -term is a total divergence, but it cannot be discarded. It contributes anyway (unlike in QED) due to nontrivial topological structures in QCD – *e.g.*, instantons (probably yielding, *e.g.*, anomalously large  $M_{\eta'} \Rightarrow$  important for solving the  $U_A(1)$  problem).

• The experimental bound is mysteriosly small:  $|\bar{\theta}| < 10^{-10}$ . Why?!?  $\bar{\theta} = \theta_{\rm QCD} + Arg \ Det \hat{M}_q \Rightarrow$  setting  $\bar{\theta} = 0$  just "by hand" is fine-tuning.

How to get  $\overline{\theta} \approx 0$  ?!?

- $\bullet$  Nowadays preferred solution: a new particle beyond SM: axion  $\ a$
- Axions are very interesting also for cosmology as candidates for dark matter.

## Axions as quasi-Goldstone bosons

• Peccei & Quinn introduced a new axial global symmetry  $U(1)_{PQ}$ which is broken spontaneously at some scale  $f_a$ ( $f_a$  = free parameter of axion theories, determines absolute value of the

axion mass  $m_{
m a}$ , but cancels from combinations such as  $m_{
m a}(T)/m_{
m a}(0).)$ 

 $\bullet$  the pseudoscalar axion field  $a(\mathsf{x})$  is the (would-be massless) Goldstone boson of this spontaneous breaking. Then,

$$\mathcal{L}_{\rm axion}^{\rm QCD+} = \mathcal{L}_{\rm CPsymmetric}^{\rm QCD} + \left(\frac{\bar{\theta}}{f_{\rm a}} + \frac{{\rm a}}{f_{\rm a}}\right) \frac{g^2}{32\pi^2} F_{\mu\nu}^b \widetilde{F}^{b\mu\nu} + \frac{1}{2} \partial_\mu {\rm a} \partial^\mu {\rm a} + \mathcal{L}_{\rm int}^{{\rm a}\psi}$$

• But, the  $U(1)_{PQ}$  symmetry is also broken explicitly by the gluon axial anomaly through axion's coupling with gluons  $\Rightarrow m_a \neq 0$ .

• Gluons generate an effective axion potential, which leads to the axion expectation value (a) such that  $(\bar{\theta} + \langle a \rangle / f_a) = 0$ , minimizing the potential  $\Rightarrow$  strong CP problem solved, irrespective of the initial  $\bar{\theta}$ .

("Misalignment production" is relaxation from any value in the early Universe towards the effective potential minimum at  $\bar{\theta} = -\langle a \rangle / f_a$ . The resulting axion oscillation energy is a "cold dark matter" candidate.)

## Evaluation of $q\bar{q}$ condensates from propagators

Solving the gap SD equation  $\Rightarrow$  dressed propagators  $S_q(p)$ 

The usual expression for the condensate of the flavor q for T > 0 becomes

$$\langle \bar{q}q \rangle = -N_c \oint_{p} \operatorname{Tr} \left[ S_q(p) \right] \equiv -N_c T \sum_{n_q \in \mathbb{Z}} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \operatorname{Tr} \left[ S_q(p) \right]$$

Tr = trace in Dirac space. The combined integral-sum symbol says: when T > 0, the 4-momentum integration  $\longrightarrow$  3-momentum integr. & sum over Matsubaras  $\omega_q = (2n_q + 1)\pi T$ ,  $n_q \in \mathbb{Z}$ .

• Well known:  $q\bar{q}$  condensates are finite only for massless quarks,  $m_q = 0$ . "Massive" condensates must be subtracted of their divergences.

• The arbitrariness of sensible procedures is in practice slight, *i.e.*, only small differences between the results of various sensible subtractions.

• First consider the (normalized) subtraction proposed on lattice by Burger+al (2011), here applied to our condensates of light (*u*- and *d*-) quarks:

$$R_{\langle \bar{\psi}\psi\rangle}(T) = R_{\langle \bar{u}u\rangle}(T) = \frac{\langle \bar{u}u\rangle(T) - \langle \bar{u}u\rangle(0) + \langle \bar{q}q\rangle_0(0)}{\langle \bar{q}q\rangle_0(0)}$$

#### Comparison of subtracted & normalized lattice- and DS-condensates

Relative *T*-dependence of the subtracted (and normalized) condensate  $R_{(\bar{\psi}\psi)}$ . The lattice data points are from Fig. 6 of Kotov, Lombardo & Trunin, PLB794 (2019), scaled for the critical temperatures  $T_{\chi}$  from their Table 2, which are different for the "crosses" (lattice data for  $m_{\pi} \approx 370$  MeV) and "bars" (lattice data for  $m_{\pi} \approx 210$  MeV).



The lower, green curve results from only the  $R_{(\bar{\psi}\psi)}$ -subtraction of our *u*-quark condensate. The upper, red curve is  $R_{(\bar{u}u)}(T)$  when our *u*-quark condensate is regularized in the usual way, by subtracting the current quark mass parameter  $m_u$  from the numerator of the dressed quark propagator.

## Compare $\Delta_{I,s}(T)$ regularization of the lattice and DS condensates

$$\Delta_{l,s}(T) = \frac{\langle \overline{l} l(T) \rangle - \frac{m_l}{m_s} \langle \overline{s} s(T) \rangle}{\langle \overline{l} l(0) \rangle - \frac{m_l}{m_s} \langle \overline{s} s(0) \rangle} \qquad (l = u \text{ or } d \text{ in isosymmetric limit})$$

This is the most 1.0usual (normalized) subtraction on the lattice. Verv 0.8good agreement with lsserstedt+al 0.6 & the lat-2019 tice (Borsanyi+al  ${\boldsymbol{\bigtriangleup}}_{l,s}$ 2010). Red and 0.4green curve, respectively, again result from our model 0.2DS condensate  $\langle \bar{u} u(T) \rangle$  with and  $0.0 \cdot$ without subtraction of  $m_{\mu}$  from the 0.4 quark propagator numerator.



## *T*-dependence of $\langle \bar{q}q \rangle$ & decay const's $f_P$ with $\chi$ & *A*



**FKS scheme on Shore**  $\Rightarrow$  how  $f_P$  influence elements of the  $\eta$ - $\eta'$  mass matrix:

$$X = \frac{f_{\pi}}{f_{s\bar{s}}}, \qquad M_{\rm NS}^2 = M_{\pi}^2 + \frac{4A}{f_{\pi}^2}, \qquad M_{\rm NSS}^2 = \frac{2\sqrt{2}A}{f_{\pi}f_{s\bar{s}}}, \qquad M_{\rm S}^2 = M_{s\bar{s}}^2 + \frac{2A}{f_{s\bar{s}}^2}$$

**Zoomed**  $\eta$ - $\eta'$  complex

•  $M_{\eta'}(T)$  is not changed much as condensates are changed from chiral to massive:  $M_{\eta'}(T)$ falls again around  $T_{Ch}$  by 300 to 200 MeV, corresponding to melting of  $\sim \frac{1}{3}M_{U_A(1)}$ .

• But  $\eta$  does not exhibit any mass drop at all, now. It stays predominantly  $\eta_8$  till anticrossing at  $\sim 1.5~T_{\rm Ch}.$ 

 $\begin{array}{l} \mbox{Similarly $\eta' \sim \eta_0$ long after $T_{\rm Ch}$,} \\ \mbox{and only after this anti-X with} \\ \mbox{$\eta$, $\eta'$ tends to a pure $s\overline{s}$.} \end{array}$ 



T-dependence of  $M_P(T)$  up to  $T = 1.8 T_{\rm Ch}$  [Horvatić& al. Phys.Rev. D99 (2019) 014007]

•  $C(T) \neq const$ , adjusted to enable reaching arbitrary high *T*'s, results otherwise very similar to previous case with C(T) = C(0).

• Other limitations of rank-2 separable model make it hard to find solutions beyond  $\sim 1.8 T_c$ .

But it is enough to exhibit cleanly the asymptotic regime beyond anticrossing at  $1.5\,T_{\rm Ch}.$ 

Along with A, influence on anomalous masses is given by  $M_{\text{NSS}}$  and  $(\frac{1}{2})M_{U_A(1)}$ .

Utopistic in practice? - but in principle, accurate experimental knowledge of  $M_{\eta'}(T)$  would tell us about A(T) and thus about  $\chi(T) \propto m_{\rm a}(T)^2$ .



# Summary

- Our approach ties the  $U_A(1)$  SB to the DChSB so closely, expressing  $\chi \& A$  through  $m_q \langle \bar{q}q \rangle$ , q = u, d, s, that the restoration of the chiral symmetry must lead to the restoration of the  $U_A(1)$  symmetry at least partially, and surely on the level of the  $\eta' \& \eta$  masses.
- Full  $U_A(1)$  restoration occurs together with the chiral one at  $T = T_{Ch}$  only for the chiral-limit condensate  $\langle q\bar{q} \rangle_0$ . However, such an abrupt restoration is excluded by the behavior of  $\eta$ .
- Condensates with explicit ChSB fall with T much more slowly than  $\langle q\bar{q}\rangle_0$ . Our "massive" condensates yield  $\chi(T)$  in reasonable agreement with  $\chi(T)$  from lattice studies of the T-dependence of axion mass. We now find that  $\eta$  does not exhibit any mass drop at all, while the significant drop of the  $\eta'$  mass signals only a partial restoration of  $U_A(1)$  symmetry, consuming only about  $\frac{1}{3}M_{U_A(1)}$ .
- For realistic explicit chiral breaking, there is an intermediate region between the chiral restoration at  $T = T_{Ch}$  and the  $\eta$ - $\eta'$  anticrossing at  $T = 1.5 T_{Ch}$  which marks the effective  $U_A(1)$  restoration. The anomalous contributions then become sufficiently weak, and  $\eta$ - $\eta'$  complex enters the NS-S asymptotic regime:

 $M_{\eta'}(T) \to M_{s\bar{s}}(T), \& \ M_{\eta}(T) \to M_{\mathsf{NS}}(T) \to M_{\pi}(T), \& \ \phi(T) \to 0.$