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Motivation

Weih & Most & Rezzolla: Ap) 881,73 (2019)

Optimal neutron-star mass ranges to constrain the equation of state of nuclear matter with electromagnetic and
gravitational-wave observations

L. R. WEm.! E. R. MosT.! anp L. REzZzOLLA'

! Institut Jur Theoretische Phystk, Goethe Unwersital Frankfurt am Main, Germany

ABSTRACT

Exploiting a very large library of physically plausible equations of state (EOSs) containing more
than 107 members and vielding more than 10" stellar models. we conduct a survey of the impact
that a neutron-star radius measurement via electromagnetic observations can have on the EOS of
miclear matter. Such measurements are soon to be expected from the ongoing NICER mission and
will complement the constraints on the EOS from gravitational-wave detections. Thanks to the large
statistical range of our EOS library, we can obtain a first quantitative estimate of the commonly made
assiunption that the high-density part of the EOS is best constrained when measuring the radius of
the most massive, albeit rare, neutron stars with masses M = 2.1 M.,. At the same time, we find
that radius measurements of neutron stars with masses M ~ 1.7 — 1.85 M, can provide the strongest
constraints on the low-density part of the EOS. Finally, we quantify how radius measurements by
future missions can further improve our understanding of the EOS of matter at nuclear densities.
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1) How much difference arise from the
different levels of approximations?

P. Pésfay, GGB, A. Jakovac: PASA 35 (2018) 19, PRC 97 (2018) 025803
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Motivation for FRG

It is hard to get effective action for an interacting field theory:
e.g.: EoS for superdense cold matter (T— 0 and finite u)

Taking into account quantum fluctuations using a scale, k Q
- Classical action, S=I,,, in the UV limit, k = A K |

- Quantum action, =, ,inthe IR limit, k>0

FRG Method scale, k

- Smooth transition from macroscopic to microscopic

7 > 0
- RG method for QFT €
- Non-perturbative description
- Not depends on coupling Y
- BUT: Technically it is NOT simple
5
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Functional Renormalization Group (FRG)

> FRG is a general non-perturbative method to determine the
effective action of a system.

> Scale dependent effective action (k scale parameter)

Wetterich
equation
k= k=0
Classical action I Quantum
Integration ﬂqctuations
included
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Ansatz: Interacting Fermi-gas model

Ansatz for the effective action:

Cil ] = [ d'z [§ 69— 90) ¥ + 5 (Bu)* — Un()]

Fermions : m=0, Yukawa-coupling generates mass

Bosons: the contains self interaction terms

We study the scale dependence of the potential only!!
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Interacting Fermi-gas at finite temperature
Ansatz for the effective action in LPA: @

1
L' [7/)] — / d [iwiKk,ijwj -+ U (w)] Wetterich-equation in LPA

—1+nplwrp — p) +nep(wr + 1)

; k4 1 +2nplwg
MUk = —— (wB) | 4
129 wp W E
Bosonic part Fermionic part
2 % . 1
Un(p) = 32 + 520" wh = k% + g%p? wp =B Rl ) =g

G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw 8



Pressure, p [MeV*4]

Result: Comparison of MF, 1L, & FRG-based Eo0S
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Result: Comparison of MF, 1L, & FRG-based Eo0S
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Result: Comparison to other E0OS models
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Result: Test in a Compact Star

> Compare FRG EoS to SQM3, GNH3, WFF1 - TOV result on M(R) diagram
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Result: Test in a Compact Star
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Result: Test in a Compact Star

FRG EoS to SQM3, GNH3, WFF1 - TOV result on M(R) diagram
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Test: Can we test this by observations?

> Compare different
EoS results on M(R)
diagram: MF & FRG

> Maximal relative
differences are also
plotted
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> Compare different
EoS results on M(R)
diagram: MF & FRG

» Maximal relative
differences are also
plotted

Test: Can we test this by observations?
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Take-away from theoretical uncertainties

* The magnitude of the uncertainties of (astro)physical observables

* Microscopical
observables are
maximum: 10-25%

* Macroscopical
astrophysical ones
are maximum: 5-10%

* Measurement resolution
limit is about: 10%

G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw
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2) Uncertainties from the parameters
of realistic nuclear matter

P. Posfay, GGB, A. Jakovac: Universe 5 (2019) no.6, 153 (symmetric case)
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Loyrr =

Modified o-w model in mean field

Z &z (23 — mnN —+ gaﬁl — gw")/o wo) ;| Proton and neutron

i—1,2

|
Nucleon effective mass
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Modified o-w model in mean field

P-nNn

Nuclear
force

Extra terms
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Scalar meson self
interaction terms

Vector meson



Modified o-w model in mean field

Isospin

- 2 a _ua
+ mp pﬁb P asymmetry
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Modified o-w model in mean field

Electron in B-equilibrium

Eez . - e \Ije
‘_I_ (Z@ o ) Hn = Mp MeJ
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Loyrr =

Modified o-w model in mean field

|
Nucleon effective mass

Z ¢z (’&3 - My + goO — gw"}/O wo) wz Proton and neutron

2__2 3 4
c0° — A30° — A\40

1
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: N
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U (z@ — me) W
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Scalar meson self
interaction terms

Vector meson

Tensor meson

Electron in B-equilibrium

fn — Hp + MeJ
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Modified o-w model in mean field

Theoretical mean field model:

* Symmetric case: 3 combinations with the higher-order AT — Ny T

scalar meson self-interaction terms to original Walecka:

. . . . 1 0 sa
« Asymmetric case: tensor force is added to the interaction + 5m} pf p*

: s i 2
in addition to the electrons, for B-equilibrium: wn =y +pe  H (id — m.) U,

Parameters of the theoretical model

* Fit couplings/masses/etc. according to the Rhoades-
Ruffini theorem in agreement with experimental data.

* Parameters are usually non-independent: optimalization
of the parameters need to perform — similar EoS

Cross check the consistency with the the existing EM,
GR, HIC, etc data + errors —» Theoretical uncertainties

G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw 27



Parameters to fit normal nuclear matter

3
2 200
= |
g RHIC-BES
=
v
Q
E
ks
1005 .' % Haodrons
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i % y
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,g
S
o<

No=0.16 fm—3
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Parameters to fit normal nuclear matter

E SO RHIC: BES Saturation density 0.156 1/fm?
g = Binding energy -16.3 MeV
: £ Nucleon effective mass 0.6 m,
B P Nucleon Landau mass 0.83 m,
incompressibility 240 MeV
Asymmetry energy 32.5 MeV
L2

(\(\

S

G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw
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Temperature T [MeV]

Parameters to fit normal nuclear matter

200

Saturation density 0.156 1/fm3
Binding energy -16.3 MeV
Nucleon effective mass 0.6 m,
o Nucleon Landau mass 0.83 m,
incompressibility 240 MeV
Asymmetry energy 32.5 MeV

™R
o Net baryon density n/ n.
% Compact Stars Ne=0.16 fm—

2
Incompressibility K = k% o7 (e/n) _ 9 op

okz, T on

kr _ 2 2
Landau mass myp = — = \/kp +MNecrr

(ha
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Binding energy [MeV]

463 - m - m oo o S

Parameters to fit normal nuclear matter

Walecka model ; K=563 MeV —— /
w0t Walecka model + 0% ; m* fit; K=334 MeV —o—
Walecka model + o* ; m fit; K=482 MeV —@— /
Walecka model + 03 ; m* fit; K=437 MeV —H— /
Walecka model + o3 ; my_fit; K=247 MeV —ili— /
Walecka model + 3 +o% ; m* fit; K=240 MeV —&—
10} Walecka model + o3+a* ; m_ fit; K=240 MeV —h—
Walecka model + 0® +0% ; mqy fit; K=240 MeV —%—

Saturation density
Binding energy

-10

incompressibility

| | | | ' Asymmetry energy

0 0.1 0.153 0.2 0.3 0.4
Nuclear density [1/fm?3]

t Incompressibility

The effective mass and Landau mass

are NOT independent! mmm) Landau mass
The can not be fitted simultaneously

G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw

Nucleon effective mass

Nucleon Landau mass

0.156 1/fm3

-16.3 MeV
0.6 m,

0.83 m,

240 MeV
32.5 MeV

O?(e/n) op
12 _q 9P
K =155 =95

myy, —

_ kr

UVF

= \/kzzr 4+ My
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Bx10°

The Equation of State of different model fits

710°

6x10° |-

n

=

=
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I

4x10°

Erergy density [Mev?]
[ )
o
fat
[
[N =]

Walecka model +x* eFf mass —9— K =482 MeV
Walecka model +>c3 eff mass <+~ K = 437 MeV '
Walecka model +° +x* eff mass =~ K = 240 Mev ®

Adding higher-order terms
- helps, at lower pressure

- more parameter more
constraints:

\ «4— Effective mass fit m; = 0.6 m

Different models give similar EoS

4108 6108 8x108 1x0° 1.2%10° 1.4x10°
Pressure [MeV*]
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Erergy density [Maw?]

810

The Equation of State of different model fits

70°

oo - Wal

| |
Original Walecka model ===

Walacka model + x* eff mass <
Walecka model + x* Landau mass ~@—
Walecka model +C eff mass ~F-
Walecka model +° Landau mass -
ecka model +x° +x* Landau mass =
Walecka model +° +* eff mass —A—

Adding higher-order terms
- helps, at lower pressure
- more parameter more

\ constraints:

Landau mass fit m. = 0.83 m,
- &— Effective mass fit m_; = 0.6 m

_\ Original Walecka model

Different models give similar EoS
Depending on the ‘fit-type’
- bands appear

7108 axin® i1 08 a1 1x10° 1.2:10° 1.4x10°

Pressure [MeV]
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Energy density [Mew?]

Bx10®

70® F

6x10° -

5u10° -

4x109 L

e’

2d0®

The Equatlon of State of

different model fits

M. Prakash Et a, PRD 52, 661 (1995) 50M3 ——

R.B. Wiringa et al, PRC 38, 1010 (1988); WFFl ——

A. Akmal, V. R. Pandhanpande, PRC 58, 1804 (1998): AP4 ——

Original Walecka mode| ——

Walecka model + x* eff mass —6—

Walecka model + x* Landau mass —@—

Walecka model + x eff mass —=—

Walecka model + * Landau mass —Jli—

Walecka model + 3 +x* Landau mass —&—

Walecka model + 3 +x* eff mass —A—

Walecka model + x® +x* opt mass —¥—
Walecka model + x* +x* comp mass.=9

Adding higher-order terms
- helps, at lower pressure
- more parameter more

\ constraints:

Landau mass fit m. = 0.83 m,

— _<— Effective mass fit m; = 0.6 m,

D Original Walecka model

N Realistic nuclear matter EoSs, like

WFF1, AP4 (SQM) support the
Landau mass fits well.

pralia 408 fu10? 8108 110° 1.210° 14x10°

Pressure [MeV]
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Mass, M [Mgq]
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The M-R diagrams: EoS & effective mass fit
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. . | | SYMMETRIC nuclear matter EoS

- Cases with extra x3 and/or x4
terms provide similar band
structures in the M-R diagram

Q=
1

Rotaﬂﬂn
] ] ] | ]
g 10 11 12 13 14
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Mass, M [Mgq]
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The M-R diagrams: EoS & effective mass fit

I I I
WAL+ eff mass —=—
WAL+ Landau mass ——
WAL+ eff mass —5—
WAL+ Landau mass —8—
WAL+ eff mass ——
WAL+ +x* Landau mass ——

. . | | SYMMETRIC nuclear matter EoS

- Cases with extra x3 and/or x4
terms provide similar band
structures in the M-R diagram

un
e
K»J
n =
1

= ¢ 1 — Landau mass fit Mg = 0.83 m,

g - Effective mass fit m., = 0.6 m,
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Radius, R [km]
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Mass, M [Mgq]
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The M-R diagrams: EoS & effective mass fit
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] /Er:'
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Mass, M [Mgy ]
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The M-R diagrams: EoS & effective mass fit

| WAL+ Landau mass asym, —e—

I I I
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. | . | ASYMMETRIC nuclear matter EoS

- Cases with extra x3 and/or x4
Y terms provide similar band
R E structures in the M-R diagram

— Landau mass fit m; = 0.83 m,

Effective mass fit m_; = 0.6 m,

| decreasing effect on the M ___,
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Mass, M [Mgq ]

251

151

05r-

The M-R diagrams: Best fit with crust+core Eo0S

,&\\ﬂ

' ' ' ' 1 ASYMMETRIC nuclear matter EoS

o-wmodell +a® +o* +e+p;m, fit (core) —@— .
o-wmodell + 0% +* + e +pim. fit (core +crust)  —he— - Cases with extra x3 and x#

o-wmodell + a® +0* +e +p+BPS; m_ fit (core +crust) —¢—

+ Added electron and proton with crust,
\ — and Landau mass parameter fit m, =
\ 0.83 m,

S Added electrons and protons with BPS
@@ — for the crust and Landau mass
parameter fit m, = 0.83 m,
- Core + crust model is more
realistic, but no effect on the M,
N 10 11 12 13 14 15

Fiadiﬁs, R fkm]
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The M-R diagrams: EoS & effective mass fit

Evolution/scaling in M__, appears
o1t - The M, is increasing as the
oy i Landau (effective) mass is
o oy o decreasing
852\;3’5;\:—
— Scaling by nuclear parameters
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b 8 10 12 14
Radius, R [km]
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Scaling: maximum star mass vs. nuclear parameters

Evolution/scaling of the maximum
mass/radius of the compact star
- The M__ Is increasing as the Landau

o (effective) mass is decreasing

M [MSun]

my [Mew]
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Scaling: maximum star mass vs. nuclear parameters

M [MSun]

M [MSun]

M [MSM

2.4

2.2

merr  Walecka+xZ+x%, max mass star mass —+—

linear fit — —

Walecka+x3+x%, max mass star mass ———

linear fit — —

Asymmetry energy [MeWw]
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Evolution/scaling of the maximum
| mass/radius of the compact star

- The M__ Is increasing as the Landau

(effective) mass is decreasing

— Scaling by nuclear parameters

Fit errors are small < 1%
M__.depends linearly by parameters

rnL' mEf‘f >1Ox K >1Ox asym

Good approximation using effective
mass, independently of the scalar
interaction term

Similar scaling for R, _,
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Scaling: maximum star mass vs. nuclear parameters

M [MSun]

M [MSun]

M [MSLIH]

my [Mew]

Walecka+x3+x%, max mass

star mass ——

linear fit — —

Asymmetry energy [MeWw]

SYMMETRIC nuclear matter
Maximal mass (in Mg)
M = 5.51 — 0.005 m,

M =1.79+ 0.001 K

maxM

maxM

ASYMMETRIC nuclear matter
Maximal mass (in Mg)
M = 5.50 — 3.64 m_
M = 1.61+ 0.24 K

M, = 1.85 + 0.01a,,,

maxM

maxM

maxM
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To take away...

* Theoretical (maximal) uncertainties were tested in FRG
- Microscopical level (EoS, phases, compressibility): 10-25%
- Macroscopical astrophysical level (M,R,compactness): 5-10%

 Uncertainties by the realistic nuclear matter parameters
- Linear dependence on the m, m.; >,,, K>, a.

ym

- Varying m, m, cause ~10% uncertainty on M and R

- Differences on symmetric/asymmetric matter is ~1-3%

G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw
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... and now, something
completely different...
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Unique things with David

—
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Unique things with David
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