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EoS Application in    Constraints by
from exp & theory compact stars astrophysical observations

Motivation
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Motivation
Weih & Most & Rezzolla: ApJ 881,73 (2019)
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1) How much diference arise from the 
diferent levels of approximations?

P. Pósfay, GGB, A. Jakovác: PASA 35 (2018) 19, PRC 97 (2018) 025803



G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw 5

● It is hard to get efective action for an interacting feld theory: 
e.g.: EoS for superdense cold matter (T→ 0 and fnite μ)

● Taking into account quantum fuctuations using a scale, k

– Classical action, S=Γk→Λ in the UV limit, k → Λ

– Quantum  action,   Γ=Γk→0 in the  IR  limit, k → 0

● FRG Method

– Smooth transition from macroscopic to microscopic

– RG method for QFT

– Non-perturbative description

– Not depends on coupling

– BUT: Technically it is NOT simple

Motivation for FRG

Λ 0
scale, k



G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw 6

Functional Renormalization Group (FRG)

k=Λ 
Classical action

k=0
Quantum 

fluctuations 
includedIntegration

Wetterich 
equation 

 FRG is a general non-perturbative method to determine the 
efective action of a system. 

 Scale dependent efective action (k scale parameter)
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Ansatz for the efective action: 

Ansatz: Interacting Fermi-gas model

Fermions : m=0,  Yukawa-coupling  generates mass 

Bosons: the  potential contains self interaction terms

We study the scale dependence of the potential only!!
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Ansatz for the efective action in LPA: 

Interacting Fermi-gas at fnite temperature

Bosonic part Fermionic part

Wetterich-equation in LPA
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Result: Comparison of MF, 1L, & FRG-based EoS

Mean Filed is the stifest

1-Loop approximation  

Exact FRG solution softest

Chemical Potential, μ [MeV] 
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Result: Comparison of MF, 1L, & FRG-based EoS

MF is 25% stifer than the FRG

1L is 10% stifer than the FRG    

Exact FRG solution softest

P
re

ss
u
re

, 
p
 [

M
e
V

4
] 

Chemical Potential, μ [MeV] 
Energy Density, ε [MeV4] 

A
p
p

ro
x
 /

 F
R

G
 p

re
ss

u
re



G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw 12

Result: Comparison to other EoS models

Compare FRG to SQM3, GNH3, WFF1
– Overlap with SQM3 at high ε 
– Cutof, εCut  is also higher
– Approximations difer slightly
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Result: Test in a Compact Star

 Compare FRG EoS to SQM3, GNH3, WFF1 →  TOV result on M(R) diagram 

MeanField calculation
1-Loop Approximation
FRG result
GNH3 Glendening, Astph. J. 293, 470 (1985)
SQM3 Prakash et al, PRD52, 661 (1995)
WFF1 Wiringa et al PRC 38, 1010 (1988)

Compare FRG to 1L and MF
– Soft FRG make biggest star
– High-ε part is similar for all
– Diference: ~5% (.1 M and .5 km) 

FRG to SQM3, GNH3, WFF1
– Small stars 1.4 M  and 8 km
– Overlap with SQM3 at high ε 
– Interaction (ω) will increase
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Result: Test in a Compact Star
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Result: Test in a Compact Star

 Compare FRG EoS to SQM3, GNH3, WFF1 →  TOV result on M(R) diagram 
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 Compare diferent  
EoS results on M(R) 
diagram: MF & FRG

 Maximal relative 
diferences are also 
plotted 
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Test: Can we test this by observations? 
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 Compare diferent  
EoS results on M(R) 
diagram: MF & FRG

 Maximal relative 
diferences are also 
plotted 
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Test: Can we test this by observations? 
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Take-away from theoretical uncertainties 
● The magnitude of the uncertainties of (astro)physical observables

● Microscopical 
observables are 
maximum: 10-25%

● Macroscopical 
astrophysical ones 
are maximum: 5-10%   

● Measurement resolution 
limit is about: 10%

Observable Max theory uncertainty (%)

Potential, U(φ) < 25%    

Phase diagram (g
c
) < 25%    

EoS p(μ),p(ε) < 25%     

Compressibility < 10%     

ε(R) ~   5%    

M(R) diagram
<  10% (M)
<    5% (R)

Compactness
< 10% (M)
<   5% (R)
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2) Uncertainties from the parameters 
of realistic nuclear matter

P. Pósfay, GGB, A. Jakovác: Universe 5 (2019) no.6, 153 (symmetric case)
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Proton and neutron

Scalar meson self 
interaction terms

Vector meson Extra terms

Nucleon efective mass

Tensor meson 

Electron in β-equilibrium

Modifed σ-ω model in mean feld
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Proton and neutron

Scalar meson self 
interaction terms

Vector meson Extra terms

Tensor meson 

Electron in β-equilibrium

Nucleon efective mass

p – n
Nuclear
 force

Modifed σ-ω model in mean feld
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Proton and neutron

Scalar meson self 
interaction terms

Vector meson 

Tensor meson 

Electron in β-equilibrium

Nucleon efective mass

Isospin 
asymmetry

Modifed σ-ω model in mean feld
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Proton and neutron

Scalar meson self 
interaction terms

Vector meson 

Tensor meson 

Electron in β-equilibrium

Nucleon efective mass

Modifed σ-ω model in mean feld
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Proton and neutron

Scalar meson self 
interaction terms

Vector meson Extra terms

Tensor meson 

Electron in β-equilibrium

Modifed σ-ω model in mean feld

Nucleon efective mass
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Modifed σ-ω model in mean feld

● Theoretical mean feld model:

● Symmetric case: 3 combinations with the higher-order 
scalar meson self-interaction terms to original Walecka: 

● Asymmetric case: tensor force is added to the interaction 
in addition to the electrons, for β-equilibrium: 

● Parameters of the theoretical model

● Fit couplings/masses/etc. according to the Rhoades–
Rufni theorem in agreement with experimental data.

● Parameters are usually non-independent: optimalization 
of the parameters need to perform → similar EoS

● Cross check the consistency with the the existing EM, 
GR, HIC, etc data + errors → Theoretical uncertainties
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Parameters to ft normal nuclear matter
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Parameter Value 

Saturation density 0.156 1/fm3

Binding energy -16.3 MeV

Nucleon efective mass 0.6 mN

Nucleon Landau mass 0.83 mN

incompressibility 240 MeV

Asymmetry energy 32.5 MeV

Parameters to ft normal nuclear matter
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Parameter Value 

Saturation density 0.156 1/fm3

Binding energy -16.3 MeV

Nucleon efective mass 0.6 mN

Nucleon Landau mass 0.83 mN

incompressibility 240 MeV

Asymmetry energy 32.5 MeV

Incompressibility

Landau mass
The efective mass and Landau mass

are NOT independent!
The can not be ftted simultaneously

Parameters to ft normal nuclear matter



G.G. Barnafoldi: 40 Max Born Symposium, Wroclaw 32

The Equation of State of diferent model fts
K = 482 MeV
K = 437 MeV
K = 240 MeV! Adding higher-order terms

– helps, at lower pressure 
– more parameter more 

constraints:
Landau mass ft mEf = 0.6 mN 
Efective mass ft mEf = 0.6 mN

Diferent models give similar EoS
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The Equation of State of diferent model fts

Adding higher-order terms
– helps, at lower pressure 
– more parameter more 

constraints:
Landau mass ft mEf = 0.83 mN 
Efective mass ft mEf = 0.6 mN

Original Walecka model 

Diferent models give similar EoS
Depending on the ‘ft-type’           
→ bands appear
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The Equation of State of diferent model fts

Adding higher-order terms
– helps, at lower pressure 
– more parameter more 

constraints:
Landau mass ft mEf = 0.83 mN 
Efective mass ft mEf = 0.6 mN

Original Walecka model 

Realistic nuclear matter EoSs, like  
WFF1, AP4 (SQM) support the 
Landau mass fts well.
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SYMMETRIC nuclear matter EoS
– Cases with extra x3 and/or x4  

terms provide similar band 
structures in the M-R diagram 

Landau mass ft mEf = 0.83 mN

 
Efective mass ft mEf = 0.6 mN 

→ Landau mass fts provide 
compact star with lower Mmax           

but closer to the observations

The M-R diagrams: EoS & efective mass ft
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SYMMETRIC nuclear matter EoS
– Cases with extra x3 and/or x4  
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ASYMMETRIC nuclear matter EoS
– Cases with extra x3 and/or x4  

terms provide similar band 
structures in the M-R diagram 

Landau mass ft mEf = 0.83 mN

 
Efective mass ft mEf = 0.6 mN 

→ Nuclear ASYMMETRY has weak 
decreasing efect on the Mmax            
 

The M-R diagrams: EoS & efective mass ft
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ASYMMETRIC nuclear matter EoS
– Cases with extra x3 and x4 

Added electron and proton with crust, 
and Landau mass parameter ft mL = 
0.83 mN

Added electrons and protons with BPS 
for the crust and Landau mass 
parameter ft mL = 0.83 mN

→ Core + crust model is more 
realistic, but no efect on the Mmax             

The M-R diagrams: Best ft with crust+core EoS

Causality
fit (core +crust)
fit (core +crust)

fit (core)

Rotation
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Evolution/scaling in Mmax appears
– The Mmax is increasing as the 

Landau (efective) mass is 
decreasing

→ Scaling by nuclear parameters     

      

The M-R diagrams: EoS & efective mass ft
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Evolution/scaling of the maximum 
mass/radius of the compact star

– The Mmax is increasing as the Landau 
(efective) mass is decreasing

→ Scaling by nuclear parameters 
– Fit errors are small < 1%
– Mmax depends linearly by parameters

mL, mEf >10x K >10x asym

– Good approximation using efective 
mass, independently of the scalar 
interaction term 

– Similar scaling for Rmax

Scaling: maximum star mass vs. nuclear parameters 
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Evolution/scaling of the maximum 
mass/radius of the compact star

– The Mmax is increasing as the Landau 
(efective) mass is decreasing

→ Scaling by nuclear parameters 
– Fit errors are small < 1%
– Mmax depends linearly by parameters

mL, mEf >10x K >10x asym

– Good approximation using efective 
mass, independently of the scalar 
interaction term 

– Similar scaling for Rmax

Scaling: maximum star mass vs. nuclear parameters 
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SYMMETRIC nuclear matter
Maximal mass (in M) 

MmaxM = 5.51 − 0.005 mL

MmaxM = 1.79 + 0.001 K

ASYMMETRIC nuclear matter
Maximal mass (in M) 

MmaxM = 5.50 − 3.64 mL

MmaxM = 1.61 + 0.24 K

MmaxM = 1.85 + 0.01 asym

Scaling: maximum star mass vs. nuclear parameters 
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● Theoretical (maximal) uncertainties were tested in FRG
– Microscopical level (EoS, phases, compressibility): 10-25%
– Macroscopical astrophysical level (M,R,compactness): 5-10%

● Uncertainties by the realistic nuclear matter parameters

– Linear dependence on the mL, mEf >10x K >10x asym

– Varying mL, mEf  cause ~10% uncertainty on M and R

– Diferences on symmetric/asymmetric matter is ~1-3%

To take away...
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… and now, something
completely diferent...
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Unique things with David
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Unique things with David
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