## Net-proton number fluctuations in the presence of the QCD critical point

Michał Szymański

Collaborators: M. Bluhm, K. Redlich, C. Sasaki

Institute of Theoretical Physics, University of Wroclaw

40th Max Born Symposium, Wrocław, 9-12.10.2019

arXiv:1905.00667

<□ → < □ → < Ξ → < Ξ → Ξ · の Q · 1/18</p>



< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q @ 2/18



< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ <sub>3/18</sub>

Experimental searches for CP

- ► Heavy ion collisions → Allow to probe different regions of QCD phase diagram
- Baryon number fluctuations ~ Proton number fluctuations
- ▶ Non-monotonic  $\sqrt{s}$  dependence of higher cumulants observed  $\rightarrow$  signature of CP?
- No conclusive results yet  $\rightarrow$  Models needed!

This talk

- Ratios of net-proton number cumulants in the presence of CP
- Phenomenological approach  $\rightarrow$  HRG model + critical fluctuations

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q ↔ 4/18</p>

Thermal baseline  $\rightarrow$ Hadron resonance gas (HRG) model

 $\blacktriangleright$  QCD pressure  $\sim$  Non-interacting gas of hadrons and resonances  $\rightarrow$  No critical fluctuations

Coupling to critical mode fluctuations  $\rightarrow$  No general prescription on modeling this effect

Phenomenological approach<sup>1</sup>:

Linear sigma models

$$m_p \sim m_0 + g\sigma$$

•  $\sigma$  fluctuations  $\rightarrow$  Distribution function modified  $(i = p, \bar{p})$ 

$$f_i = f_i^0 + \delta f_i,$$

$$\delta f_i = \frac{\partial f_i}{\partial m_p} \delta m_p = -\frac{g}{T} \frac{m_p}{E} f_i^0 (1 - f_i^0) \delta \sigma \,,$$

*n*th order cumulant  $(i = p, \bar{p})$ :

$$C_n^i = VT^3 \frac{\partial^{n-1}(n_i/T^3)}{\partial (\mu_i/T)^{n-1}} \Big|_T,$$

Net-proton number cumulants (n = 1, ..., 4):

$$C_n = C_n^p + (-1)^n C_n^{\bar{p}} + (-1)^n \langle (V \delta \sigma)^n \rangle_c (m_p)^n (J_p - J_{\bar{p}})^n + \begin{pmatrix} \text{less singular} \\ \text{terms} \end{pmatrix}$$
$$J_i = \frac{gd}{T} \int \frac{d^3k}{(2\pi)^3} \frac{1}{E} f_i^0 (1 - f_i^0)$$

Critical mode cumulants (  $n \geq 2$  ) ightarrow Universality

$$\begin{array}{l} \operatorname{QCD} & \longleftrightarrow \operatorname{3D} \text{ Ising model} \\ \sigma & \longleftrightarrow M_{I} \\ (T,\mu) & \longleftrightarrow (r,h) \end{array} \qquad \qquad \left\langle (V\delta\sigma)^{n} \right\rangle_{c} \propto \left. \frac{\partial^{n-1}M_{I}}{\partial h^{n-1}} \right|_{r} \end{array}$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 6/18

Problem with this approach

$$C_2^{\text{sing.}} \sim \frac{\partial M_I}{\partial h} = \chi_I \iff \chi_{\text{chiral}} \text{ in QCD}$$

$$\chi^{\text{sing.}}_{\mu\mu} \approx C_2^{\text{sing.}} \sim \chi^{\text{sing.}}_{\text{chiral}} \Rightarrow \text{Too strong divergence of } C_2!$$

 $\chi_{chiral}$  and  $\chi_{\mu\mu}$  in the mean-field NJL model<sup>1</sup>:

$$\chi_{\mu\mu} \simeq \chi_{\mu\mu}^{reg} + \sigma^2 \chi_{chiral}$$

Refined cumulants:

$$C_{2} = C_{2}^{p} + C_{2}^{\bar{p}} + g^{2}\sigma^{2}\langle (V\delta\sigma)^{n}\rangle (J_{p} - J_{\bar{p}})^{2}$$

$$C_{3} = C_{3}^{p} - C_{3}^{\bar{p}} - g^{3}\sigma^{3}\langle (V\delta\sigma)^{n}\rangle (J_{p} - J_{\bar{p}})^{3}$$

$$C_{4} = C_{4}^{p} + C_{4}^{\bar{p}} + g^{4}\sigma^{4}\langle (V\delta\sigma)^{n}\rangle (J_{p} - J_{\bar{p}})^{4}$$

Cumulant ratios

$$\frac{C_2}{C_1} = \frac{\sigma^2}{M}, \qquad \frac{C_3}{C_2} = S\sigma, \qquad \frac{C_4}{C_2} = \kappa\sigma^2,$$

<sup>1</sup>Y. Hatta, T. Ikeda, Phys. Rev. D **67**, 014028 (2003); C. Sasaki et al., Phys. Rev. D **77**, 034024 (2008)



◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 8/18



◆□ ▶ ◆□ ▶ ◆ Ξ ▶ ◆ Ξ ▶ Ξ • ⑦ Q ♀ 9/18



| CPi | $\mu_{\it cp}[{\rm MeV}]$ | $T_{cp}$ [MeV] |
|-----|---------------------------|----------------|
| 1   | 390                       | 149            |
| 2   | 420                       | 141            |
| 3   | 450                       | 134            |

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の へ の 10/18



Distance to the FO curve: CP1 - farthest, CP3 - closest

## ◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ■ - つへで 11/18



Distance to the FO curve: CP1 - farthest, CP3 - closest



Distance to the FO curve: CP1 - farthest, CP3 - closest

## ◆□ → ◆□ → ◆ 注 → ◆ 注 → ○ へ ○ 13/18



| CPi | $\mu_{\it cp}[{\rm MeV}]$ | $T_{cp}$ [MeV] |
|-----|---------------------------|----------------|
| 1   | 390                       | 149            |
| 2   | 420                       | 141            |
| 3   | 450                       | 134            |

<ロ > < 回 > < 目 > < 目 > < 目 > 目 の へ ? 14/18



◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ● ○ へ ○ 15/18



< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ♡ < ♡ <sub>16/18</sub>



◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 17/18

Conclusions:

- $\blacktriangleright$  This talk  $\rightarrow$  ratios of net-proton number cumulants obtained with an effective model
- ▶ Identification of CP from the data  $\rightarrow$  Need to know the systematics of cumulants expected from the  $Z_2$  scaling
  - Systematics in the data  $\neq$  Systematics expected from  $Z_2$
  - $\blacktriangleright$  CP close to FO curve  $\rightarrow$  Rather unlikely but more study needed
    - 1. Role of less critical contributions to cumulants<sup>1</sup>
    - 2. Impact of resonance decays on net-proton number  ${\rm fluctuations}^2$
    - 3. Out of equilibrium effects

<sup>&</sup>lt;sup>1</sup>A. Bzdak et al. Phys. Rev. C **95** no. 5, 054906 (2017)

## Appendix

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E → ○ Q ↔ 18/18



◆□ ▶ ◆ ● ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○ 18/18



◆□ ▶ ◆ ● ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○ 18/18

The recent<sup>1</sup> parametrization of chemical freeze-out conditions reads:

$$\mu_{fo}(\sqrt{s}) = rac{a}{1 + 0.288\sqrt{s}}, \quad a = 1307.5 \,\mathrm{MeV}$$

$$T_{fo}(\sqrt{s}) = rac{T_{CF}^{lim}}{1 + \exp(2.60 - \ln(\sqrt{s})/0.45)}, \quad T_{CF}^{lim} = 158.4 \, {
m MeV}$$

Mapping from QCD to the spin model phase diagram:

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ <sub>18/18</sub>

Spin model equation of state reads

$$M_I = M_0 R^{\beta} \theta$$

where  $(R, \theta)$  is obtained from

$$egin{array}{rcl} r &=& R(1- heta^2), \ h &=& R^{eta\delta}w( heta), \end{array}$$

 $\beta$  and  $\delta$  are critical exponents and

$$w(\theta) = c\theta(1 + a\theta^2 + b\theta^4).$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ <sub>18/18</sub>