Karpacz, June 15, 2021

Equation of state for nuclear matter with correlations and clustering

Gerd Röpke, Rostock

Part II: Nuclear systems. Outline

- 1. Properties of nuclei empirical data
- 2. Finite temperatures empirical data
- 3. Quantum statistical approach
- 4. In-medium effects: self-energy, Pauli blocking
- 5. Equation of state including correlations

Problem: single (quasi-) particle approach to describe the properties of nuclear systems (mean-field approximation). Are correlations of relevance? How to calculate?

1. Properties of nuclei, correlations

- Binding energy (mass)
- Radii of nuclei
- Shell model and correlations
- Excited states
- Stability and decay modes

G. Audi et al., Nucl. Phys. A **729**, 3 (2003)

Binding energy per nucleon

Semi-empirical mass formula

Liquid drop model: Bethe-Weizsaecker mass formula

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + a_P \frac{1}{A^{1/2}}$$

bulk contribution: $a_V = 15.75$ MeV surface contribution: $a_S = 17.8$ MeV Coulomb repulsion: $a_C = 0.711$ MeV asymmetry term: $a_A = 23.7$ MeV pairing: $a_P = 11.18$ MeV (even-even), = 0 (even-odd), = -11.18 MeV (odd-odd) shell structure and magic numbers

proton fraction
$$Y_p = \frac{Z}{A} = \frac{Z}{N+Z}, \quad \frac{N}{Z} = 1 + \frac{a_C}{2a_A}A^{2/3}$$

Models of nuclei

Constituents: protons, neutrons

Shell model of nucleus: potential well

Droplet model: Bethe-Weizsäcker-Formel

C. F. von Weizsäcker: *Zur Theorie der Kernmassen.* In: *Zeitschrift für Physik.* **96** (1935), S. 431–458.

magic numbers: 2; 8; 20; 28; 50; 82; 126

Hans Jensen, Maria Goeppert-Mayer

O. Haxel, J.H.D. Jensen, H. E. Suess *Zur Interpretation der ausgezeichneten Nukleonenzahlen im Bau der Atomkerns*, Die Naturwissenschaften, Band **35**, (1949) S.376

Nuclear radii

ms² =
$$\frac{\int_0^\infty dr \ r^4 \ \rho(r)}{\int_0^\infty dr \ r^2 \ \rho(r)}$$

root mean square radius (charge or point): rms

mass – radius relation: R = 1.18 A^{1/3} [fm] \rightarrow n_B = 0.15 fm⁻³ = ρ_{sat}

I. Angeli, Atomic Data and Nuclear Data Tables 87, (2004)

nucleon-nucleon interaction potential

- Effective potentials (like atom-atom potential) binding energies, scattering
- non-local, energy-dependent? QCD?
- microscopic calculations (AMD, FMD)
- single-particle descriptions: Thomas-Fermi approximation shell model density functional theory (DFT)
- correlations, clustering low-density nα nuclei, Volkov

Separable interaction (Yamaguchi)

$$V^{\rm sep}(p,p') = -\lambda/\Omega w(p)w(p')$$

Exact solution in closed form, including scattering states. Theorem of Ernst, Shakin and Thaler: each potential can be represented as a sum of separable potentials.

• general form:

$$V_{\alpha}(p,p') = \sum_{i,j=1}^{N} w_{\alpha i}(p) \lambda_{\alpha i j} w_{\alpha j}(p')$$
 uncoupled

$$V^{LL'}_{lpha}(p,p') = \sum_{i,j=1}^{N} w^L_{lpha i}(p) \lambda_{lpha i j} w^{L'}_{lpha j}(p')$$
 coupled

PEST (Paris), BEST (Bonn),

. . .

D. J. Ernst, C. M. Shakin, R. M. Thaler, Phys. Rev. C 8, 46 (1973).

p,p'	in- and outgoing relative momentum
α	channel
N	rank
$\lambda_{lpha i j}$.	coupling parameter
L, L'	orbital angular momentum

Correlations in nuclei

- Liquid droplet (Bethe Weizsaecker)
- Shell model (Jensen)
- Pairing (odd-even staggering) quartetting
- Hoyle state in ¹²C
- α formation and α decay

α cluster structure of ⁸Be

R.B. Wiringa et al., PRC **63**, 034605 (01)

Contours of constant density, plotted in cylindrical coordinates, for ⁸Be(0+). The left side is in the laboratory frame while the right side is in the intrinsic frame.

Big-Bang nucleosynthesis: H, He, Li, ____

Take home textbook knowledge

- Three minutes after the Big Bang
- Three chemical elements: H, He, Li
- Three observed abundances: ²H, ⁴He, ⁷Li

The Hoyle state in ¹²C

¹²C: from astrophysics: excited state predicted near the 3 α threshold energy (F. Hoyle).

a 0⁺ state at 0.39 MeV above the 3 α threshold energy has been found.

not described by shell structure calculations, 3α cluster interact predominantly in relative S waves, gas-like structure, THSR state

A. Tohsaki et al., PRL 87, 192501 (2001)

 α -particle condensation in low-density nuclear matter, ρ below $\rho_{sat}/5$

n α nuclei: ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ... cluster type structures near the n α breakup threshold energy

Excited light nuclei

Decay modes of nuclei

Half-lives of nuclei

radioactive decay of instable isotopes

Preformation: α decay of ²¹²Po

Nucleon density of the ²⁰⁸Pb core

C. M. Tarbert et al., Phys. Rev. Lett. 112, 242502 (2014)

²¹²Po: α (⁴He) on top of ²⁰⁸Pb

Bound state (quartet) in a dense environment

G. R. et al., Physical Review C 90, 034304 (2014)

 α decay to doubly magic core in Quartetting Wave Function Approach arXiv1912.01151: ¹⁰⁴Te (submitted)

2. Finite temperatures

- Early universe
- compact objects in astrophysics
- Heavy ion collisions
- Spontaneous fission

Origin of chemical elements

Big-Bang nucleosynthesis, time ~ 100 sec, temperature ~ 10^9 K

Nuclear matter phase diagram

Nuclear matter phase diagram

Cluster formation at LHC/CERN

A. Andronic, P. Braun-Munziger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

Freeze-out at heavy ion collisions

Fig. 1. Chemical freezeout lines in the temperature density plane (phase diagram) together with Mott lines for light clusters. The coexistence regions for the nuclear gasliquid transition and for two examples of the hadron-quark matter transition are shown as grey shaded regions together with their critical endpoints. For details, see text.

D. Blaschke, G. Ropke, Yu. Ivanov, M. Kozhevnikova, and S. Liebing, The XVIII International Conference on Strangeness in Quark Matter (SQM 2019)

Nonequilibrium statistical operator (NSO)

principle of weakening of initial correlations (Bogoliubov, Zubarev)

$$\rho_{\epsilon}(t) = \epsilon \int_{-\infty}^{t} e^{\epsilon(t_1 - t)} U(t, t_1) \rho_{\mathrm{rel}}(t_1) U^{\dagger}(t, t_1) dt_1$$

time evolution operator $U(t,t_0)$ relevant statistical operator $ho_{
m rel}(t)$

selection of the set of relevant observables $\{B_n\}$

self-consistency relations $\operatorname{Tr}\{\rho_{\mathrm{rel}}(t)B_n\} \equiv \langle B_n \rangle_{\mathrm{rel}}^t = \langle B_n \rangle^t$ maximum of information entropy $S_{\mathrm{rel}}(t) = -k_{\mathrm{B}} \operatorname{Tr}\{\rho_{\mathrm{rel}}(t)\log\rho_{\mathrm{rel}}(t)\}$ generalized Gibbs distribution $\rho_{\mathrm{rel}}(t) = \exp\left\{-\Phi(t) - \sum_n \lambda_n(t)B_n\right\}$

extended von Neumann equation

$$\frac{\partial}{\partial t}\varrho_{\varepsilon}(t) + \frac{i}{\hbar}\left[H, \varrho_{\varepsilon}(t)\right] = -\varepsilon\left(\varrho_{\varepsilon}(t) - \varrho_{\rm rel}(t)\right)$$

 $arrho(t) = \lim_{arepsilon o 0} arrho_arepsilon(t)$ after thermodynamic limit

Relevant statistical operator

State of the system in the past $\operatorname{Tr}\{\rho(t)B_n\} = \langle B_n \rangle^t$

Construction of the relevant statistical operator at time t

$$S_{\rm rel}(t) = -k_{\rm B} \operatorname{Tr}\{\rho_{\rm rel}(t) \log \rho_{\rm rel}(t)\} \quad \text{-> maximum}$$
$$\delta[\operatorname{Tr}\{\rho_{\rm rel}(t) \log \rho_{\rm rel}(t)\}] = 0 \qquad \operatorname{Tr}\{\rho_{\rm rel}(t)B_n\} \equiv \langle B_n \rangle_{\rm rel}^t = \langle B_n \rangle^t$$

Generalized Gibbs distribution

$$\rho_{\rm rel}(t) = \exp\left\{-\Phi(t) - \sum_n \lambda_n(t)B_n\right\}$$

$$\Phi(t) = \log \operatorname{Tr} \exp\left\{-\sum_{n} \lambda_n(t) B_n\right\}$$

$$\frac{\partial S_{\rm rel}(t)}{\partial t} = \sum_n \lambda_n(t) \langle \dot{B}_n \rangle^t$$

But: von Neumann equation? Entropy?

Nuclear Fission

quadrupol fluctuations (GDR)

Future of Nuclear Fission Theory

tunneling – deformed droplets, neck formation

M. Bender et al., J. phys. G: Nucl. Part. Phys. 47, 113002 (2020)

Spontaneous fission of actinides

Ternary fission: light cluster yields

Thermodynamics

equation of state $n_B = n_B(T, \mu)$

equation of state $\mu = \mu(T, n_B)$

thermodynamic potential to T, n_B: free energy density

$$f(T, n_B) = \frac{F(T, V, N_B)}{V} = f(T, n_0) + \int_{n_0}^{n_B} \mu(T, n') \, dn'$$

thermodynamic relations:

$$F + pV = G = \mu N$$

equation of state: pressure

$$p(T, n_B) = n_B \mu(T, n_B) - f(T, n_B)$$

consistency

Ideal Fermi gas (neutrons)

equation of state (EoS): energy density is related to pressure (T = 0) $\rho_{rel}(p)$ nonrelativistic [units MeV, fm] $E_k = \frac{\hbar^2}{2m}k^2$ $N_n = (2s+1)\sum_k f_n(E_k); \quad n_n = \frac{2}{(2\pi)^3} \int_0^{k_F} 4\pi k^2 dk = \frac{1}{3\pi^2} k_F^3$ $k_F = (3\pi^2 n_n)^{1/3}$ chemical potential $\mu(n_n) = E_{k_F} = \frac{\hbar^2}{2m_F} (3\pi^2)^{2/3} n_n^{2/3}$ $f(n_n) = \frac{\hbar^2}{2m_n} (3\pi^2)^{2/3} \frac{3}{5} n_n^{5/3}$ free energy density $p = K(n_B)^{\gamma}, \quad \gamma = 5/3, \quad K = \frac{(3^2 \pi^4)^{1/3}}{5} \frac{\hbar^2}{m_{\pi}} = 79.3609$

relativistic relation (EoS) from the dispersion relation

$$E_{\tau}^{(0)}(p) = \sqrt{m_{\tau}^2 c^4 + \hbar^2 c^2 p^2}, \ \tau = \{n, p\}$$

3. Many-particle theory

$$n_{\tau}^{\text{tot}}(T,\mu_n,\mu_p) = \frac{1}{\Omega} \sum_{p_1,\sigma_1} \int \frac{d\omega}{2\pi} \frac{1}{e^{(\omega-\mu_{\tau})/T} + 1} S_{\tau}(1,\omega)$$

Spectral function S (or A)

• Dyson equation and self energy (homogeneous system)

$$G(1, iz_{\nu}) = \frac{1}{iz_{\nu} - E(1) - \Sigma(1, iz_{\nu})}$$

• Evaluation of $\Sigma(1, iz_{\nu})$: perturbation expansion, diagram representation

$$A(1,\omega) = \frac{2 \text{Im } \Sigma(1,\omega+i0)}{[\omega - E(1) - \text{Re } \Sigma(1,\omega)]^2 + [\text{Im } \Sigma(1,\omega+i0)]^2}$$

approximation for \longrightarrow approximation for equilibrium correlation functions

alternatively: simulations, path integral methods

Different approximations

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

Different approximations

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF
Medium effects: Quasiparticle approximation

- Skyrme / Gogny
- relativistic mean field (RMF)

Lagrangian: non-linear sigma, TM1 parameters, single particle modifications, energy shift, effective mass

- DD-RMF [S.Typel, Phys. Rev. C 71, 064301 (2007)]: expansion of the scalar field and the vector fields in powers of proton/neutron densities
- Dirac-Brueckner Hartree Fock (DBHF)
- Density functional theory

Quasiparticle picture: RMF and DBHF

Interacting nucleon matter

Ideal, noninteracting Fermi gas: soft EoS, masses too small

```
microscopic: nucleon-nucleon interaction,
Brueckner Hartree-Fock (BHF)
Hartree-Fock-Bogoliubov (HFB)
```

Effective interaction models (phenomenologic) Skyrme: density dependent potential energy, fitted to data

Walecka: effective Lagrangian, nucleons are coupled to vector and scalar meson fields masses and coupling constants are fitted to reproduce known properties relativistic mean field (RMF) approximation

RMF – DD2: density dependent coupling S. Typel et al., Nucl. Phys. A 656, 331 (1999) $E_{\tau}(\mathbf{p}; T, n_B, Y_p) = \sqrt{[m_{\tau}c^2 - S(T, n_B, Y_p)]^2 + \hbar^2 c^2 p^2} + V_{\tau}(T, n_B, Y_p)$

parametrization of the functions S(T, n_B , Y_p), V(T, n_B , Y_p): G. R., PRC 92,054001 (2015)

Quasiparticle approximation for nuclear matter Equation of state for symmetric matter

10NLo NLoð DBHF DD $D^{2}C$ KVR KVOR DD-F E_0 [MeV] But: cluster -10 formation Incorrect low-density -20^L 0.3 0.2 limit 0.1n [fm⁻³] Klaehn et al., PRC 2006

Quasiparticle concept

• Expansion for small Im $\Sigma(1, \omega + i\eta)$

$$A(1,\omega) \approx \frac{2\pi\delta(\omega - E^{\text{quasi}}(1))}{1 - \frac{d}{dz}\text{Re }\Sigma(1,z)|_{z=E^{\text{quasi}}-\mu_1}} -2\text{Im }\Sigma(1,\omega + i\eta)\frac{d}{d\omega}\frac{P}{\omega + \mu_1 - E^{\text{quasi}}(1)}$$

quasiparticle energy $E^{\text{quasi}}(1) = E(1) + \text{Re} \left[\Sigma(1, \omega) \right]_{\omega = E^{\text{quasi}}}$

• chemical picture: bound states $\hat{=}$ new species

Inclusion of bound states

low density limit:

(

$$G_{2}^{L}(12, 1'2', i\lambda) = \sum_{n\mathbf{P}} \Psi_{n\mathbf{P}}(12) \frac{1}{i\omega_{\lambda} - E_{n\mathbf{P}}} \Psi_{n\mathbf{P}}^{*}(12)$$
$$\mathbf{\mathbf{\sum}} = \begin{bmatrix} \mathbf{T}_{2}^{L} \end{bmatrix}$$

$$n(\beta,\mu) = \sum_{1} f_1(E^{\text{quasi}}(1)) + \sum_{2,n\mathbf{P}}^{\text{bound}} g_{12}(E_{n\mathbf{P}})$$
$$+ \sum_{2,n\mathbf{P}} \int_0^\infty \mathrm{d}k \ \delta_{\mathbf{k},\mathbf{p}_1-\mathbf{p}_2} g_{12}(E^{\text{quasi}}(1) + E^{\text{quasi}}(2)) 2\sin^2\delta_n(k) \frac{1}{\pi} \frac{\mathrm{d}}{\mathrm{d}k} \delta_n(k)$$

• generalized Beth-Uhlenbeck formula correct low density/low temperature limit: mixture of free particles and bound clusters

Beth-Uhlenbeck formula

rigorous results at low density: virial expansion

Beth-Uhlenbeck formula

$$n(T,\mu) = \frac{1}{V} \sum_{p} e^{-(E(p)-\mu)/k_{B}T} + \frac{1}{V} \sum_{nP} e^{-(E_{nP}-2\mu)/k_{B}T} + \frac{1}{V} \sum_{\alpha P} \int_{0}^{\infty} \frac{dE}{2\pi} e^{-(E+P^{2}/4m-2\mu)/k_{B}T} \frac{d}{dE} \delta_{\alpha}(E) + \dots$$

 $\delta_{\alpha}(E)$: scattering phase shifts, channel α

Cluster decomposition of the self-energy

T-matrices: bound states, scattering states Including clusters like new components chemical picture, mass action law, nuclear statistical equilibrium (NSE)

Ideal mixture of reacting nuclides

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A, charge Z_A , energy $E_{A,v,K}$, v internal quantum number, $\sim K$ center of mass momentum

$$f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$$

Chemical equilibrium, mass action law, Nuclear Statistical Equilibrium (NSE)

Nuclear statistical equilibrium (NSE)

Chemical picture:

Ideal mixture of reacting components Mass action law

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Inclusion of the light clusters (d,t,³He,⁴He)

Composition of symmetric matter Ideal mixture of nuclides

Alpha-particle fraction in the low-density limit

symmetric matter, T=2, 4, 8 MeV

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

Symmetry energy and symmetry free energy

4. In-medium effects

- self energy, mean-field approximation
- quasiparticle picture of elementary particles
- full antisymmetrization: Pauli blocking
- bound states as new quasiparticles
- correlated medium

- quantum statistical approach
- excluded volume (Hempel, Schaffner-Bielich,...)
- generalized relativistic mean field: clusters as quasiparticles (Typel, Pais,...)

medium effects

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Nuclear statistical equilibrium (NSE)

Chemical picture:

Ideal mixture of reacting components Mass action law

Interaction between the components internal structure: Pauli principle

Physical picture:

"elementary" constituents and their interaction

Quantum statistical (QS) approach, quasiparticle concept, virial expansion

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

medium effects

Quasiparticle quantum liquid: mean-field approximation BHF, Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation $\left(\frac{p_{1}^{2}}{2m_{1}} + \Delta_{1} + \frac{p_{2}^{2}}{2m_{2}} + \Delta_{2}\right)\Psi_{d,P}(p_{1},p_{2}) + \sum_{p_{1}',p_{2}'}(1 - f_{p_{1}} - f_{p_{2}})V(p_{1},p_{2};p_{1}',p_{2}')\Psi_{d,P}(p_{1}',p_{2}')$

Add self-energy

Pauli-blocking

$$= E_{d,P} \Psi_{d,P}(p_1,p_2)$$

Thouless criterion $E_d(T,\mu) = 2\mu$

Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

BEC-BCS crossover: Alm et al.,1993

Pauli blocking – phase space occupation

cluster wave function (deuteron, alpha,...) in momentum space

P - center of mass momentum

The Fermi sphere is forbidden, deformation of the cluster wave function in dependence on the c.o.m. momentum *P*

momentum space

The deformation is maximal at P = 0. It leads to the weakening of the interaction (disintegration of the bound state).

Deuterons in nuclear matter

T=10 MeV, P: center of mass momentum

Shift of the deuteron bound state energy

Dependence on nucleon density, various temperatures, zero center of mass momentum

G.R., Nucl. Phys. A 867, 66 (2011)

Scattering phase shifts in matter

deuteron bound state -2.2 MeV

G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654]

Deuteron-like scattering phase shifts

deuteron bound state -2.2 MeV

G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654]

Two-particle correlations

M. Schmidt, G.R., H. Schulz Ann. Phys. **202**, 57 (1990)

FIG. 7. The composition of nuclear matter as a function of the density n for given temperature T = 10 MeV. The solid and dashed lines show the results of the generalized and classical Beth-Uhlenbeck approach, respectively. Note the distinct behavior of n_{free} and n_{corr} predicted by the two approaches in the low and high density limit!

Few-particle Schrödinger equation in a dense medium

4-particle Schrödinger equation with medium effects

$$\begin{pmatrix} \left[E^{HF}(p_{1}) + E^{HF}(p_{2}) + E^{HF}(p_{3}) + E^{HF}(p_{4}) \right] \end{pmatrix} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4}) \\ + \sum_{p_{1}^{'},p_{2}^{'}} (1 - f_{p_{1}} - f_{p_{2}}) V(p_{1},p_{2};p_{1}^{'},p_{2}^{'}) \Psi_{n,P}(p_{1}^{'},p_{2}^{'},p_{3},p_{4}) \\ + \left\{ permutations \right\} \\ = E_{n,P} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4})$$
Thouless criterion for quantum condensate:

 $E_{n,P=0}(T,\mu) = 4\mu$

Shift of Binding Energies of Light Clusters

Composition of dense nuclear matter

$$n_p(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} Z_A f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

$$n_n(T,\mu_p,\mu_n) = \frac{1}{V} \sum_{A,\nu,K} (A - Z_A) f_A \{ E_{A,\nu K} - Z_A \mu_p - (A - Z_A) \mu_n \}$$

mass number A
charge
$$Z_A$$

energy $E_{A,v,K}$
 $f_{A(z)} = \frac{1}{\exp(z/T) - (-1)^A}$

v: internal quantum number excited states, continuum correlations

 Medium effects: correct behavior near saturation self-energy and Pauli blocking shifts of binding energies, Coulomb corrections due to screening (Wigner-Seitz, Debye)

EOS: continuum contributions

Partial density of channel A,c at P (for instance, ${}^{3}S_{1} = d$):

$$z_{A,c}^{\text{part}}(\mathbf{P}; T, \mu_n, \mu_p) = e^{(N\mu_n + Z\mu_p)/T} \left\{ \sum_{\nu_c}^{\text{bound}} g_{A,\nu_c} \ e^{-E_{A,\nu_c}(\mathbf{P})/T} \ \Theta \left[-E_{A,\nu_c}(\mathbf{P}) + E_{A,c}^{\text{cont}}(\mathbf{P}) \right] + z_{A,c}^{\text{cont}}(\mathbf{P}) \right\}$$

separation: bound state part – continuum part ?

$$z_{c}^{\text{part}}(\mathbf{P};T,n_{B},Y_{p}) = e^{[N\mu_{n}+Z\mu_{p}-NE_{n}(\mathbf{P}/A;T,n_{B},Y_{p})-ZE_{p}(\mathbf{P}/A;T,n_{B},Y_{p})]/T} \times g_{c} \left\{ \left[e^{-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p})/T} - 1 \right] \Theta \left[-E_{c}^{\text{intr}}(\mathbf{P};T,n_{B},Y_{p}) \right] + v_{c}(\mathbf{P};T,n_{B},Y_{p}) \right\}$$

parametrization (d – like):

$$v_c(\mathbf{P}=0;T,n_B,Y_p) \approx \left[1.24 + \left(\frac{1}{v_{T_I=0}(T)} - 1.24\right)e^{\gamma_c n_B/T}\right]^{-1}$$

 $v_d^0(T) = v_{T_I=0}^0(T) \approx 0.30857 + 0.65327 \ e^{-0.102424 \ T/\text{MeV}}$

G. Roepke, PRC 92,054001 (2015)

Ideal Fermi gas:

protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.E.

medium effects

Quasiparticle quantum liquid: mean-field approximation Skyrme, Gogny, RMF

Chemical equilibrium with quasiparticle clusters: self-energy and Pauli blocking

Ideal Fermi gas: protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.Eq.

medium effects

Quasiparticle quantum liquid: mean-field approximation BHF, Skyrme, Gogny, RMF

Chemical equilibrium of quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Ideal Fermi gas: protons, neutrons, (electrons, neutrinos,...)

bound state formation

Nuclear statistical equilibrium: ideal mixture of all bound states (clusters:) chemical equilibrium

continuum contribution

Second virial coefficient: account of continuum contribution, scattering phase shifts, Beth-Uhl.Eq.

chemical & physical picture

Cluster virial approach: all bound states (clusters) scattering phase shifts of all pairs

medium effects

Quasiparticle quantum liquid: mean-field approximation BHF, Skyrme, Gogny, RMF

Chemical equilibrium of quasiparticle clusters: self-energy and Pauli blocking

Generalized Beth-Uhlenbeck formula:

medium modified binding energies, medium modified scattering phase shifts

Correlated medium:

phase space occupation by all bound states in-medium correlations, quantum condensates

Single nucleon distribution function

Dependence on temperature

saturation density

Alm et al., PRC 53, 2181 (1996)

Cluster virial expansion for nuclear matter within a quasiparticle statistical approach

Generalized Beth-Uhlenbeck approach

$$n_1^{\rm qu}(T,\mu_p,\mu_n) = \sum_{A,Z,\nu} \frac{A}{\Omega} \sum_{\substack{\vec{P} \\ P > P_{\rm Mott}}} f_A(E_{A,Z,\nu}(\vec{P};T,\mu_p,\mu_n),\mu_{A,Z,\nu})$$

$$n_{2}^{qu}(T,\mu_{p},\mu_{n}) = \sum_{A,Z,\nu} \sum_{A',Z',\nu'} \frac{A+A'}{\Omega} \sum_{\vec{p}} \sum_{c} g_{c} \frac{1+\delta_{A,Z,\nu;A',Z',\nu'}}{2\pi} \times \int_{0}^{\infty} dE f_{A+A'} \left(E_{c}(\vec{P};T,\mu_{p},\mu_{n}) + E,\mu_{A,Z} + \mu_{A',Z'} \right) 2 \sin^{2}(\delta_{c}) \frac{d\delta_{c}}{dE}$$

Avoid double counting

$$\underline{A}_{qu} = \underline{A} + \underline{$$

 $\Sigma^{\text{CMF}} = A \xrightarrow{qu} A \xrightarrow{qu} qu$

Generating functional

G.R., N. Bastian, D. Blaschke, T. Klaehn, S. Typel, H. Wolter, NPA 897, 70 (2013)

5. EoS including correlations

- Composition
- Chemical potential
- Free energy
- Phase transition
- Quantum condensates
Light Cluster Abundances

Composition of symmetric matter in dependence on the baryon density n_B , T = 5 MeV. Quantum statistical calculation (full) compared with NSE (dotted).

G. R., PRC 92, 054001 (2015)

Pauli blocking in symmetric matter

Free proton fraction as function of density and temperature in symmetric matter. QS calculations (solid lines) are compared with the NSE results (dotted lines). Mott effect in the region $n_{\text{saturation}}/5$.

Equation of state: chemical potential

Chemical potential for symmetric matter. T=1, 5, 10, 15, 20 MeV. QS calculation compared with RMF (thin) and NSE (dashed). Insert: QS calculation without continuum correlations (thin lines).

Symmetric matter: free energy per nucleon

Dashed lines: no continuum correlations

G. R., PRC 92, 054001 (2015)

Liquid-vapor phase transition

blue: no light cluster, green: with light clusters, QS, red: cluster-RMF S. Typel et al., PRC 81, 015803 (2010)

Effective wave equation for the deuteron in matter

In-medium two-particle wave equation in mean-field approximation $\left(\frac{p_{1}^{2}}{2m_{1}} + \Delta_{1} + \frac{p_{2}^{2}}{2m_{2}} + \Delta_{2}\right)\Psi_{d,P}(p_{1},p_{2}) + \sum_{p_{1}',p_{2}'}(1 - f_{p_{1}} - f_{p_{2}})V(p_{1},p_{2};p_{1}',p_{2}')\Psi_{d,P}(p_{1}',p_{2}')$

Add self-energy

Pauli-blocking

$$= E_{d,P} \Psi_{d,P}(p_1,p_2)$$

Thouless criterion $E_d(T,\mu) = 2\mu$

Fermi distribution function

$$f_p = \left[e^{(p^2/2m - \mu)/k_B T} + 1 \right]^{-1}$$

BEC-BCS crossover: Alm et al.,1993

Composition of symmetric nuclear matter

Fraction of correlated matter (virial expansion, Generalized Beth-Uhlenbeck approach, contribution of bound states, of scattering states, phase shifts)

H. Stein et al., Z. Phys. **A351**, 259 (1995)

Crossover from BEC to BCS pairing

Quantum condensate

Few-particle Schrödinger equation in a dense medium

4-particle Schrödinger equation with medium effects

$$\begin{pmatrix} \left[E^{HF}(p_{1}) + E^{HF}(p_{2}) + E^{HF}(p_{3}) + E^{HF}(p_{4}) \right] \end{pmatrix} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4}) \\ + \sum_{p_{1}^{'},p_{2}^{'}} (1 - f_{p_{1}} - f_{p_{2}}) V(p_{1},p_{2};p_{1}^{'},p_{2}^{'}) \Psi_{n,P}(p_{1}^{'},p_{2}^{'},p_{3},p_{4}) \\ + \left\{ permutations \right\} \\ = E_{n,P} \Psi_{n,P}(p_{1},p_{2},p_{3},p_{4})$$
Thouless criterion for quantum condensate:

 $E_{n,P=0}(T,\mu) = 4\mu$

α-cluster-condensation (quartetting)

G.Röpke, A.Schnell, P.Schuck, and P.Nozieres, PRL 80, 3177 (1998)

α-cluster-condensation (quartetting)

G.Röpke, A.Schnell, P.Schuck, and P.Nozieres, PRL 80, 3177 (1998)

BEC of α clusters in the same S-orbit?

 $\alpha\text{-particle}$ density matrix :

$$ho_{lpha}(ec{R},ec{R'}), \quad ec{R}\,:\, {
m c.m.}\,\, {
m of}\,\, lpha$$

Diagonalization :

 $^{12}C: O_2^+$ 70% S-wave occupancy

Pauli blocking and Mott effect

Two different fermions (a,b: proton, neutron) form a bound state (c: deuteron).

$$c_{q} = \sum_{p} F(q,p)a_{p}b_{q-p}$$
Is the bound state a boson? Commutator relation
$$\begin{bmatrix} c_{q}, c_{q'}^{+} \end{bmatrix}_{-} = \sum_{p,p'} F(q,p)F^{*}(q',p')\begin{bmatrix} a_{p}b_{q-p}, b_{q'-p'}^{+}a_{p'}^{+} \end{bmatrix}_{-}$$

$$\frac{a_{p}b_{q-p}b_{q'-p'}^{+}a_{p'}^{+} + a_{p}b_{q'-p'}^{+}a_{p'}^{+} - a_{p}b_{q'-p'}^{+}b_{q-p}a_{p'}^{+} - b_{q'-p'}^{+}a_{p}b_{q-p}a_{p'}^{+} + b_{q'-p'}^{+}a_{p}a_{p}^{+}b_{q-p} - b_{q'-p'}^{+}a_{p}a_{p}^{+}b_{q-p} - b_{q'-p'}^{+}a_{p}b_{q-p}a_{p}^{+}a_{p}b_{q-p}a_{p}^{+} + b_{q'-p'}^{+}a_{p}a_{p}^{+}b_{q-p} - b_{q'-p'}^{+}a_{p}a_{p}^{+}b_{q-p} - b_{q'-p'}^{+}a_{p}b_{q-p}a_{p}^{+}a_{p}b_{q-p}a_{p}^{+}a_{p}^{+}b_{q-p}^{-}a_{p}^{+}a_{p}^{+}b_{q-p}^{-}b_{q'-p'}^{+}a_{p}b_{q-p}a_{p}^{+}b_{q-p} - b_{q'-p'}^{+}a_{p}a_{p}b_{q-p}a_{p}^{+}a_{p}b_{q-p}a_{p}^{+}b_{q-p}^{-}a_{p}^{+}a_{p}b_{q-p} - b_{q'-p'}^{+}a_{p}b_{q-p}b_{q-p}b_{q-p}b_{p,p'}a_{p}b_{q-p}a_{p}^{+}b_{q-p}b_{q-p}b_{p,p'} = (\delta_{p,p'} - a_{p'}^{+}a_{p})\delta_{q-p,q'-p'} - b_{q'-p'}^{+}b_{q'-p'}b_{q-p}\delta_{p,p'}a_{p}b_{q-p}b_{p,p'}a_{p}b_{q-p$$

averaging

$$\left\langle \left[c_{q},c_{q'}^{+}\right]_{-}\right\rangle = \delta_{q,q'}\left[1 - \sum_{p} F(q,p)F^{*}(q,p)\left(\left\langle a_{p}^{+}a_{p}\right\rangle + \left\langle b_{q-p}^{+}b_{q-p}\right\rangle\right)\right]$$

Fermionic substructure: phase space occupation, "excluded volume"

Structure of matter

energy scale	fermions	interaction	bound states	density effects	condensed phase
$1 \dots 10 \text{ meV}$	electrons, holes	Coulomb	$\operatorname{excitons}$	screening	electron-hole liquid
$1 \dots 10 \mathrm{eV}$	electrons, nuclei	Coulomb	ions, atoms	screening	liquid metal
$1 \dots 10 \text{ MeV}$	protons, neutrons	N-N int.	nuclei	Pauli blocking	nuclear matter
$0.1 \dots 1 { m GeV}$	quarks	QCD	hadrons	deconfinement	quark-gluon plasma

Fermion systems: ideal Fermi gases

Interaction - correlations

Low densities: bound states, quantum condensates High densities: condensed phase

- Plasma physics: Ionization potential depression (IPD)
- Nuclear physics: Weakly bound nuclei in nuclear systems
- QCD: Deconfinement, Quark Gluon phase transition in neutron-star mergers

Part III: Applications. Outline

- 1. SN: light elements in the EoS
- 2. Laboratory experiments: HIC
- 3. Symmetry energy

1. Nuclear matter phase diagram

arxiv: 1703.06734

Nuclear matter phase diagram

Nuclear matter phase diagram

Stellar matter: Supernova explosion

Snapshot: Temperature, Density, Proton fraction, Entropy, Neutrino flux Cluster formation

Simulation by Tobias Fischer

Supernova explosion

Core-collapse supernovae

Density.

electron fraction, and

temperature profile

of a 15 solar mass supernova at 150 ms after core bounce as function of the radius.

Influence of cluster formation on neutrino emission in the cooling region and on neutrino absorption in the heating region ?

K.Sumiyoshi et al., Astrophys.J. **629**, 922 (2005)

Composition of supernova core

X

Asymmetric nuclear light clusters in supernova matter

Figure 1. Upper three panels, from left ro right: temperature *T* (in MeV), log of density ρ (in g \cdot cm⁻³) and electron fraction Y_e as a functions of mass coordinate *m*. Lower panel: mass fractions of of nuclei X_i as a function of *m*. The black dashed line marked $X_{Z>2}$ shows the total mass fraction of elements with Z > 2. EoS is pure NSE.

Figure 7. Upper three panels, from left ro right: temperature *T* (in MeV), log of density ρ (in g \cdot cm⁻³) and electron fraction Y_e as a functions of mass coordinate *m*. Lower panel: mass fractions X_i of of hydrogen and helium isotopes as a function of *m*. The black dashed line marked $X_{Z>2}$ shows the total mass fraction of all rest nuclei. Stellar profile corresponds to 200 ms after bounce approximately, calculations according to modified HS EoS.

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, Monthly Notices of the Royal Astronomical Society 483, 5426 (2019)

Light p-shell nuclei with cluster structures (4≤A≤16) in nuclear matter

Applying Eq. (36) to the binary reaction channel $\alpha + n \rightleftharpoons$ ⁵He, A = 5, Z = 2, J = 3/2, one finds $n_{^{\text{5}\text{He}}}^{\text{part}}(T, \mu_n, \mu_p) = 4\left(\frac{5}{4}\right)^{3/2} n_{\alpha}(T, \mu_n, \mu_p) e^{-\Delta E_n^{\text{SE}/T} + \mu_n/T} \times C_{^{5}\text{He};\alpha n}(T, \mu_n, \mu_p),$ (37)

with (there are no bound states)

FIG. 6. Composition of nuclear matter, T = 10 MeV, $Y_p = 0.1$,

FIG. 7. Composition of nuclear matter, T = 10 MeV, $Y_p = 0.1$,

G. R., Phys. Rev. C 101, 064310 (2020)

Example: ⁵He

Partial density $n_{^{5}\mathrm{He}} = 8 \left(\frac{mT}{2\pi\hbar^{2}}\right)^{3/2} b_{\alpha n}(T) e^{(-E_{\alpha}+3\mu_{n}+2\mu_{p})/T}$

virial coefficient n

nuclear stat. equ.

$$b_{\alpha n}^{\text{NSE}}(T) = \frac{5^{3/2}}{2} e^{(-E_{5_{\text{He}}} + E_{4_{\text{He}}})/T}$$

generalized Beth-Uhlenbeck

$$b_{\alpha n}^{\mathrm{gBU}}(T) = \left(\frac{5}{4}\right)^{1/2} \frac{1}{\pi T} \int_0^\infty dE_{\mathrm{lab}} \, e^{-4E_{\mathrm{lab}}/5T} \left\{ \delta_{\alpha n}^{\mathrm{tot}}(E_{\mathrm{lab}}) - \frac{1}{2} \sin[2\delta_{\alpha n}^{\mathrm{tot}}(E_{\mathrm{lab}})] \right\}$$

Fig. 2. (Color online.) The phase shifts for elastic neutron-alpha scattering $\delta_{L_J}(E)$ versus laboratory energy *E*. As discussed in the text, the solid lines are from Arndt and Roper [37] and the symbols are from Arnos and Karataglidis [38]. For clarity, we do not show the F-waves included in our results for $b_{\alpha n}$.

C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006)

ratio generalized Beth-Uhlenbeck/NSE

Abundance of light clusters

PHYSICAL REVIEW C 102, 055807 (2020)

Medium modifications for light and heavy nuclear clusters in simulations of core collapse supernovae: Impact on equation of state and weak interactions

Tobias Fischer^{1,*} Stefan Typel^{2,3} Gerd Röpke⁴, Niels-Uwe F. Bastian⁴, and Gabriel Martínez-Pinedo^{3,2,5}

Generalized RMF approach

Full distribution of clusters with universal couplings and in-medium effects

Helena Pais¹, Francesca Gulminelli², Constança Providência¹, and Gerd Röpke^{3,4}

$$\mathcal{L} = \sum_{j=n,p,d,t,h,lpha} \mathcal{L}_j + \mathcal{L}_\sigma + \mathcal{L}_\omega + \mathcal{L}_
ho + \mathcal{L}_{\omega
ho} + \mathcal{L}_e$$

The nucleonic gas term is given by

$$\mathcal{L}_j = \bar{\psi} \left[\gamma_\mu i D^\mu - m^* \right] \psi$$

with

$$egin{aligned} iD^{\mu}&=i\partial^{\mu}-g_{v}\omega^{\mu}-rac{g_{
ho}}{2}m{ au}_{j}\cdot\mathbf{b}^{\mu}\,,\ m^{*}&=m-g_{s}\phi_{0}\,,\ \mathcal{L}_{\sigma}&=+rac{1}{2}\left(\partial_{\mu}\phi\partial^{\mu}\phi-m_{s}^{2}\phi^{2}-rac{1}{3}\kappa\phi^{3}-rac{1}{12}\lambda\phi^{4}
ight),\ \mathcal{L}_{\omega}&=-rac{1}{4}\Omega_{\mu
u}\Omega^{\mu
u}+rac{1}{2}m_{v}^{2}\omega_{\mu}\omega^{\mu},\ \mathcal{L}_{
ho}&=-rac{1}{4}\mathbf{B}_{\mu
u}\cdot\mathbf{B}^{\mu
u}+rac{1}{2}m_{
ho}^{2}\mathbf{b}_{\mu}\cdot\mathbf{b}^{\mu},\ \mathcal{L}_{\omega
ho}&=g_{\omega
ho}g_{
ho}^{2}g_{v}^{2}\omega_{\mu}\omega^{\mu}\mathbf{b}_{
u}\cdot\mathbf{b}^{
u}, \end{aligned}$$

Fermions ³H, ³He $\mathcal{L}_{i} = \bar{\psi} \left[\gamma_{\mu} i D_{i}^{\mu} - M_{i}^{*} \right] \psi,$ $i D_{i}^{\mu} = i \partial^{\mu} - g_{v}^{i} \omega^{\mu} - \frac{g_{\rho}}{2} \boldsymbol{\tau}_{i} \cdot \mathbf{b}^{\mu}$ $M_{i}^{*} = A_{i}m - g_{s}^{i} \phi_{0} - \left(B_{i}^{0} + \delta B_{i} \right)$

similar for bosons ²H, ⁴He

coupling g_s is reduced

Phys.Rev.C 99 (2019) 5, 055806

2. EoS at low densities from HIC

non-equilibrium

Generalized RMF

$$\mathcal{L} = \sum_{j=n, p, d, t, h, \alpha} \mathcal{L}_j + \mathcal{L}_\sigma + \mathcal{L}_\omega + \mathcal{L}_\rho + \mathcal{L}_{\omega\rho}$$

Effective Lagrangian: quasiparticle nuclei as new degrees of freedom

$$M_j^* = A_j m - g_{sj} \phi_0 - \left(B_j^0 + \delta B_j \right).$$

Coupling to the meson fields depending on A

 $g_{sj} = x_{sj}A_jg_s$

 x_{si} =0.85 for A > 1

FIG. 7. Chemical equilibrium constants of α (a), helion (b), deuteron (c), and triton (d) for FSU, and $y_p = 0.41$, and for the $\eta = 0.70$ (black squares) fitting (check Ref. [17] for the complete parameter sets) and the universal g_{sj} fitting with $g_{sj} = (0.85 \pm 0.05)A_jg_s$, (red dotted lines). The experimental results of Qin *et al.* [18] (light blue region) are also shown.

H. Pais, F. Gulminelli, C. Providencia, G. Ropke, Phys. Rev. C 97, 045805 (2018)

Including light clusters to the EoS

Eur. Phys. J. A (2020) 56:295 https://doi.org/10.1140/epja/s10050-020-00302-w THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

Light clusters in warm stellar matter: calibrating the cluster couplings

Tiago Custódio¹, Alexandre Falcão¹, Helena Pais^{1,a}, Constança Providência¹, Francesca Gulminelli², Gerd Röpke^{3,4}

Fig. 1 The abundances (mass fraction) of the stable isotopes n, p, d, t, h, α , and ⁶He considered as a function of the density for T = 5 MeV and a fixed proton fraction of 0.2. The NSE (dashed) is compared to a QS calculation (full lines), see text

Fig. 6 The equilibrium constants as a function of the density. The full lines represent the experimental results of the INDRA collaboration, with 1σ uncertainty. The grey bands are the equilibrium constants from a calculation [30] where we consider homogeneous matter with five light clusters for the FSU2R EoS (left), the DDME2 EoS (middle) and

SFHo EoS (right), calculated at the average value of $(T, n_{B_{cxp}}, y_{pcxp})$, and considering cluster couplings in the range of $x_s = 0.91 \pm 0.02$ (FSU2R), $x_s = 0.93 \pm 0.02$ (DDME2) and $x_s = 0.83 \pm 0.03$ (SFHo). The color code represents the global proton fraction

Cluster formation at LHC/CERN

A. Andronic, P. Braun-Munziger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

Density effects?

The Beth-Uhlenbeck equation is identical with the Dashen, Ma, Bernstein approach.

Talk given by Peter Braun-Munzinger:

(-

the proton anomaly and the Dashen, Ma, Bernstein S-matrix approach

thermal yield of an (interacting) resonance with mass M, spin J, and isospin I

need to know derivatives of phase shifts with respect to invariant mass

$$R_{I,J} \rangle = d_J \int_{m_{th}}^{\infty} dM \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2\pi} B_{I,J}(M) \\ \times \frac{1}{e^{(\sqrt{p^2 + M^2} - \mu)/T} + 1}, \quad \text{A. Andread}$$

A. Andronic, pbm, B. Friman, P.M. Lo, K. Redlich, J. Stachel, arXiv:1808.03102, Phys.Lett.B792 (2019)304

$$B_{I,J}(M) = 2 \, \frac{d\delta_J^I}{dM}$$

Freeze-out at heavy ion collisions

Fig. 1. Chemical freezeout lines in the temperature density plane (phase diagram) together with Mott lines for light clusters. The coexistence regions for the nuclear gasliquid transition and for two examples of the hadron-quark matter transition are shown as grey shaded regions together with their critical endpoints. For details, see text.

D. Blaschke, G. Ropke, Yu. Ivanov, M. Kozhevnikova, and S. Liebing, The XVIII International Conference on Strangeness in Quark Matter (SQM 2019)

Fission: yields of H and He isotopes

Nonequilibrium information entropy approach to ternary fission of actinides

isotope	$R_{A,Z}^{\mathrm{vir}}$	233 U $(n_{\rm th}, f)$	$ ^{235}$ U(<i>n</i> _{th} ,f)	239 Pu $(n_{\mathrm{th}},\mathrm{f})$	241 Pu $(n_{\rm th},{ m f})$	248 Cm(sf)	252 Cf(sf)
$\lambda_T [{ m MeV}]$	1.3	1.24177	1.21899	1.3097	1.1900	1.23234	1.25052
$\lambda_n \; [{ m MeV}]$	-	-3.52615	-3.2672	-3.46688	-3.02055	-2.92719	-3.1107
$\lambda_p [{ m MeV}]$	-	-15.8182	-16.458	-16.2212	-16.6619	-16.7798	-16.7538
^{1}n	-	560012	1.409e6	722940	1.8579e6	1.606e6	1.647e6
$^{1}\mathrm{H}$	-	28.131	28.16	42.638	19.52	21.079	30.096
$^{2}\mathrm{H}^{\mathrm{obs}}$	-	41	50	69	42	50	63
$^{2}\mathrm{H}$	0.973	40.986	49.76	68.632	41.563	49.533	61.579
${}^{3}\mathrm{H}^{\mathrm{obs}}$	-	460	720	720	786	922	950
$^{3}\mathrm{H}$	0.998	457.27	715.29	714.79	780.39	913.76	943.12
${}^{4}\mathrm{H}$	0.0876	2.7772	4.97	5.627	6.057	8.742	8.219
$^{3}\mathrm{He}$	0.997	0.0124	0.0076	0.0235	0.00431	0.00645	0.00933
${}^{4}\mathrm{He}^{\mathrm{obs}}$		10000	10000	10000	10000	10000	10000
$^{4}\mathrm{He}$	1	8858.46	8706.1	8615.7	8556.9	8313.98	8454.0
$^{5}\mathrm{He}$	0.689	1130.75	1289.04	1374.7	1439.0	1680.75	1540.9
${}^{6}\mathrm{He}^{\mathrm{obs}}$	-	137	191	192	260	354	270
$^{6}\mathrm{He}$	0.933	115.89	158.98	159.01	211.68	276.96	222.4
$^{7}\mathrm{He}$	0.876	21.262	33.997	35.983	51.742	80.634	58.16
$Y_{6{ m He}}^{ m obs}/Y_{6{ m He}}^{ m final,vir}$	-	0.9989	0.9897	0.9846	0.9869	0.9899	0.9622
$^{8}\mathrm{He}^{\mathrm{obs}}$	-	3.6	8.2	8.8	15	24	25
$^{8}\mathrm{He}$	0.971	3.4725	6.764	6.4095	12.481	21.280	13.32
⁹ He	0.255	0.047077	0.105	0.111	0.219	0.455	0.258
$Y_{\rm 8He}^{\rm obs}/Y_{\rm 8He}^{\rm final,vir}$	-	1.0229	1.1936	1.3496	1.1811	1.1042	1.8409
⁸ Be	1.07	5.7727	2.594	5.147	2.188	2.819	2.544

Lagrange parameters

observed yieds,

primary yields, virial partition function

intrinsic partition function, no density corrections:

6He is overestimated, 8He is underestimated:

Pauli blocking?

G.R., J. B. Natowitz, H. Pais, Phys. Rev. C 103, L061601 (2021)

Symmetry energy

Heavy-ion collisions, spectra of emitted clusters, temperature (3 - 10 MeV), free energy

Symmetry energy, comparison experiment with theories

J.Natowitz et al., PRL 2010

Symmetry energy: low density limit

correlations (bound states) \rightarrow larger values for the symmetry energy

K. Hagel et al., Eur. Phys. J. A (2014) 50: 39

Density of neutron star crust

Light clusters and pasta phases in core-collapse supernova matter

Pressure as function of density, Yp=0.3, T=4 MeV / 8 MeV. With and without pasta, including or not clusters. TF - Thomas-Fermi, CP – coexisting-phases method, CLD – compressible liquid drop

H. Pais, S. Chiacchiera, C. Providencia, PRC 91, 055801 (2015)

α cluster in astrophysics

Solar element abundances

Figure 7 Solar system abundances by mass number. Atoms with even masses are more abundant than those with odd masses (Oddo–Harkins rule). There is no smooth dependence of abundances on mass numbers for even (e.g., ¹¹⁸Sn and ¹³⁸Ba) or for odd masses (e.g., ⁸⁹Y).

H. Palme, K. Lodders, A. Jones, Solar System Abundances of the Elements (Elsevier 2014)

GW170817 – a merger of two compact stars

Symposium @ INT Seattle, March 2018

Elementsynthese aus der Verschmelzung von Neutronensternen: r-Prozess (Simulation)

Final mass-integrated r-process abundences obtained in a neutron star merger simulation using four different mass models compared to solar system r-process abundances [Mendoza-Temis et al. PRC 92 (2015) 055805].

J. Cowan, C. Sneden, J.E. Lawler A. Aprahamian, M. Wiescher, K. Langanke, G. Martinez-Pinedo, F.-K. Thielemann: "Making the heaviest elements in the Universe: A review of the rapid neutron capture process", arxiv:1901.01410

Thanks

to many colleagues, In particular D. Blaschke, T. Fischer, J. Natowitz, H. Pais, A. Sedrakian, P. Schuck, S. Typel, H. Wolter, for collaboration

to you

for attention

D.G.

Larger clusters: nucleation kinetics?

Freeze-out in the phase diagram

Jørgen Randrup, Jean Cleymans:

Talk given by Manuel Lorenz

Nonequilibrium evolution of the fireball. Where the clusters are formed? Very early? Late?

Relevant statistical operator

State of the system in the past $\operatorname{Tr}\{\rho(t)B_n\} = \langle B_n \rangle^t$

Construction of the relevant statistical operator at time t

$$S_{\rm rel}(t) = -k_{\rm B} \operatorname{Tr}\{\rho_{\rm rel}(t) \log \rho_{\rm rel}(t)\} \quad \text{-> maximum}$$
$$\delta[\operatorname{Tr}\{\rho_{\rm rel}(t) \log \rho_{\rm rel}(t)\}] = 0 \qquad \operatorname{Tr}\{\rho_{\rm rel}(t)B_n\} \equiv \langle B_n \rangle_{\rm rel}^t = \langle B_n \rangle^t$$

Generalized Gibbs distribution

$$\rho_{\rm rel}(t) = \exp\left\{-\Phi(t) - \sum_n \lambda_n(t)B_n\right\}$$

$$\Phi(t) = \log \operatorname{Tr} \exp\left\{-\sum_{n} \lambda_n(t) B_n\right\}$$

$$\frac{\partial S_{\rm rel}(t)}{\partial t} = \sum_n \lambda_n(t) \langle \dot{B}_n \rangle^t$$

But: von Neumann equation? Entropy?

Cluster - mean field approximation

Cluster (A) interacting with a distribution of clusters (B) in the medium, fully antisymmetrized

$$\sum_{1'\dots A'} \{H_A^0(1\dots A, 1'\dots A') + \sum_i \Delta_i^{A,mf} \delta_{k,k'} + \frac{1}{2} \sum_{i,j} \Delta V_{ij}^{A,mf} \delta_{l,l'} - E_{AvP} \delta_{k,k'} \} \psi_{AvP}(1'\dots A') = 0$$

self-energy

$$\Delta_1^{A,mf}(1) = \sum_2 V(12,12)_{ex} f^*(2) + \sum_{BvP} \sum_{2...B'} f_B(E_{BvP}) \sum_i V_{1i}(1i,1'i') \psi_{BvP}^*(1...B) \psi_{BvP}(1'...B')$$

effective interaction

$$\Delta V_{12}^{A,mf} = -\frac{1}{2} [f^*(1) + f^*(2)] V(12,1'2') - \sum_{B \nu P} \sum_{2^* \dots B^*} f_B(E_{B\nu P}) \sum_i V_{1i} \psi_{B\nu P}^*(22^* \dots B^*) \psi_{B\nu P}(2'2" \dots B")$$

phase space occupation $f^*(1) = f_1(1) + \sum_{B \lor P} \sum_{2...B} f_B(E_{B \lor P}) |\psi_{B \lor P}(1...B)|^2$

Single nucleon distribution function

Dependence on density

T = 10 MeV

Alm et al., PRC 53, 2181 (1996)

Intermediate-mass fragment production

30 a_{sym} (MeV) 20 Danielewicz14 Lin14 Khoa05 Kowalski07 Wada12 10 Roca-Maza13 Shettv04 Shettv07 Trippa08 Tsang09 Liu14 present work 0.5 0 ρ/ρ

density value of $\rho/\rho_0 = 0.56$ from a previous analysis [26], the temperature and symmetry energy values of $T = 4.6 \pm 0.4$ MeV and $a_{\text{sym}} = 23.6 \pm 2.1$ MeV are extracted. These

X. Liu et al., Phys. Rev. C 95, 044601 (2017)

Zhao-Wen Zhang, Lie-Wen Chen, Phys. Rev. C 95, 064330 (2017);

J. A. Lopez, S. Terrazas Porras, Nucl. Phys. A 957, 312 (2017)

FIG. 10. Summary of the density dependent symmetry energy obtained in the present and previous studies. The line is the fit of the existing data points at $0.1 \le \rho/\rho_0 \le 1.0$ using Eq. (14).