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OUTLINE FOR TODAY

» Morning:

» Lecture 1 (this one): Overview of GW astronomy (slides)

» Lecture 2: GW parameter estimation & detection (whiteboard)
» Afternoon:

» Lecture 3: Matched filtering with PyCBC (python tutorial)

» Lecture 4: Parameter estimation with PyCBC (python tutorial)



GWS IN A NUTSHELL :

» Gravitational wave
(GW): a ripple in
spacetime caused by
accelerating masses

» Emitted by changing
quadrupole moment

» Binaries emit GWs

» Lose energy as they
do; eventually merge

¢

T. Dietrich, S. Ossokine, H. Pfeiffer, A. Buonanno, AEIl Potsdam



HISTORY" :

» GWs predicted by Einstein in 1915

» First detected in 2015, exactly one century later
» What took so long?

1. GRis non-linear

2. GWs are weak

*Cervantes-Cota et al., “A Brief History of Gravitational Waves, arXiv:1609.09400 (2016)



EINSTEIN’S CHANGING VIEWS

» 22 Jun 1916, article: "...so sieht man, dal3 A (die Ausstrahlung des Systems durch
Gravitationswellen pro Zeiteneinheit) in allen nur denkbaren Fallen einen praktisch
verschwindenden Wert haben mul3." ["...so you can see that A (the radiation of the
system through gravitational waves per unit of time) must have a practically

vanishing value in all conceivable cases.”] -Nahrungsweise Integration der

Feldgleichungen, Sitzungsberichte der Koniglich Preul3ischen Akademie der Wissenschaften
(Berlin), 1916 688

» 1936 undated letter to Max Born: "Together with a young collaborator [Nathan Rosen], | arrived
at the interesting result that gravitational waves do not exist, though they have been assumed a
certainty to the first approximation.”

» 1936 Princeton lecture: “If you ask me whether there are gravitational waves or not, | must answer
that | do not know. But it is a highly interesting problem.”

Quotes courtesy Alex Nielsen



STICKY BEAD ARGUMENT

» It was initially unclear whether or not gravitational waves carry energy

» Sticky bead argument: originally due to Feynman (1957 Chapel Hill meeting)

Passing GW

'
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GWS ARE WEAK

» Consider two orbiting masses, mi1 and mg, separated by distance a

» To leading order, power radiated in GWs is:

dE 32G* (mimg)*M

dt 5 ¢? a?

» Power emitted in GWs by the Sun & Earth is ~200 Watts

» about enough power to light an incandescent light bulb

» To get something measurable, need large masses & small separation



“ am not getting anything out of the meeting. | am learning nothing. Because there are no
experiments this field is not an active one, so few of the best men are doing work in it. The
result is that there are hosts of dopes here (126) and it is not good for my blood pressure...
There is great deal of "activity in the field" these days, but this "activity" is mainly in showing
that the previous "activity" of somebody else resulted in an error or in nothing useful or in
nothing promising. It is like a lot of worms trying to get out of a bottle by crawling all over
each other. It is not that the subject is hard; it is that the good men are occupied elsewhere.
Remind me not to come to any more gravity conferences!”

- R. Feynman, letter to his wife, written while at the 1962 Warsaw meeting

From: R. Feynman, “What Do You Care What Other People Think?” P91, 1988



WE

BER BARS

» First built by Joseph Weber, physicist at University of
Maryland, in 60s and 70s

» Webe

r claimed detection of GWs from galactic center

» Problem! It his detection claims were true, amount of

Mmatte

- being converted to GWSs in galactic center

woulc

be too large; Milky Way would have

evaporated by now

» Other

s (e.g., Heinz Billing at MPI Garching) could not

corroborate the results

» Even though claims were spurious, Weber was the
first to take experimental detection ot GWs seriously




Hawking’s BH area theorem paper

"Weber has recently reported coinciding
measurements of short bursts of gravitational
radiation at a frequency of 1660 Hz. These
occur at a rate of about one per day and the
bursts appear to be coming from the center
of the galaxy.... This would imply a mass loss
from the center of the galaxy of about 20 000
Mco/yr. It is therefore possible that the mass of

the galaxy might have been considerably
higher in the past than it is now. This makes it
important to estimate the efficiency with
which rest-mass energy can be converted
into gravitational radiation.”

VOLUME 26, NUMBER 21
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It is shown that there is an upper bound to the energy of the gravitational radiation
emitted when one collapsed object captures another. In the case of two objects with
equal masses m and zero intrinsic angular momenta, this upper bound is 2=V 2)m.

Weber!™® has recently reported coinciding mea-
surements of short bursts of gravitational radia-
tion at a frequency of 1660 Hz. These occur at a
rate of about one per day and the bursts appear
to be coming from the center of the galaxy. It
seems likely®* that the probability of a burst
causing a coincidence between Weber’s detectors
is less than §. If one allows for this and assumes
that the radiation is broadband, one finds that the
energy flux in gravitational radiation must be at
least 10'° erg/cm? day.* This would imply a
mass loss from the center of the galaxy of about
20000M 5 /yr. It is therefore possible that the
mass of the galaxy might have been considerably
higher in the past than it is now.® This makes it
important to estimate the efficiency with which
rest-mass energy can be converted into gravita-
tional radiation. Clearly nuclear reactions are
the rest mass. The efficiency might be higher
in either the nonspherical gravitational collapse
of a star or the collision and coalescence of two

1344

collapsed objects. Up to now no limits on the ef-
ficiency of the processes have been known. The
object of this Letter is to show that there is a
limit for the second process. For the case of
two colliding collapsed objects, each of mass m
and zero angular momentum, the amount of ener-
gy that can be carried away by gravitational or
any other form of radiation is less than (2—vV 2)m.

I assume the validity of the Carter-Israel con-
jucture® 7 that the metric outside a collapsed ob-~
ject settles down to that of one of the Kerr family
of solutions® with positive mass m and angular
momentum a per unit mass less than or equal to
m, (I am using units in which G=c¢ =1.) Each of
these solutions contains a nonsingular event hovi-
zon, two~-dimensional sections of which are topo-
graphically spheres with area®

8mm [m +(m2—a?)1/2], (1)

The event horizon is the boundary of the region
of space-time from which particles or photons
can escape to infinity. I shall consider only




HULSE-TAYLOR PULSAR (1974)

» PSR 1913+16 discovered by Russell Hulse
and Joseph Taylor using Arecibo

» They realized the source was a binary
pulsar; systematic variation in the pulses

was due to periastron advance of the binary.

» Later found binary orbit was decaying

» Decay rate agreed exactly with energy loss
due to GWs

» Firstindirect detection of GWs

» Hulse & Taylor awarded 1993 Nobel prize in
Physics for the discovery
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Weisberg & Huang, ApJ 829 55 (2016)



GW INTERFEROMETERS

» Pioneering work by Weber and Hulse-Taylor pulsar discovery spurrea
development of better gravitational-wave detectors using interferometry

» 1980s: Planning & prototyping of kilometer-scale interferometers
» 1990s: LIGO & Virgo built

» 2000s: Initial LIGO & Virgo runs (no detections)

» 2010 — 2014: Advanced LIGO commissioned

» Sept. 2014: Advanced LIGO begins

12
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Eouy ~ cos (2mf (Ly — Ly))

From From
X-arm y-arm

Constructive

interference
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Eouy ~ cos (2mf (Ly — Ly))

7

From From
X-arm y-arm

Destructive

interference
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AL

Eout ~ CO5 (27Tf (L:U _ L?J)) T,

— strain =
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s A
Eout ~ cos (27Tf (L:U — Ly)) d% straln =

strain
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Q: Isn't the GW
stretching
spacetime, not
moving the mirrors?

How is any effect
measured at all?
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REALISTIC STRAINS

» Strain is proportional 1 / distance to source

» A BBH with m1 ~ my ~ 30Mg that is 500Mpc* away will create a strain of:

AL

~ 1021
L

» With L = 6(1km), need to measure mirror displacements of ~10-18 m

» About 0.1% the diameter of a proton

*1Mpc ~ 3 million light years

18



THE LIGO & VIRGO INTERFEROMETERS™
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THE FIRST EVENT: GW150914

» Gravitational wave emitted by the merger » Detected by the LIGO interterometers in
of two black holes, each ~30x the mass of Washington and Louisiana on Sept. 14,
the sun, ~500 Mpc away. 2015 at 09:50:45 UTC
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THE FIRST EVENT: GW150914
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SECOND MILESTONE: GW170817

» First detection of a gravitational wave from
merger of two neutron stars on Aug. 17, 2017.

| Lightcurve from Ferma /GBM (10

Fvent rate (counts /s)

» An electromagnetic counterpart was also "
deteCted / m a rki n 9 th e -ﬁ rSt jOi ﬂt GW_ E M o 250 4 Lighteurve from Ferma /GBM (50 — 300 keV)
detection.
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HOW DO WE DO SCIENCE WITH GWS?



BINARY BLACK HOLES

» Possible BBH parameters (#):

» component massesm;, m2(2) AL
X1p 7\
(] (] (] A
» dimensionless spins of

components y1, ¥2 (6)

» location & orientation (6)

25
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BINARY NEUTRON STARS

» Tidal forces cause neutron stars to deform

2 R;c2\’
A'i = —k -

» Tidal deformability depends on the
equation of state of the matter in the core

» Stars’ deformability is encoded in
gravitational wave

28
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strain (x10-20)

time (s)
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©PyCBC

Bayesian
Inference
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in Solar Masses
160

Masses in the Stellar Graveyard

R 2

80 TH

40

20 A

10

1 LIGO-Virgo Neutron Stars

GWTC-2: LIGO+Virgo, PRX 11,021053 (2021),

arXiv:2010.14527 GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
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RATE ESTIMATES

BBH - Observed BBH - Reweighted

60 00 0.045
0.040 - —— QObserved
- 20 0.035 - Reweighted
0.030 -
@40 @40— |
= =~ 0.025 -
B N |
S 30 S 30 0.020
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v SR F1071 0,010
104 ‘ 1044 " | 0.005 -
e | ' ' | ' S, ' ' ' ' ' 0.000 . . . . — ,
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Nitz, Capano, et al., arXiv:2105.09151




RATE ESTIMATES

» From current LIGO-Virgo catalog
(GWTC-2)*:

Ry = 23. 9+14 & Gpc™ yr_l

RNy = 320+328 GpC_Byr_l

* LIGO+Virgo, PRX 11, 021053 (2021), arXiv:2010.14527

Distribution of larger mass in BBH

BROKEN POWER LAW

POWER LAw + PEAK

1\5~"’IULTI—PEAK

LIGO+Virgo, arXiv:2010.14533
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(OTHER) INTERESTING EVENTS



GW190425

» LSC and Virgo detected another

gravitational wave from a binary neutron star

on 25 April 2019, GW 190425
» Source ~3x farther away than GW170817
» Hanford was down at the time
» Poor sky recovery, no EM

» Surprisingly large component masses

LSC+Virgo, arXiv:2001.01761 (2019)

1.81

— 080 |

Low-spin prior (x < 0.05)

High-spin prior (x < 0.89)

Primary mass m;
Secondary mass ms

1.62—1.88 Mg
1.45-1.69 My

1.61-2.52 Mg
1.12-1.68 Mg

36



GW190814

» Merger of a 2.6 Mg object into a
23 Mo BH

» Not certain it smaller object is a
NS or BH — more massive then
most EOS would predict for NS,
but also in BH “mass gap”

28
2.7
2.6-:
g 2.5
= 2.4
& | —— Combined PHM
o EOBNR PHM
2.2 Phenom PHM
| === Abbott+ 2018 M
211 —— Farr+Chatziioannou 2020 My
2_020. B RN REE RN "SREC "R "RER

LSC+Virgo, ApJL 896 2 (2020)
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GW190814: HIGHER HARMONICS

» Higher harmonic of the GW detected with signal-to-noise ratio ~7

his) () = (R,3) D 2V (1, ) Aum(©) exp [—i (V4 (©) + mapo)]

‘m

Original [ = m = 2 Mode Subtracted Full Subtraction

GW190814

—0.9 0.0 —1.0 —0.9 0.0 —1.0 —0.9 0.0

p—t
-
\V)

Frequency

|

Time from Merger |[s]

Capano & Nitz, PRD 102, 124070 (2020)
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GW190814: HIGHER HARMONICS

» Test GR by independently measure masses - =22
B /m =33 (vary all)

frO M €a Ch h arrmon |C Im = 33 (vary masses)

» Constrain deviation of “chirp mass” to O(1%)

1.75 I I I I I
15.0 17.5 20.0 22.5 25.0 27.5 32.5

Capano & Nitz, PRD 102, 124070 (2020)




GW190521

» Most massive binary detected to date

» LVC estimates: m1 ~ 85M¢g, m2 ~ 66M¢

» Black holes from direct stellar collapse not expected between ~50-120Mg

120 _

due to Pair-instability Supernovae (PISN)

Hanford Livingston

—_—
N
P—
—_—
Send
»
e
PN
N
—_—
—
-
o/
—_—
—
—
P
~
N
=

20
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.30 0.35 0.40 0.45 0.50 0.55
Time [s] Time |[s] Time [s]

120

40

(0202) 20L1LOL ‘G2 1dd ‘OAT



GW190521: EM COUNTERPART?

» Possible EM counterpart detectea
by ZTF ~1 month later

5190521g

» AGN J124942.3+344929
(ZTF19abanrhr)

» If the EM counterpart was caused by
GW190521, suggests merger
occurred within AGN disk.

» Unfortunately, evidence for common
source isweak [In B ~ -4 — 2.3]

Graham, et al., PRL 124, 251102 (2020)
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GW190521: INTERMEDIATE MASS
RATIO INSPIRAL?

e

Bl Uniform in M>€, g
20 - Bl Uniform in m3™, m3™ t

100

100 150 200 150 200
M5 (M) MS' (Mo )

Nitz & Capano, ApJL 907 1 L9 (2021), arXiv:2010.12558



GW190521

» Why so much confusion about the
progenitor masses?

» "Worst case scenario” for waveform
models

» Likely
partially in the plane of the binary

arge spin on larger mass,

» Maybe eccentricity?

» Majority of the observable signal
comes from after the merger

» Black hole spectroscopy!

Approximate merger time
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BLACK HOLE SPECTROSCOPY

» A perturbed black hole is formed immediately

aﬂ:er BB merger Inspiral Merger Ring-

down

XEYT

» Perturbation is radiated away in GWs

» Ringdown is a superposition of quasi-normal
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BH SPECTROSCOPY CHALLENGES

BH spectroscopy requires observation of at least two
modes in the ringdown

Ringdown SNR of dominant mode is weak, sub-
dominant modes weaker

Need binary with large total mass & asymmetric mass
ratio to measure

We thought we'd have to wait for LIGO Voyager or
LISA (10-15 years from now) to be able to obtain any
constraints

Then GW190521 came along...
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GW190521: BH SPECTROSCOPY

» Agnostic analysis: Search for dominant QNM in frequency range [50, 80) Hz
» Search for a second QNM in [80, 256) Hz, don't assume any relation between modes

I Expected 330
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Expected 550
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GW190521: BH SPECTROSCOPY

» Agnostic analysis: Search for dominant QNM in frequency range [50, 80) Hz
» Search for a second QNM in [80, 256) Hz, don't assume any relation between modes

I Expected 330
Expected 440
Expected 550

Range A

Assume this is
the 220 mode
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GW190521: BH SPECTROSCOPY

» Agnostic analysis: Search for dominant QNM in frequency range [50, 80) Hz
» Search for a second QNM in [80, 256) Hz, don't assume any relation between modes

I Expected 330
Expected 440
Expected 550

Range A

" This is where GR predicts
the 330 mode to be

O
o
o0

Assume this is
the 220 mode
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GW190521: BH SPECTROSCOPY

» We're confident the second mode
is in the signal and not a noise
artifact
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» Get a Bayes tactor of ~40 in favor
of model with 220+330 vs 220
mode only
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6f330 = —0012t8(1)(7)523

Test the no-hair theorem by allowing the 330
frequency and damping time to deviate from GR

Constrain 330 frequency to within ~10% of GR
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6f330 = —0012t8(1)(7)523

Test the no-hair theorem by allowing the 330
frequency and damping time to deviate from GR

Constrain 330 frequency to within ~10% of GR
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GW190521: STILL A MYSTERY

. . . amplitude ratio A330/A270
) Flna‘ ObJeCt 1S A Kerr BH, What 0.00 005 010 015 020 025 030 035 o040

were the progenitors? =1 Ringdown 330 mode

IMR NRSurrogate
[—1 IMR PhenomXPHM

» Can infer the mass ratio of the

binary from the amplitude of the
330 mode

» Get something in between the
equal mass and high mass ratio
results from IMR models

» Need better waveform models

» More events | | 0.6 0.4
mass ratio

Capano et al., arXiv:2105.05238 (2021)




GW190521: STILL A MYSTERY

. ] . amplitude ratio A330/A550
Final object is a Kerr BH; what 0.00 005 010 015 020 025 030 035 0.40

were the progenitors?

1 Ringdown 330 mode

IMR NRSurrogate
Can infer the mass ratio of the [ IMR PhenomXPHM

binary
330 m

cerso We're doing BH spectroscopy now!

equal
results

Need better waveform models

More events | | 0.6 0.4
mass ratio

Capano et al., arXiv:2105.05238 (2021)



FUTURE PROSPECTS
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Gravitational-wave detectors are continually getting more sensitive
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Reitze et al., arXiv:1903.04615
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» ~2030: LIGO Voyager (not shown): ~2x more sensitive than O5



LISA

» Space-basead
iInterferometer

» Planned to launch in
2034

» ~5 year mission

» 2.5 million km long
arms

95

Albert Einstein Institute/Milde Marketing/exozet effects, https://youtu.be/x-k112InxfY



https://youtu.be/x-k112InxfY
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LISA

» Will be sensitive to BH binaries with masses 103 — 109

» Will also be possible to do joint detections between LISA & ground-based detectors
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http://gwplotter.com

3G DETECTORS: LATE 2030s — 2040s ~

Europe: Einstein Telescope (ET) US: Cosmic Explorer (CE)

10km underground arms in triangle formation 40km arms (L shaped)




FUTURE SENSITIVITY

.
10—23_
I~
E
=y
= LIGO A+
g v
é 10-24 oyager
E
% Cosmic Explorer 1
Cosmic Explorer 2
10—25_
10 100 1000
Frequency (Hz)

Reitze et al., arXiv:1903.04615



Binary neutron star
(with simulated post-merger signal*) Tidally disrupted NSBH

L, !

e S 102
frequency (Hz)

frequency (Hz)

» Will be possible to measure post-merger signal, even at cosmological distances [1]

[1] Haster et al., PRL 125, 261101 (2020 *BNS post-merger from Fig. 7 of: J.A. Clark et al., CQG 33 085003 (2016)




PRE-MERGER
ALERTS

» With 3G detectors we will be
able to localize BNS before
merger

» Localization capabilities depends
on the network that is built

» Bestcase: ET+aCEinUS +aCE
in Australia

» ~200 BNS / year localized to
<10 deg? 5 min. before merger

» ~//year <1 deg?

Nitz and Dal Canton, in prep.
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RECAP

» It has taken a century of developments to detect GWs.

» Now that we are detecting them, we're able to do astrophysics and
test fundamental physics.

» Future observatories will make it possible to do ever higher
precision measurements.
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OUTLINE FOR TODAY

» Morning:

» Lecture 1 (this one): Overview and current results (slides)

» Lecture 2: GW parameter estimation & detection (whiteboard)
» Afternoon:

» Lecture 3: Matched filtering with PyCBC (python tutorial)

» Lecture 4: Parameter estimation with PyCBC (python tutorial)
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GWS AT COSIVIOLOGICAL

DISTANCES
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Forz = 1.6, GW amplitude
at fixed frequency grows
with increasing redshift
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