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Current astrophysical constraints
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The radii are less well determined, but NICER experiment predicts ~ 13 km for 1.4M¢.
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Current
astrophysical

constraints

@ The millisecond pulsar J1614-2230 in a binary with a white dwarf,
M = 1.97 4+ 0.04M ¢ (Demorest et al. 2010), Relativistic Shapiro delay.

@ The millisecond pulsar J0348+0432 in a binary with a white dwarf
M = 2.01 £ 0.04M (Antoniadis et al. 2013) [theor. assumptions about WD
cooling.]

@ The millisecond pulsar J0740+6620 M = 2.1410- 90, (NANOGrav, Cromartie et
al. 2019) Relativistic Shapiro delay.
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Current astrophysical constraints

GW170817: First gravitational waves from a neutron star merger
(Ligo-Virgo-Collaboration)

[2]

The associated EM events observed by over 70 observatories :
@ 42 sec gamma ray burst is detected
@ +10 h 52 min bright source in optical
@ +11 h 36 min infrared emission; +15 h ultraviolet

@ +9 days X-rays; +16 days radio

6
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Current astrophysical constraints

Equation of
Sl (o bRy New nuclear physics laboratories

neutron star
mergers and
e foumperatuefx, ) [MeV ! Oyl )
core-collapse i 120
supernovae: 52 45 105
Lecture 1: .
Hadronic N N o0
Phases 14 3 i
. 3
A Sedrakian . ) 0 00
4 s N 1
Current i .
. . 132 30
astrophysical 1
constraints 28 0 L
00
)1 :
- . 20 b - - o
B [ TR () =50 -5 -1 -5 0 T U b}
k] % ko] ]
pictures courtesy: J. Pappenfort

@ extreme high temperatures ~ 100 MeV

©

supra-nuclear densities ~ 5 X ng

@ high and differential rotation rates

The 0"~ model
Computing the currents
Solutions for meson
iclds

Energy and pressure o

nuclear matter

v‘m node 7/104
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Equation of Binary neutron star inspirals
state for binary
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core-collapse
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Current

astrophysical
constraints

The gravitational wave signal allows for extraction of the tidal deformability of the two
neutron stars A and A,.

A

Qj = —A&, A=sq,

where Qj; is the induced quadrupole moment, £;; is the tidal field of the partner.
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Current astrophysical constraints

Equation of
state for binary Tidal deformabilities extracted from GW170817 event

neutron star

mergers and

core-collapse 3000

supernovae: h [x] <0.05 P

Lecture 1: N
Hadronic 2500 1 ‘\‘
Phases \
\
N
A Sedrakian S
2000 - \
2.
Current 3 %
astroph ~ \ & Less Compact
Serieat < 1500 1 2
constraints
A

The &-w model . . . . R
S — Soft EoS are favored by this analysis. There is a strong correlation between the radius and
Solutions for meson . oye . LR
rade the tidal deformability, i.e., small deformabilities favor more compact stars are favored.
Energy and pressure of y
nuclear matter
Ext

on of the model
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Current astrophysical constraints

@ Extreme mass asymmetric ratio created by a 22.2 — 24.3 M, black hole and a
2.50 — 2.67 M compact object (no em counterpart).

@ Light object’s nature is enigmatic as it is in the mass gap 2.5Ms S M S SMg
where no compact object had ever been observed before.

GW190814 - a compact object from pseudo-mass-gap for compact objects

Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars

, Aaron Geller | Not
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The 0 -w model

Computin

fields

Current astrophysical constraints

Front-side hotspot rotates through the line of sight

<
= <>
= ~106K
~
= ~105K
S
- =
— é i
= gf 1
= =
= =r
Y &2 \/ \"/ .
— ; NP B M - .
Pulse phase
v
Pulse-profile modeling of the isolated 205.53 Hz millisecond pulsar PSR J0030+0451
observed in X-rays by NICER experiment:
@ 14470 Mo —> 13.02F] 2 km, Miller et al 2019.
@ 13470 PMg —> 12.717] |3 km, Riley et al 2019.
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Current astrophysical constraints

@ Einstein’s field equations:

A robust prediction of gravity theory is the
existence of maximum mass of neutron stars
independent of the input equation of state:

Current
astrophysicz

Guy = Ryy —

1
ERgm, = 8T,

constraints

@ Energy-momentum tensor:

Tuv = =P(r)guv + [P(r) + e(r) upuy

v

TOV equations describe static spherically symmetrical stars:

dP(r)
dr
The 0 -w model
M(r)

fields

Energy

nuclear

_ Ge(r)M(r)
o)

(

P()
e

)

M(r)c?

I L L | T
2 ()
20 e
D16F
2 L, =AM
2 ot S —L =smey
S +
08 kN Q=300 NeV
Ru=L, —Q,, =800 eV
Ry 243
04r. R, =50
| - 1
1 2 1B v u
R [km]
473 P(r) 2GM(r)

c2r

)0

‘P[e] N M,R,I,Q,...‘

)*’.

E

of the model
|

4
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B I1. Phases of dense matter
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Phases of dense

matter
|
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The 0"~ model
Computing the currents 5 5
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Current
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constraints

Phases of dense
matter

Equation of
state of dense
matter:
non-relativistic

DFTs

Equation of
state of dense
matter
relativistic
DFTs

The 0"~ model
Computing the currents

Solutions for meson
fields

Energy and pressure of
nuclear matter

Extension of the model

Phases of dense matter

Internal structure of a compact star

Outer crust r< 13 km
relati

tic electrons, nuclei

p=05 psat
Inner crust r<12km
neutron-rich nuclei,
pasta phases, unbound
neutrons, electrons

P = Pgat

Outer core r< 10 km
neutrons, protons,
electrons and muons p>20p

sat

Inner core r<6km

Full baryon octet of spin-1/2 baryons, non-strange spin-3/2 Delta-resonances,
mesonic Bose condensates, color superconducting phases of dense quark matter
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Phases of dense
matter

The 0 -w model

Computing the currents

Energy and pressure

Goals:
(]

o

Phases of dense matter

Construct an EoS in a form of density functional: the pressure of dense
zero-temperature matter is a functional of energy-density: P(e(r))

The parameters of the functional are adjusted to the available data; in our case
astrophysics and laboratory data.

Ab initio calculations are data — check compatibility and adjust if required.

DFT must be versatile enough to accommodate the baryon spin-1/2 octet and
spin-3/2 decouplet.

Fast in implementation to generate quickly families of EoS

DFT’s :

4

Non-relativistic DFTs (e.g. Skyrme or Gogny classes):

(a) high accuracy at low-densities (+)

(b) extensive tests on laboratory nuclei (+)

(c) relativistic covariance is lost and high-density extrapolation is not obvious (-)
(d) extensions to heavy baryons not straightforward (-)

Relativistic mean-field models of nuclear matter reinterpreted as DFT:
(a) relativistic covariance, causality is fulfilled automatically (+)
(b) The Lorentz structure of interactions is maintained explicitly (+)
(c) straightforward extension to the strange sector and resonances (+)
(d) fast implementation (+)
(e) the microscopic counterpart is unknown [not a QFT in the QED/QCD sense] (-)
v
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The & -w model

Computing the currents

Equation of state of dense matter: non-relativistic DFTs

Two-body Hamiltonian

- 1 .
H= Z (ei — 1) alTai + 2 Z(U\V|kl)a;ra;a1ak
i ijkl

Green’s functions (GF) expressed through creation and annihilation operators

af (")) = n{af (Y ()] = ({a (),

Time evolution of the GF is built from the Heisenberg equation of motion

Gn(i-¢) =-i06—1) [{a@ ai (1))
i%Glz (=) =608 (1= ) + {([ar,B] ol ()
which after substitution of A

S8 (t—1)+(e1 —p) G2 (1= 1)

(f')>> = 5 (il VIkD) <(afazak)t ,a} (t’)>>

l%clz (l = l/)

3 3 (s ivik  (dfarcr)

ijkl

where

(- - ) stands for (exp(iH))(- - - ) (exp(—iHr))
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Equation of state of dense matter: non-relativistic DFTs

Bamsiton ol Mean-field approximation consists in breaking-up the correlator into pairs:
state for binary

neutron star
mergers and <<a alak> (t >> = 6]1 <a al> <<ak(t >> — Ojk <a ak> <<al
core-collapse

supernovae:

Lecture 1: which leads to Hartree-Fock equation of motion for GF

Hadronic

Phases d
A Sedrakian iEGu (t = l/) 6120 (I = l,) + (61 — /.l,) G (l — l/)
+ SO UUIVIG) — (1IVI0} (afa) Ge (r = 1)
jk
In the momentum space this gives

Equation of d
state of dense . / / /
lelI[C(l)'i( " lacpa (t_t) 6(t_t) +(€P_p“) Gpa (t_t)

non-relativistic

DFTSs + Z(P k|Vp, k) < A ot He,o! >GPa (t=1)

—> p:p—alVlp—4,p) <a;_q,a/“p—q,a'> Gpa (1= 1)
qo’
The o -w model

Computing the currents

1)

the mode
N
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Equation of state of dense matter: non-relativistic DFTs

GF

L A - 11
Gap(E) = E/ Gap(t)e™dt, Gpa(E) = T
o —Ep

where the pole of the GF explicitly reads

Ey=cp—p+g Y (0. kVIp,Km — > (p,p — alVIp — q,p)np—q,
k q

where g = (25 + 1)(27 + 1) = 4 for nuclear matter and g = (2s + 1) = 2 for neutron

matter

1
_ /[ _
n = <ak,aak,a> =GR

The statistical average of the Hamiltonian gives us the internal energy
8
U= (Hy =g ewm+ 2> (kK VIkK)nen
k Kk’

1
+ 5 Dk —alVIk = g, Ky
kq

The integro-differential equation is brought to an algebraic form via a Fourier transform of

20/104



Equation of state of dense matter: non-relativistic DFTs

Equation of

state for binary
neutron star Skyrme interaction
mergers and

core-collapse

; e 1 = —
bizz::;)evf Vio = 1d(r; —r2)+ 511 [5 (r; —r2) K+ k%5 (r; — rz)] + tzk/ 2o(rp—rp) Kk
Hadronic
Phases 1 o
+-=t3p 6(1‘1 — 1‘2)
A Sedrakian 6
Plane-wave matrix element
_ 1 B 5 1 2
(a2 [Vi2| @3qu) = 705K12,K34 o+ op”+ 5 (kiz —ksa)” + (11 + 12) ko - kss
Equation of Single-particle energies

state of dense
matter:
non-relativistic

_ g — 1 13 3
DFTs Ep = (6p - IL) + W (l + gpo) /d kny,
1 (g — l)l 1 g+1 t2:| / 3
+ + K)2mdk
(2r)? [ 4 4 (P = k)'m
S The first and second terms are Hartree and Fock contributions respectively.
v

Solutions for meson
ields

of the mode
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Equation of state of dense matter: non-relativistic DFTs

The internal energy for the Skyrme functional is

Vo 3 g—1 W / B7Bns 3
Uu = d’k — d’kd’k o+ =p°
(27r)3/ nier + 2 (2ny nny |\ to + i
1 W / 3.3 ,3t1 + 50 ’ 2
- &kd’k' —— (k' — Kk
2 (2m)0 e Gl LY

The free-energy can be constructed at finite 7'

F U-TS

using the expression for the entropy

S=kg»_ [mInng+ (1 —nm)In(1l = n)]
k

In the zero-temperature limit from the internal energy we find the energy per particle

Ey 3 3 t3 G.) 3 >
== — | £ = — (3¢ 5t) pk
N 5€F+8(0+6P P+80( 1 + 5t) pki
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Equation of state of dense matter: non-relativistic DFTs

The isotherms of symmetrical nucelar matter for a Skyrme interaction.

p (Mev fm3)

Symmetrical nuclear matter EoS has a van-der-Waals gas equation of state (v is the volume

per particle v = n

—1

, n number density, b-repulsion, g-attraction)

RT
v—>b

23/ 1(§



Equation of state of dense matter: non-relativistic DFTs

Equation of

s o ey @ Symmetrical nuclear matter exhibits liquid-gas phase transition below the nuclear
neutron star saturation density p; = 0.16 fm—3.
mergers and . . .
core-collapse @ The critical temperature can be read-off from the isotherm which has the property
SEPemOV‘TEI of OP/0p = 0 as the temperature is lowered.
ecture 1:
Hadronic @ The isotherms should be corrected by “Maxwell construction” (see books on stat.
Phases

phys.)
@ one can introduce “order parameters” m = p; — pc or m = |pg; — pc|, where p. is
the critical density and p;/, are the liquid and gas densities.

@ the external “field” is given by h = P — P..

A Sedrakian

Critical exponents:

@ [-exponent my ~ (T, — T)ﬁ, h—0and T — T,

Equation of

state of dense o 7y exponents
matter:
non-relativistic P
DFTs m ’
~ (= ~(T-T) T>T. [(I.—-T)"" T<T.

@ JS-exponent
|P—Pelr=r, ~lp—pc|® T=T. PP
The o -w model

Computing the currents @ «-exponents
Solutions for meson

v~ (T—T)™ T>T. [(T.—T)"% T<T]
of the mode

<
! 247104




Equation of state of dense matter: non-relativistic DFTs

Equation of
state for binary

neutron star Left: Skyrme forces can be extended somewhat to have more parameters to fit the data.

B —— Extended models are able to reproduce accurately the microscopic calculations.
core-collapse
supernovae: ‘
Lecture 1:
Hadronic
Phases 300, T T T 300
—SNM LYVAI —LYVAT P T
A Sedrakian 250 - EEM IﬁgéAl a) ® Akmal etal.
o 250] » Lietal.(V18)
:)' Pg% EII\BIG Lietal. (BOB),
200~ S N B o BBG
|- PNM LNS =
§ 150 §
= £150F
< z
3 100 Z
= j00f
Equ:xtlgn of 50
state of dense S0F Pyl 7

matter: 0
non-relativistic

DFTs 0

1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
5
n[fm’]

Left: Equation of state of symmetric nuclear matter (SNM) and pure neutron matter
The &-co model (PNM) in the case of Skyrme interaction, see arxiv: 1509.05744 by Davesne et al. A&A
Computing the currents 585, A83 (2016). Right: Equation of state of PNM for various microscopic models (dots)

e and Skyrme force (solid line).

the mode
N

[N
JV
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Equation of state of dense matter: non-relativistic DFTs

There is another class of models (Brussels-Montreal ) of Skyrme models that have been
extensively developed and tested on finite nuclei. The EoS can be compared to
microscopic EoS.

e
1400F - BSk22
— BSka4
[ - BSkzs
1200 BSK26
4 APR
1000F o LS2 —
>
o 800f ]
z
v 6001 N
400F ]
200 1
" m\m\ P Y O I I A Y A O

010203040506070809 I L112131415
nffm’]

EoSs for completely degenerate neutron matter with functionals from Pearson et al.
MNRAS 486, 768 (2019). The points APR refer to the calculations of Akmal et al. (1998)
and Li and Schulze (2008).

4
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Equation of
state for binary
neutron star
mergers and
core-collapse

@ Stellar matter after few instance after birth settles in equilibrium with respect to the
[B-decay (Urca) reactions:

supernovae: n—p+e +v p+te —n+r, D
Lecture 1:
Hadronic
Phases which implies that 5-equilibrium condition
A Sedrakian
Nn:/ip+/$e+llu 2)
@ after initial seconds after birth cold neutron stars are transparent to neutrinos
A >R — =0, 3)
Equation of

state of dense
matter:

non-relativistic @ The matter must be charge neutral
DFTs

where ), is the neutrino mean free path, R is the radius.

Zqini:()v i:n’pvewufz"' 4)
i

@ In hot matter neutrino-trapped matter A\, < R, the matter is still charge neutral but
el

e no [B-equilibrium, which requires to fix one additional quantity, typically electron
A faction Y.
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Equation of state of dense matter: non-relativistic DFTs

Equation of

. b I e e e T B L T o e e e ] o B o e
Sl (o bRy E_wome, BSK22 | [ BSk24 e, BSK25
neutron star ol ~ JE ’\' 3
mergers and E 1 E } E
core-collapse ~ 15[ ’I e t L 1
supernovae: = : £ + £
Lecture 1: s L[ : 4F f 4k B
Hadronic [ b [ f 1F
Phases 05 [ L4k JF 3
5 ., 5 1F
£ o il \‘u§ JF o
A Sedrakian EL o1 T [ I TG [ S IR ) I I I
10 11 12 13 14 10 11 12 18 14 10 1L 12 13 14 10 11 12 13
g5 T T T { I
—~ xS
=22 PR E
PR =<,
BN E E s
E I I I I I I |
11 115 105 11 115 10 105 11
1sF T "~ Tty T4 T T T g
- £ o -
Equation of = b = E _* 2 - 3
state of dense w  F o -7 S
matter: = osf e e e ol = 3
Ccpaaune B0 L Y e Y I -
non-relativistic 120 13 131 124 125 126 12 122 124 1176 1179 11.82
DFTs Ry [km] Ryg [km] Ryg [km] Ry [km]
Solutions of TOV equations for the Skyrme functionals [from Pearson et al. MNRAS 486,
768 (2019)].
The 0 -w model
Computing the currents y

Solutions for meson
ields

Energy and pressure
nuclear matter
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IV. Equations of state of dense baryonic matter:
relativistic DFT's



Equation of state of dense matter: relativistic DFTs

Equation of 9.9
s o ey Empirical parameters of nuclear matter

l'::g:r‘l f::; Our empirical knowledge about nuclear matter is based on the information coming from
core-collapse nuclei which are restricted to the densities around the nuclear saturation density
supernovae:

Lecture 1: 3 14 3

Hadronic ng = 0.16 fm po = mpny = 2.8 X 10°"g cm™".

Phases

A Sedrakian The information on nuclei in their ground state is encoded in the semi-empirical
liquid-drop formula:

by (N—2Z\* 72
_ 2 274 2 2/3 _
M(A,Z) = Ampc°by + Amgpc 1 (7A ) ~+ mpc |:b5A71/3 + brA b3Z .
——
Asym

We have introduced the symmetry energy coefficient, whose empirical value is

asym = 32.5 MeV.

Equation of
state of dense

— Nuclear matter — an infinitely extended collection of nucleons can be deduced from the
relativistic mass formula when A — oo. In this limit the volume term < A will survive. The binding
DETs energy of nucleus (which is always negative) is the difference between M(A, Z) — Amg -
The o -w model

R ——— the energy of non-interacting collection of A nucleons at rest:

B
‘ — = —16.3MeV.

30/ 1(§




Equation of state of dense matter: relativistic DFTs

Equation of )
state for binary Reminder on Lagrange theory
neutron star
mergers and To formulate the theory of nuclear matter at and above the saturation density we need to
core-collapse use the field theory methods. The quantum field theories are commonly formulated in the
e lapguage of Lagrangian dynamics. The key principle underlying these theories is the
Hadronic minimum of the action S
Phases
A Sedrakian 68 =0, 5)
where § denotes the variation. The action is defined through the Lagrangian density as
15) 3 15) 4
s= "t [ #r216(),0,000] = [ ats£ 16,000, ©
1 f
where we assumed that the Lagrangian depends on the field ¢(x) and its derivative
O, ¢(x). Here x is the four (time and space) coordinate, the Greek indices run from 0 to 3
and denote the components of the vectors in the time and space. Please note that these two
Erwsionas are treated as independent variable in the Lagrangian. The variation of the action leads to
state of dense the Euler-Lagrange equation
matter:
relativistic
D#ts oL 9 _oc 0 7
The 0"~ model 9¢(x) H 3(8u0) :
el (For a derivation see any book on quantum field theory).
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the mode
N

Equation of state of dense matter: relativistic DFTs
For a scalar uncharged field o (x) the free-field Lagrangian is given by

Lo = % (3#(7()6)8“0()6) - mzacrz(x)> .

®
The corresponding Euler-Lagrange equation is the well-known Klein-Gordon equation
& o?
O+m2)ox) =0, O= — — —— 9
(@ +m3)o() = ©)

where [J the d’ Alambert operator. For a vector field, say w,, (x) with a mass m,, we need

to define the strength tensor (as in the case of electromagnetism) which is related to the
derivatives of the vector field

Wpr = Opwy — Opwy. (10)
Then, in analogy to the electromagnetism, the Lagrangian of the theory can be written as
nv 1 2
Lo =—-wpw"” + -m

7 5 S wuwh.

an
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Equation of state of dense matter: relativistic DFTs

The Lagrangian of free p-field is given by

1 nz m% n
»C«p = 71P,uup T TPN P (12)

As above the p field is divergenceless and its equation of motion has the form

O+ m)p,(x) =0. (13)

Finally all the fermions in the theory of nuclear matter are described by the Dirac
Lagrangian

L=p3d—mp)p, P ="y, (14)

where my is the fermion mass and we used the “Feynman slash” notation @ = v*9,,,
where y# is the Dirac matrix (see any text on Quantum Field Theory). The corresponding
Euler-Lagrange equation is the know as the Dirac equation

(i — mp)y = 0. (15)

Nuclear matter is a strongly interacting system, i.e., we need to add to the free Lagrangians
also interactions. The modeling of interactions is not unique - there exist many theories
that seek to describe the nuclear matter. We will start with the simplest one and add some
more details later on.

y
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Equation of

state for binary The o-w model
1 L g 9.9 989 g
;e;g:rt Z;l; Here we describe a minimal model of relativistic nuclear dynamics where the degrees of
core-collapse freedom are nucleons (i.e. neutrons and protons) which interact with each other by an
Sipe{""v";ei exchange of o scalar meson and w,, vector meson; (here y is a Dirac index).
ecture 1: . .
Hadronic The Lagrangians of free nucleons and can be written as
Phases
A Sedrakian ENJree 'lZJ (ivua" = m) 'lZJ (16)
1 1 2 2 1 1 pnv 2 n
Loy free 2 Ouooto —myo°) — 5 \ gumwt” —m wuwt | 17)

where the first term in braces represent the contribution of the o-meson and the second
term - the contribution of w,-meson. The interactions between the nucleon and meson
fields are described by the interaction Lagrangian (x = x* = (¢, x,y,2))

Lin = 8o ()P(1)Y(x) — gwwp ()P ()7 9 (x). (18)

The total Lagrangian is

£

_ 1

Bliv (" + iguest) = (m = go o)} + 5 (8400 — m2o?)
—_—

The 0 -w model DM 7"5

1
Zwuuw’“’ + Emzwwuw“. (19)
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Equation of state of dense matter: relativistic DFTs

The Euler-Lagrange equations for this Lagrangian are given by

(@ +m3)o(x) 8o P(x)p(x), (20)
(B + m)wp (x) = 0u0" wy (x) gup()rut(x), QD)
{ [i0" — gow ()] = [m - goo ()} P(x) = 0O, 22

These equations represent a set of coupled non-linear differential equations. They can be
solved in a so-called mean-field approximation, which implies that the meson fields can be
replaced by their mean values in the ground state denoted as (o) and (w,,). Assuming
static, uniform matter we can drop the x-dependence of the fields. In that case the
differentiation operators acting on field will give zero and (20)-(22) will reduce to

m2{o) = go(Px)Y(x)), 23)

mi(wo) = gu(¥T(®)p(x), 24
my(wp) = gu@E@Y®), (25
{7 10" — guw (W) — (m — go (o)} (x) = 0. (26)

The quantities on the right-hand side of Eqgs. (23)-(26) are called nucleonic currents and
we shall discuss in a moment how to evaluate their expectation values denoted as (. .. ).
From now on we shall denote the constant values of the meson fields using the same
notation as before, i.e., o0 = (o), etc.
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Equation of . . .
state for binary We first work out some results that are not directly related to the theory we are discussing,
e ?la(‘; but are necessary to make further progress. Nucleon wave functions are momentum
ngzgf;fljsse eigenstates in uniform static matter, therefore we can write them as plane waves
supernovae: ¥(x) = (k) exp(—ik - x), where the four-scalar product is defined as k - x = kot — k - x.
Il 1l With this definition the Dirac equation reads
Hadronic
Phases
*
A Sedrakian {’YH [k'u - gww”] - (m - gUU)} ¢(k) = ('YMKN =L )’Lﬁ(k) =0. (27)

where K = k* — g, ,wH, m* = m — gyo0. We can also use the “Feynman slash”
notation ¥ = v, k* to write the Dirac equation in a compact form

W —m")p(K) = 0. (28)

We now find the eigenvalues of the Dirac operator corresponding to the plane waves. To
this end we multiply Eq. (74) by a factor (| + m™)

E+m ) B —m") = KK —m? = yaKysK? —m*?
aaB B A
- Ka[(ﬁw -
= KoKpg®® —m*? = KoK® — m*?, (29)

The 0~ model

where we used the property of the Dirac matrices that {y*, 7%} = 2¢®#, where
{a,b} = ab + ba denotes the anti-commutator of operators a and b.

v
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Equation of state of dense matter: relativistic DFTs

Energy eigenvalues

The Dirac equation now reads
(KaK® —m*)P(K) =0, — KoK® —m*? =0. (30)

Writing the last condition explicitly, i.e., KoK® — K - K — m*? = 0, we obtain for the
absolute value

K& = +VEK> +m* ::I:\/(k—gww)z-i-(m—gga)z, 3

where the upper sign corresponds to the particle and the lower sign to anti-particles. Here
we inserted back the expressions for some of the renormalized quantities. Now we recall
that per definition KO = k% — g,,w?, so that the substitution in Eq. (31)

K = guw® + 1/ (k— guw)? + (m— go0)?, (32)

Thus we conclude that the eigenvalues of the Dirac equation corresponding to particles and
anti-particles are

e(k) = +1/(k — guw)? + (m — g50)? + g, (33)

&k) = [ (k — guw)? + (m — g50)* + gut. (34)

v
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Equation of .
state for binary Computing the currents

neutron star . . . .

mergers and Our next task is the computation of the expectation values of the currents on the right-hand
core-collapse side of Egs. (23)- (25). We denote by « all the internal degrees of freedom of the nucleons,

S i.e., spin, and isospin (neutron’s isospin is -1/2, proton’s isospin is 1/2)

Lecture 1: -€., Spin, o S § 1S0SpIn 1S °P P . : 9

Hadronic The first step is to compute the currents and we start by identifying the so-called Dirac

Phases Hamiltonian. Let us rewrite the Dirac equation (27) as
A Sedrakian

(Ypkt = yugow! —m*) o (k) = (voko — v -k — guyuw! —m*) o (k) = 0. (35)
After multiplying this equation by -y from left and recalling that ’yg =1
ko — 0 (v -k + guypw! +m*)]ha(k) =0, —  Hpib(k) = koo (k) (36)
where we defined the Dirac Hamiltonian as
Hp =y (v - k + gwypw" +m*). (37)

The expectation value of the Dirac Hamiltonian for particle states is given by (see Eq. (31))

(vTHDY), = ek) = \/(k = guw)? + (m — go0)? + guwn, (38)

Computing the currents y
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Equation of
state for binary

Consider the derivative of the left-hand side of this equation with respect to any parameter
neutron star .
—— entering Hp (say, 1),
core-collapse
supernovae: 8 8HD 8
Lecture 1: —_ TH ) — ipa—} _ ( T ) 39
Hadronic 87] (’lp D'(/} k,a (1/) 87] ,¢ k.o * ( )6 w w ( )
Phases ’

GASEH N The derivative in the second term vanishes because the quantity (ww}) is normalized

to some number (typically 1). Since we already computed the bracket on the left hand side,
see (38), we can further write

- (\/(k = gww)> + (m — go0)* + gwwo> = (W Ot ) (40)
87’] 77 k,a

)

Let us use this result in several cases:

@ 1 = wy, which implies
OHp
— t = T~2 T —
gw = (w o w)k’a =g (whgw), .~ ('), =1 @

The &~ model which is just the normalization of states.

Computing the currents o

39/104



Equation of
state for binary
neutron star
mergers and
core-collapse
supernovae:
Lecture 1:
Hadronic
Phases

A Sedrakian

The 0"-w model
Computing the currents

Solutions for meson

Equation of state of dense matter: relativistic DFTs

@ 17 = k, which implies

o] _
o \/(k — guw)? + (m — go0)? = (Wvo’vw)kﬂ = (P7)k o

which corresponds to the nucleonic current.

@ 17 = m, which implies

o (V= gl =007 ) = (w200), = (0.

or after taking the derivative explicitly

m—goo _
V(k — guw)? + (m — g50)?

(V) ko -

“42)

43)

(44)
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Solutions for meson fields

Now we need to compute the statistical averages of the currents derived above. For any
Dirac matrix I" these are defined as

e =3 / (ST, falk 45)

where (1/_)F1/1) k.o, means the expectation value in the quantum mechanical sense computed
above, fo (k) is the Fermi distribution function for nucleons with internal quantum number
«. The degeneracy factor g = 2 for purely neutron matter and 4 in symmetrical nuclear
matter (equal number of protons and neutrons). Thus we find that m* = m — g0

pr= BWHW) = %(W)kﬂm:g/ o o
v = ) = (2) C(09) 0 = of i, )
=GO = of o ()@
o e cr + = g0
= 2 (;’:;B%e(m—gwwdf(k): (;r'; ok )f(k) (48)
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Equation of
state for binary

Note that the last term is simply proportional to the velocity of the quasiparticle
neutron star

mergers and v = Oe(k)/ Ok (as is natural to expect from the definition of the current). Since for
core-collapse homogeneous fluids the velocity is along the momentum we concluded that the integral is
EITeEEE zero. But this quantity acts as a source in the equation of motion of the wy, field (see
Lecture 1: B _ . . .
Hadronic Eg. (25)); therefore we can conclude that wy, = 0. It is seen that the vector density py is
Phases simply the density of baryonic matter. The scalar density pg has no immediate physical
/A St interpretation, except than it acts as the source of the o-field. Returning to the equations of

motions in the mean-field approximation (23) and (24) we obtain
mio = gops, mMLwo=gupv, w =0. 49)

Note that the first relation represents an integral equation for the scalar field o. Indeed as
see from the explicit expression

2 3
8o d’k m—goo

’ k), 50
§o7 (mg) g/(27r)3 \/(k — gow)l+ (m— gga)zf( ) (50)

the variable g, o appears on both side of the equation. The solution can be found by an
iterative procedure.

The & -w model
Computing the current

Solutions for meson
fields

e 42/104



Equation of state of dense matter: relativistic DFTs

Equation of
state for binary Energy and pressure of nuclear matter
::g;g:rt Zf; With the Lagrangian theory of fields the energy (the 00 component of the energy and
EC-ERlEe momentum tensor) and the pressure (the sum of the remaining diagonal components
e divided by 3) are given by
Hadronic
phises e = —(L)+ (Wrokop), (51)
A Sedrakian 1 -
po= L)+ k). (52)
The contribution of the Dirac fields to (£) drops out by the Dirac equation, whereas in the
mean-field approximation the terms with time and space derivatives are zero. Then
[ S S
(L) = ——mgo0” + —m,wj. (53)
2 2
The second term in Eq. (51) originates from the expectation value
(Pyokoth) = (b1 e(k)vp) therefore we find
T &k &k 2 *2
W) = g Gose®r) =gf 5o (guwo + Vi +m2) )
The 0"-w model 3
@i (i s >k D) 2 2 2 2 2
R — = gwwop t+ 8 @y K2 + m*2f (k) = mi,w; + g K2 + m*2f (k).
’

nuclear matter
Extension of the mode

Al IR 43/104



Equation of
state for binary
neutron star
mergers and
core-collapse
supernovae:
Lecture 1:
Hadronic
Phases

A Sedrakian

The 0"~ model
Computing the currents
Solutions for meson
iclds

Energy and pressure of
nuclear matter

Extension of the mode
1 jmms

Equation of state of dense matter: relativistic DFTs

Further we have

_ &k k- (k— guw)
@y ko) = of £(6)
27)° /(k — guw)? + (m — go0)?
&k K2
= (k). (54)
g/(27r)3 Vi + (m— gga)zf( )
Thus, summarizing the result we can write that
laga. 1 94 Pk
€ = SMs0o + Mo +g ( k + m* )f(k)7 (55)
2 2 (2m)3
L, , 1, 5, 1 [d% K?
= —= — k). 56
P SMo 0" + Smawy + 2 P VT —gao)2f( ) (56)

In the zero temperature limit f (k) = 6(kr — k). This constrains the momenta of particle to
those within the Fermi-sphere. Then we can write

Bk ke dk k2 [ d2
Okr —k)--- — =—ocoa
g/ (2m)3 (ke ) g/o 272 47

k- dk k2
g / (57)
0

272

where . .. stand for any particular function in the integrand.
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Equation of i
state for binary Equation of state
neutron star
mergers and

Thus the equation of state in the zero temperature limit reads
core-collapse

supernovae: 1 dk k
Lt ¢ = gt piedve [ SRR oY
Phases k 2 3
. 1 1 1 F dk k k
A Sedrakian p = 2m2 o? + 7m wo 9P = /0 o (59)

2+ (m—goo)?

As in the case of an ideal gas the Fermi momentum and density of protons (p) and neutrons
(n) are related to their Fermi momenta by

i k3
Fi F
Pn = 37:27 Pp = 3?1 (60)

where we have carried out the summation over the two spin direction, but have kept the

isospin explicit. Note that we have a parametric form of the equation of state p(€e) where
the parameter which relates these two quantities are the densities

Energy and pressure of
nuclear matter
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Extension of the model to include scalar self-interactions

Since the field equations for the meson field depend on two parameters, the ratios of the

core-collapse coupling constant to the mass of the corresponding meson go /m., and g, /m., we can fix
supemoyac: the magnitude of the binding energy and the saturation density. The remaining observables
%f:;;‘;illc of nuclear matter are predictions: the model predicts K = 550 MeV and m* /m = 0.5 in
Phases disagreement with the empirical data. These parameters can be fixed if one assigns some
A Sedrakian self-interaction to the scalar mesons, i.e., the Lagrangian of the theory changes to
1 3 1 4
L= Low = 3bmp(850)" = soms(g00)", ©1)

where ¢ and b are two additional parameters that can be used to fit K and m™* /m.
(Subscript o — w refers to the two-parameter o — w model.) Clearly, the additional term
will change the equation determining the o field to

2 k
8o 2 f D) m—goc0 2 2
o= (" — dkk® ——————— — bm(go0)" — c(go0 . (62)
8o (Hﬂr) |:7r2 h /K2 T (m7, g[,a)z) (gd ) (gd )

The energy and pressure of the model with self-interactions is

The 0"~ mode 1 1

e ¢ = Sbmp(go0) + Zomp(go0) + o (63)
\\i\‘\\‘\”” o 1 3 1 4

Bncrgy and pressure p = _gme(gO'O') —Zcms(gaa) +Po—w (64)

E

o
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Equation of
state for binary The inclusion of the p-meson is needed to describe the isospin asymmetrical nuclear

neutron star . .

—— matter. Weialrea}dy dls_cussed the free Lagrapglar.l of th(.: p-meson field (13_). Th.e vector py,
core-collapse is must be invariant with respect to the rotations in the isospin space. The invariance
SEP“""V*;C: follows from fact that the Lagrangian consists of scalar products in the isospin space. The

Ct 8 g 9 9 g 9
lf:d::;ic rotation in the isospin space can be written as
Phases
A Sedrakian Py — Py + A X Pu =Py + e,-jkAjpk, (65)

where A is an infinitesimal vector in isospin space. The isospin current according to the
theorem on Noether currents can be written as

oo 9L = x 25 (66)
i o) NP1 58,0,
= o x 2 (Lo — e ot = p, x . 6T)
®7 doup, 147 2 K K

Computing the current
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vector for nucleons 7:

where the first term is the isospin current of nucleons, the second is the isospin current of
the free p-field, whereas the last term is the contribution Eq. (69).
The o -w model

Equation of state of dense matter: relativistic DFTs

The interactions lead to addition term in the p-meson Lagrangian of the type

Lot = —8pp” - (P! X puy) = —8o(P” X P") - pyy-

(68)
The contribution of this term to the isospin current is evaluated in the same manner
- 0L, ;
v _ p,int
4 PuX 35 =

_ o By, _
x 90yp,, = t8oPu X 90up,, [(p x p7) - (Bapp 8ﬁp°‘)]
28pp, X p7H.

(69)
The total isospin current is then obtained by summing the meson contribution together

with nucleonic contribution, which is simply the Dirac current multiplied by the isospin

P =

1 -
Eww +pu X PH +280(p" X p) X p,,

(70)
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Equation of state of dense matter: relativistic DFTs

The interaction of a p-meson with the matter is described by coupling the isospin current
to the meson-field, i.e.,

Lp=—gopy, - T". (71)
As a consequence of this interaction the Dirac equation will change; this change follows
from
0 Eim 8p v
— 5 =5 - TP, 2
9% ) WP P (72)
@ Finite isospin in baryonic matter induces non-vanishing component of the 3
component of baryon isospin current.
o

Baryon isospin current in the direction of 1 and 2 components their expectation
values will vanish.

Matter is neutral — only the neutral p meson will survive.

Only non-vanishing component of the p-meson is the pg, which will couple to the
3-component of baryon isospin current.

Similar to the w-meson the spatial component of the p meson field will vanish.
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Equation of

state for binary As a consequence of the items above we have
neutron star
mergers and

core-collapse 1 g 2 _ g 2 1

supernovae: gppg = = (i> <¢'YOT3¢'> = (i) ) (pp - p"):

Lecture 1: 2 \m P mp 2

Hadronic

2
Phases 1 8 7
. ot = L (i) (Worry) = 0. 3)

A Sedrakian 2 mp

The Dirac equation (27) now becomes

1
{w (k“ gk — Egmpg‘) - gaa)} (k) = 0. a4

The & -w model
Computing the currents

Solutions for meson
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Equation of
state for binary The eigenvalues of this Dirac equation will acquire new terms due to the p meson
neutron star t b t
mergers and Soltmbuuon
core-collapse

supernovae:
Lecture 1: E(k) =4/ K2 4+ (m - gaU)2 + guwo + gppglg, (75)

Hadronic

Fhases &(k) = —\/ (K2 + (m — g50)? + guwwo + goP313, (76)
A Sedrakian

Finally we need to construct the energy and pressure of asymmetrical matter. The
statistical average of the Lagrangian of the theory will acquire an additional term

1
(£) = (L) + Smp - an

To evaluate the energy density we need

3
(Brokot) =g / %(%okolﬁ)kf(k) (78)

The 0 -w model

Computing the currents
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Equation of
state for binary We can carry out the spin and isospin summations now. Because of the isospin degeneracy

neutron star - . . .
—— we will have different contributions for neutrons and protons

core-collapse

supernovae: _ 1 1
Lecure I (Drokod) = — / [gwt® + 52003 + VA2 + m2lnr ()R dk
Hadronic s 2
Phases
+ L [gww® — Lo ot + V2 4+ m*2ng (k) K> dk (79)
A Sedrakian 2 w 2 8pP3 F,n )

where the indexes p and n refer to neutrons and protons. The parts of the integrand which
do not depend on k variable can be easily integrated and will give the densities of neutrons
and protons respectively. Further using the field equations we obtain a simpler form of the
equation above

(Pvoko) = miwj+mhpgs

1 1
+ = / VI 4+ m*2np , (k) dk + = / VI 4+ m*2np , (k)k>dk80)
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Equation of A .
state for binary Collecting all the terms we obtain
neutron star
mergers and 1 1 1
core-collaps 3 4 2 2
L:l:;;:oj::f = gbmg(gga) + ZcmB(gUU) 2Ms0 + —m2,w + mppog
Lecture 1:
Hadronic
Phases +2 Z ( k? + m*z)f(k)’ (81)
A Sedrakian ==y
b ( )3 1 ( ) s L 5 5 n 1 i 1
= — —bm, g — —Ccm, g — —m o m (.AJ —m
p 3 B8 I B\8o B 2 0T 3 ppoz

+

f(k

k2
P> G v &

where we carried out the spin summations (factor 2) and « summation is over the neutrons
and protons. In the ¢ — w model and its extension that included the self-interactions the
asymmetry between the neutrons and protons was induced by the fact that they were filling
different Fermi spheres, but there was no energy cost of converting the neutron to the
proton. As a consequence the symmetry energy was not reproduced by these models (this
was about the half of its empirical value). Including the p meson we were able to account
- S for the missing part of the symmetry energy. It provides the missing energy that favors

dads isospin symmetrical nuclear matter. This term, as expected, is proportional to pZ, term in
Energ nd pressure ¢
o mate the energy density which rises the energy of the system quadratically with the asymmetry.
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Energy and pressure of
nuclear mater

E

of the mode}
N |

Hypernuclear matter: relativistic DFTs

Beyond nucleons: Baryon octet J” = 1/2%F and baryon decuplet J? = 3/2+

Strangeness carrying baryons + resonances (excitations of a nucleon)

n
)

i

dﬂu\ﬂ‘_

lﬁu

-+

En ]1
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Hypernuclear matter: relativistic DFTs
Hyper-Nuclear matter Lagrangian:

- . 1
Ly ng {’Y’L (lau ~ 8wBBW — S8pBBT - PH) — (mp — 80330)} Vg
B
baryons
1 . 1 5 5 1 o 1, .
+ 58 o0uo — SMa0” — W Wy + Mo Wy

mesons
1 _
2P P+ Emf)p“ Pt Y UA(IV O — my)
A

mesons

electromagnetism
leptons

@ B-sum is over the baryonic octet B = p,n
@ Meson fields include o meson, p,,-meson and w;,-meson

@ Leptons include electrons, muons and neutrinos for 7' # 0

1
¢)\ - ZF'uVFuV )

——

Two types of relativistic density functionals based on relativistic Lagrangians

@ linear mesonic fields, density-dependent couplings (DDME2, DD2, etc.)

@ non-linear mesonic fields; coupling constant are just numbers (NL3, GM1-3, etc.)
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Hvpernuclear matter: relativistic DFTs
Hyper-Nuclear + Delta matter Lagrangian:
Equation of
state for binary

neutron star

mergers and

_ , 1
core-collapse Lym ZwB |:’Yu (lau — 8wBBWu — EngBT Pu ) — (mB - gg-BBO') VB
supernovae: B
Lecture 1:
Hadronic baryons
Phases 1 1 3 3 1 1 2
— M _ _ D - w
A Sedrakian + 28 o000 mgo® — 2wy + 5 MWH W
mesons
1 Lo u T (in" 8 L pnvp
2P P T SmoP -pu—i-E :d’)\(l’Y e — mx)Px — 1 s
A N——
mesons electromagnetism
leptons

@ B-sum is over the baryonic octet B = p,n, AT, ATT A0 A= A »+0 =20
@ Meson fields include o meson, p,,-meson and wy,-meson

@ Leptons include electrons, muons and neutrinos for 7' # 0

Nucleonic excitations from J? = 3 /2% decouplet have couplings nearly the same as for
nucleons

The & -w model

1g the currents

AT, ATT A0 A

of the model
1N

Changes the charge neutrality conditions and S-equilibrium
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Hypernuclear matter: relativistic DFTs
Equation of o o . .
state for binary Fixing the couplings: nucleonic sector
neutron star
mergers and
core-collapse

supernovae: 2
Lecture 1: _ . . 1+ b,-(x + dl)
Hadronic gin(p) = gin(po)hi(x), 1=0,w, hi(x) = Y eetd)?

Phases + L,(x —+ l)

A Sedrakian gPN(pB) =

gpN(po) exp[—ap(x — 1)].

DD-ME2 parametrization of D. Vretenar, P. Ring et al. Phys. Rev. C 71, 024312 (2005)

o w p
m; [MeV]  550.1238  783.0000  763.0000
gni(po) 10.5396 13.0189 3.6836
a; 1.3881 1.3892 0.5647
b; 1.0943 0.9240
ci 1.7057 1.4620
d; 0.4421 0.4775

e Total number of parameters 8: boundary conditions on /(x) atx = 1.
Computing the currents

Energy and pres
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The & -w model

Computing the currents

Hypernuclear matter: relativistic DFTs

Fixing the couplings: hyperonic sector

Roy = gav/8an and Kay = foy/gay for hyperons in SU(6) spin-flavor model

R\Y A > =

Roy 2/3 2/3 1/3

Roxy  -V2/3 -V2/3 2v2/3

Ry 2/3 2/3 1/3

Kwy -1 1+ 2KkwN —2 — KwN
Rgy -V2/3 -V2/3 2v2/3

Kgy 2 4+ 3KkwN —2 — KN 14 2Kk0N
Rpy 0 2 1

KpYy 0 =3/54+(2/5)kon  —6/5— (1/5)kpN
fry 0 zaps —(1/2)04175

aps = 0.40. k is the ratio of the tensor to vector couplings of the vector mesons.
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Hypernuclear matter: relativistic DFTs

Breaking the SU(6) symmetry: hypernuclei

A-hypernuclei

Single-particle energies of the A 1s; /; states, binding energies, and rms radii of the

A-hyperon, neutron, and proton of IIZO, 41C, and ‘1‘\9Ca are presented for optimal model. In

addition, single-particle energies of the A s, /, states, i.e. separation energies of the
A-particle, obtained from the mass formula of Levai et al (1998) are given for these
A-hypernuclei. Furthermore, the properties of '°0, “°Ca, and *3Ca are given for the
optimal model. The optimal model obtained in this way has x, A = 0.6164.

Eass|[A 151/2} E[A Is; /5] E/A 7 n A
[MeV] [MeV] [MeV] | [fm] [fm]  [fm]
70 —12.109 —11.716 | —8.168 | 2.592 2562 2.458
1}60 = —8.001 | 2.609 2.579 =
YT —17.930 —17.821 | —8.788 | 3362 3.309 2.652
OCa — — —8.573 | 3372  3.320 =
BCa —19.215 —19.618 | —8.858 | 3379 3.562 2.715
Ca = = —8.641 | 3389 3.576 =
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The & -w model

Computing the currents

Hypernuclear matter: relativistic DFTs

Breaking the SU(6) symmetry: hyperonic potentials

The depth of hyperonic potentials in symmetric nuclear matter are used as a guide the
range of hyperonic couplings:

@ A particle: V/(XN) (po) ~ —30 MeV
@ = particle: V& (pg) ~ —14 MeV
@ X particle: VéN) (po) ~ +30 MeV

These ranges capture the most interesting regions of the parameter space of masses and

radii.

The depth of A-potentials in symmetric nuclear matter are used as a guide the range the
couplings:

@ Electron and pion scattering: —30 MeV +VXV)(p0) < Va(po) < Vn(po)
@ Use instead RyA = gmA /gmn for which the typical range used is

Roa =1, 08<Rua <16, Rya =R,a+02.
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Hypernuclear matter: relativistic DFTs

Equation of 1
state for binary EoS of hypernuclear matter and TOV solutions
neutron star
mergers and

core-collapse T / T T T T T
supernovae: 35 - -
Lecture 1: 4.0x10 - x6270‘15
Hadronic | |——- x;=065
Phases
3s =0,
A Sedrakian _ 30x10° 1 Yo 06164
s I
o
g .
S20x10°F
%
e
10x10° 04 R
4
£
F y'?‘ 4
0.0
" 15 5 ‘ ‘ \ ‘ ‘ ! ‘
5.0x10 1.0x10 \ 1.5x10 012 5 m
efg em’] R [km]
@ EoS of B-equilibrated and charge neutral hypernuclear matter
S @ Hyperon puzzle: Hyperons tend to soften the EoS —> it can become incompatible
Computing the currents with the data on the masses of massive pulsars.
R @ GW170817 modeling indicates upper limit on the maximum mass of NS 2.17M¢,
—> required for DD models to push the maximum mass to lower values.

y
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The & -w model

Computing the currents

Solutions for meson

Hypernuclear matter: relativistic DFTs

EoS of hypernuclear + A matter and TOV solutions

RHF - PKO3

'

I=3

t=3
T

w
S
S

P (MeV fm™)
no
o
o
T

o
S
T

50 [

M (M)

@ Softens the EoS at intermediate densities and hardens it at high densities

@ Decrease in the radius of the stars; no significant changes in the maximum mass
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Hypernuclear matter: relativistic DFTs

Equation of Symmetry energy and higher order characteristics

state for binary
‘;ee‘;g:[: Z‘[‘;‘; — How robust are the previous results?
1 F: TR . . .

core-collapse — Check the sensitivity on the modeling of the EoS and inclusion of A-resonance matter
supernovae:
Lecture 1: .
Hadronic Model study — varying parameters

Phases

A Sedrakian

E 1 1
X(P, B) = Esat + 5KsatX2 + ngatX3 + Esym52 + Lsym(szX + ﬁ(X47 X252)

where § = (1, — np) /(nn + 1p), x = (p — po)/3po and

Ega  saturation energy
Ksa  compressibility
QOsat  skewness

Esym symmetry energy

Lsym slope of symmetry energy

Values of A-potential are changed in a range

The & -w model

5 4 5
Vv <Va < EVN - Va= |:VN§ EVM gVN}

v
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The 0 -w model

Computing the currents

Solutions for meson
fields

and pressure of
atter

Hypernuclear matter: relativistic DFTs

5 T T T T T
Varying Lsym
o Ar -
E
> 3| mmn | L, €[40,60]
s I Y
N 2f I NY4 " 4
2
a 1t n 4
Q. €[250,800]
0 1 1 1 1
1 2 3 4 5 1
PPy

R (km)

11 12 13 14
R (km)
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The 0 -w model

Computing the currents

Solutions for meson
fields

and pressure of
atter

Hypernuclear matter: relativistic DFTs

5 T T T T T T T T T T T T
K_ =220 MeV K_ =280 MeV
sat sat
4 N
I NY4
3L ] 90%-c

P (10° MeV fm?)

R (km)

9 10 11 12 13 14 9 10 11 12 13 1

R (km)
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Hypernuclear matter: relativistic DFTs

Equation of

state for binary
neutron star
mergers and
core-collapse
capernovac: by 24 e
Lecture 1: //,7’ i | i
Hadroni L i
i Qulyw V%) 571 20|
A Sedrakian - 3FTT (200, 50, 4/3) ’,;','{'/ - 3
o ----(800,50,513) 4
[ e T A R
o (480, 60, 5/3) s
2ot s 15L2r
N 73 -
- 4 08
o &
1t Y - -
” A
i 0.4 + N 3
I ¢ @ 1 L (b) &
0 it N N N IO Y oo J AP I AN ERNI B
1 2 3 45 6 7 11 12 13 14
PP, R (km) )
The 0 -w model
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The 0 -w model
Computing the currents

Solutions for meson
fields

and pressure of
nuclear matter

f the model

Hypernuclear matter: relativistic DFTs

M, o (M)
- -

—NY:

R,, (km)

[ [y 3 [
1.8 1.9 2.0 221 22 125 13.0 13.5

14.0

80

@)Ky,

=220

(0] 300 600
Q_. (MeVv)

sat

900 O

300 600
Q.. (MeV)

sat

900
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The & -w model

the mode
N

Hypernuclear matter: relativistic DFTs

Gauging the low-density limit of DFT with chiral interactions

50 T T T
@
S —L,,=40
2 —L_ =60
2 251 sm .
< =8 80
w

E/A (MeV)

0.0 0.5 10 15 2.0
p/psa(

The low-density EoS: comparison between microscopic EoS and DFT.

69/104



Hypernuclear matter: relativistic DFTs

Equation of B
Ty Compositions of hypernuclear matter
neutron star
mergers and
core-collapse
supernovae:
Lecture 1:
Hadronic
Phases

10°

Franction Y

A Sedrakian 107

Fraction Y.

Fraction Y

The 0"-w model 102
Computing the currents 0.1 02 03 04 05 06 07 08 09 10 11

Solutions for meson p (fm™)

fields v

and pressure of

matter

Extension of the model
e N
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Hypernuclear matter: relativistic DFTs

Equation of AP
state for binary Dependence of characteristics
neutron star
mergers and
core-collapse
supernovae:
Lecture 1:
Hadronic
Phases

A Sedrakian

Particle Fraction Y,

Particle Fraction Y,

The & -w model

Computing the currents

tions for meson

v
d pressure of

nucle

matter

Extension of the model
e N
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Hypernuclear matter: relativistic DFTs

Equation of !

sueforbinary — PDependence of A-potential depth
neutron star
mergers and

core-collapse 100
supernovae: E T .y n T T T T T (a)' 3
Lecture 1: £ (200, 50, 4/3V,) | 3
Hadronic r —
Phases p
A Sedrakian E ]
> 2
- 10°F E
S 3 I /
3] L 2 + ]
S 10° [ AT ) VA
I T A L PR S B BN
2 F (480, 60,M ® 3
Q F
& 10% [
[a F_~="7"
107
00
1 2 8 4 5 6 7
plog,
v
The 0 -w model

the currents

Solutions for meson
fields

Energy

nuclear

E

of the model
|
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Hypernuclear matter: relativistic DFTs

Equation of 2 |
sute forbinary — Tidal deformabilities

neutron star

mergers and

core-collapse The tidal deformability A can be expressed in terms of the dimensionless tidal Love
PPN number k, and star’s radius R as
Lecture 1: 2
Hadronic A= 7](2R5. (83)
Phases 3
A Sedrakian The tidal Love number k; is calculated along with the solution of the
Tolman-Oppenheimer-Volkov (TOV) equations.
More convenient to work with the dimensionless tidal deformability A, which is related to
the Love number k; and the compactness parameter C = M /R
2 kp
A=)/M ===, 84
M =25 (84)
The total tidal effect of two compact stars in an inspiraling binary system is given by the
mass-weighted tidal deformability
<16 | (M) + 12M)M}A
A:iwﬁ_lﬁzl (85)
13 (M1 + Mp)3
proemn where Aj (M) and A, (M,) are the tidal deformabilities of the individual binary
oo e components.
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The & -w model

Computing

e currents

Solutions
fields

for meson

Energy and p

E

of the model
r N

Hypernuclear matter: relativistic DFTs

Tidal deformabilities hypernuclear + A-resonance matter and
GW170817 constraints

3.0 o

A, A, [10%]

P S

2.0 L~
0.0 0. i
—N
Q,,, =300 MeV o gv .
*\——Q_, =800 M o
A Qua e R = a3

0.5 1.0 15 2.0 25 3.0
A, A, [107]

Astrophys. J. Lett, 874 (2019) L22
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Computing the currents
Solutions for meson
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Energy and pressure of
nuclear mater

Extension of the model
1 jmms

Hypernuclear matter: relativistic DFTs

Mass-dependence of tidal deformabilities NY A matter

A [1036 qr cm’ sz]

A[107

0.04

Q,,, = 300 MeV.
——Q,, = 800 MeV
; :

o

MIM_]

10 12 14 16 1.8 20 10 1.2 1.4 1.6 1.8 2.0

MIM_]




Rapidly rotating stars and GW 190814
Equation of
state for binary
neutron star
mergers and
core-collapse
supernovae:
Lecture 1:
Hadronic
Phases

A Sedrakian

VI. Rapidly rotating compact stars
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Rapidly rotating stars and GW 190814

— GW190814 event: extreme mass asymmetric ratio created by a 22.2 — 24.3 M, black
hole and a 2.50 — 2.67 M compact object (no em counterpart).

— Light object’s nature is uncertain as it is in the mass gap 2.5 Me < M < 5 M where no
compact object had ever been observed before.

GW190814 - a compact object from pseudo-mass-gap for compact objects

Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars.

GWT olot v1.0
LIGO-Virgo | Frank Elavs aron Geller | Northwestern



Rapidly rotating stars and GW 190814

Equfﬂli?)l? of — GW190814 event: extreme mass asymmetric ratio created by a 22.2 — 24.3 M, black
S[::ul;’;n o hole and a 2.50 — 2.67 M, compact object (no em counterpart).
mergers and — Light object’s nature is uncertain as it is in the mass gap 2.5 Mo S M < 5 M where no
core-collapse compact object had ever been observed before.
supernovae: y
Lecture 1: 8 @O
. Speculations:
Phases @ Simply a stellar-mass black hole (formation mechanism from SN explosion is
A Sedrakian questionable)

@ The formation path via stellar evolution - hierarchical triple systems - remnants of
previous mergers?

@ Static neutron star - purely nucleonic with stiff EoS - tension with GW 170817

@ Rapidly rotating stars (Keplerian star) but with softer nucleonic equation of state
compatible with GW170817

@ Non-nucleonic degrees - hyperons, A-resonances, quarks

@ Hyperonization in tension with the compact star interpretation.

Hyperons and A-resonances:

@ Lj, Jia Jie, Sedrakian, Armen; Weber, Fridolin; Physics Letters B, 810, 135812,
The o -w model
(2020)

Computing the currents

Solutions for meson @ Sedrakian, Armen; Weber, Fridolin; Li, Jia Jie, Physical Review D, 102, 041301
(2020)

v
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The & -w model
Computing the currents

Solutions for meson

Rapidly rotating stars and GW 190814

PSR J0030+0451

10 12 14 16 18 20 2
R [km]

Solid curves — static solutions; dashed curves - maximally rotating (Keplerian) solutions.

— Nucleonic models are compatible with both event GW 170817 and GW190814 and
NICER with and without rotation

— Hyperonic models are compatible with GW 170817 and NICER with and without
rotation but are inconsistent with GW 190814 being a compact star even assuming
Keplerian rotation — Physics Letters B, 810, 135812, (2020)
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The 0 -w model
Computing the currents
Solutions for meson
fields

Energ;
nuc

y and pressure of
r matter

Extension of the model

Rapidly rotating stars and GW 190814

600

P [MeV fm?]

P [MeV fm?]

[0} 200 400 600 800 1000 1200
£ [MeV fm?]

EoS and the corresponding speed-of-sound squared for (a) N and (b) NYA matter. In (a) Q € [—600, 900] and Lgym
€ [30, 70]. EoS with O = 0, Lyym = 30 and 70 are shown by solid and dash-dotted lines for illustration. In (b) O
€ [300, 900], sym € [30,70] Vp/Vy = 1,4/3 and 5/3 EoSs with Q = 600, Lsym = 50 and three indicated values

of Vp are shown for illustration.

4
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Rapidly rotating stars and GW 190814

Equation of 2.8 swirdsTTemE o
state for binary 24 . —
neutron star 20 g —?_‘\\_‘_\'}
mergers and - ) \}
core-collapse &0 “\‘\/'Ii/“

MM]

e B Zid

Hadronic b ((( (@«

0.4 -
Phases
0.0
A Sedrakian
22
Current 2.0
astrophysical i 18
constraints —
= 16
Phases of dense &3
14
matter '
1.2 -
Equation of
state of dense 40
matter: 1
non-relativistic ag
DFTs 2.8
- 24
Equation of —_
state of dense = ?°
matter = 16
relativistic 12
DFTs os
The 0 -w model
0.4
Computing the currents
Solutions for meson R [km]
fields
B onl presmmeme] Mass-radius (a) mass-tidal deformability (b) for static N-stars. (c) Mass-radius for

el matier maximally rotating (Keplerian) sequences.

Extension of the model




Rapidly rotating stars and GW 190814

Equation of 2.4 T
state for binary 2.0 Fom=30053 - Jo7a0+8620 |
neutron star
mergers and _ 8
core-collapse = 12
supernovae: =
Lecture 1: o8
Hadronic 0.4
Phases
0.0
A Sedrakian
2.2
2.0
'
18
2
< 16
14
12
1.0
i o 400 800 1200 1600 2000
A
2.8 T T T
‘GW190814's secondary
2.4
2.0
= 16
=
12
0.8 -
The 0 -w model 3
0.4
Computing the currents 15 16 17 18 19 20
Solutions for meson R [km]
ficlds
Energy and pressure of Mass-radius (a) mass-tidal deformability (b) for static NY A-stars. (c) Mass-radius for

nu

e maximally rotating (Keplerian) sequences.

Extensionof the model 29
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Current
astrophysical
constraints

Phases of dense

matter

Equation of
state of dense
matter:
non-relativistic

DFTs

Equation of
state of dense
matter.
relativistic
DFTs

The 0"~ model
Computing the currents

Solutions for meson
fields

Energy and pressure of
nuclear matter

Extension of the model

Rapidly rotating stars and GW 190814
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Computing the currents

Solutions for meson
fields

and pressure of
atter

Rapidly rotating stars and GW 190814
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40
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Maximum masses of (a) static and (b) Keplerian NY A-stars. The A potential

| Keplerian V, =5/3V,
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Va = 5/3Vy, the maximal value studied.
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Rapidly rotating stars and GW 190814

Equation of X
state for binary Conclusions on GW190814:
neutron star @ A rapidly, uniformly rotating compact star made of purely nucleonic matter could

mergers and
core-collapse

have been the secondary stellar object involved in the GW190814 event.

e @ Taking hyperon and A-resonance populations into account our EoS models reduces
Hadronic the masses of compact stars. In particular, the maximal masses of non-rotating stars
Fhases are reduced to 2.0 Mo S M < 2.2 Mg if Qs 2 300 MeV. So none of these
A Sedrakian models comes even close to the 2.5 M constraint set by GW190814.

@ In this case, the stellar models computed for a strongly attractive A-potential in
nuclear matter of VA /Vy = 5/3 reach the 2.5 M mass limit rather comfortably.
The situation is strongly depending on the Qgat and Lsym values.

@ We note that all the valid EoS models in this figure lead to R; 4 and A 4 values that
are in agreement with observation.

@ The combinations required for Qsar and Lsym lie outside the range covered by
presently known non-relativistic and relativistic nuclear density functionals. A few
exceptions to this are the functionals with values Qsar = 500 MeV and the

possibility of Ml‘?:l;‘ler/M@ >2.5.

@ aneutron star interpretation cannot be excluded at this time, but would require a
range of extreme assumptions:
(a) rapid (Keplerian) rotation, which may not be reached due to various instabilities
P that may set in at lower rotation frequencies;
Solutions for meson (b) strongly attractive A-resonance potential in symmetric nuclear matter;

Energy and pressure ¢ (c) large, positive value of the isoscalar skewness Qsar parameter.
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VII. Universalities of global characteristics at finite 7



Universalities relations

Equation of
state for binary Universalities of TOV solutions:
neutron star
mergers and @ Universal (independent of the underlying EoS) relations among the global
Lf[:;;sgjfge properties of compact stars - / — L — Q relations. (Yagi and Yunes 2013a; Maselli
Lecture 1: et al. 2013; Breu and Rezzolla 2016; Yagi and Yunes 2017)
HSSf?"fC Well established for:
ases (a) zero temperature slowly rotating stars
A Sedrakian (b) rapidly rotating cold star

(c) magnetized cold star

@ Finite temperature stars (proto-neutron stars, BNS remnants) - universalities,
I — L — Q relations and I(C) are broken (Martinon et al. 2014; Marques et al.
2017; Lenka et al. 2019). Both S =Const and S-gradients

@ But if one considers fixed values of (S/A, Y7 .) universal relations hold - accuracy
comparable to cold compact stars; A. Raduta, M. Oertel, A. S., arXiv:2008.00213

@ Universalities also hold for rapidly rotating hot stars for fixed values of (S/A, Y .)
S. Khadkikar, A. Raduta, M. Oertel, A. S. arXiv:2102.00988

@ Universality can be used to extract the maximum mass of hot static compact stars
from GW170817. arXiv:2102.00988
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Equation of
state for binary
neutron star
mergers and
core-collapse
supernovae:
Lecture 1:
Hadronic
Phases

A Sedrakian

The & -w model

Computing the currents

Universalities relations

Universal relations that are tested

@ Normalize moment of inertia I = I/ (Mng) as a function of compactness
C= M(;/RZ B
T=co+c1C+crC* + c3C + esC*. (86)
@ Another normalization 7 = 1/ (M3,)
T=aC""' +aC %+ a3C3 + a4y, (87)
@ Tidal deformability X = A /M(S; Vs compactness
C=bi+bylnX+b; (InX)°. (88)
@ Quadrupole moment 0= QM(;/J2 (J is angular momentum)
O=e+eC ' +eC 7 +eac (89)
@ Binding energy of the star Ep = Mp — Mg:
E d,C
& 4t . (90)
Mg  1—dC
v

88/104



Equation of
state for binary
neutron star
mergers and
core-collapse
supernovae:
Lecture 1:
Hadronic
Phases

A Sedrakian

The & -w model
Computing the currents

Universalities relations

18 —— RG(SLy4)
....... NL3-wp; N

16 NL3-wp; NY
FSU2H; N

14 FSU2H; NY
SRO(APR)

HS(DD2)
,,,,,,, BHBAG
SFHo
10 SFHoY
— -« HS(IUF)

T=0, ],LL=0

et | L L L

05 1 15 2 25 3
e (10" glem®)

Pressure of cold, 3-equilibrated neutron star matter as function of its energy density

according to the EoS models. The symbols indicate the central energy density of the

maximum mass configuration for cold, 5-equilibrated matter.
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The 0 -w model
Computing the currents
Solutions for meson
fields

Energy and pressure of

nuclear matter

Extension of the model
|

Universalities relations
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Equation of
state for binary Conclusions on universality of static stars:
neutron star
mergers and @ Martinon et al. 2014; Marques et al. 2017; Lenka et al. 2019 have argued that
Lf[:;;:gfff thermal effects induce deviations from the universal relations. These findings were
Lecture 1: confirmed.
Hadronic . . . 5 9
Phases @ When the universal relations are studied using various EoS at the same entropy per
A St baryon and the same lepton fraction, universality is recovered.
@ [-Love-Q relations are valid if equations of states are tested under the same
thermodynamics conditions, for example S/A and Y.
o
Relating static (TOV) and Keplerian (K) star properties
@ value of the maximal mass of Keplerian configuration
Mg = CgMioy,
@ circumferential radius of the maximum mass static configuration (x refers to
maximum mass star)
Rk = CgRoy,
@ rotation frequency of this maximum mass configuration
The o -w model
Computing the currents * __ % * _ * 1/2 3/2
L f& = Cixiov, Moy = (Mioy/Me)'/? - (10 km/Rioy)*
C ons for meson v
ields
Energy and pressure c
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Relating the static and Keplerian properties of hot stars

@ Maximum mass
ME(S/A, Ye) = Ciy(S/A, Ye)M§ (S/A, Ye)
@ Radius of maximum mass star
Ri(S/A, Ye) = CR(S/A, Yo )RS (S/A, Ye) ,
@ Rotation frequency of maximum mass star
FE(S/AXe) = CF(S/A, Yo)xi(S/A, Xe) |
@ And not only for the maximum of a sequence, but for same M and fixed S/A and

Y.
Rk(M) = CrRs(M) ,

1/2
fe(M) = Cras(M), x5 = [(M/Mo) - (10km/Rs(M))*] "
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The different normalizations (cold vs hot) show that the universality is broken when

normalized to the cold TOV mass and is maintained if normalized by static hot star.
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Maximum TOV mass from GW170817
Previous work by used universalities for cold stars to extract the upper limit on the TOV
mass

Moy < 2.16701 1M Mty < 2.3Mg

Scenario supported by observations and numerical simulations:

T T T

diff. rot. hypermassive NSs

ot supramassive NSs

Figure from Rezzolla et al. ApJ Lett. 852, L25 (2018)
@ the merger leaves TOV behind a hypermassive neutron star (HMNS)

@ the internal dissipation leads to vanishing internal shears and eventually to uniform
rotation.

@ the star enters the region of stability of supramassive neutron stars close to the
maximum mass

@ the star crosses the stability line beyond which it is unstable to collapse

y
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Maximum TOV mass from GW170817

@ The extraction of the upper limit circumvents the full dynamical study and uses the
baryon mass conservation at at merger t = 0 and collapse t = t.

Mp(te,S/A, Ye) = Mp(0) — Mou — M,
@ Go over from the baryon to the gravitational mass
Mp(te, S/A, Ye) = n(S/A, Ye)M(te, S/A, Ye) = n(S/A, Yo )ME(S/A, Ye),

The last step assumes that the star is Keplerian (Shibata et al 2019 relax this
assumption).
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The analysis of GW 170817 gives us the values:

Universalities relations

Mi(S/A,¥e) = s [n(OM(O) — Mo — M. o1

M(0) = 2.73Mp F{ 5

Mej = 0.04 £ 0.01Me5 — Mout + Mej = 0.1 £ 0.041
In GW170817 the primary/secondary masses lie in the range 1.35 < M /M < 1.6

for cold compact stars based on our collection of EoS we have

n(0) ~ 1.120 & 0.002 for M = 1.6M¢, and 1(0) ~ 1.085 & 0.001 for
M = 1.2Mg

For our estimates we adopt the value 7(0) ~ 1.100410-0014 leading to

—0.0003
Mg(0) = 3.0070 0 M.

Assuming that the star is rotating at the Keplerian frequency. We then find that
1(2,0.1) >~ 1.139 4 0.004 and 7(3,0.1) ~ 1.099 £ 0.003. For the quantity
(Mouwt 4+ Mej) /1(S/A, Y.) we obtain 0.087 = 0.036 and 0.091 = 0.037

for S/A =2and 3 and Y, = 0.1,

Substituting the numerical values we find

M§(2,0.1) = 2557006 Mg (3,0.1) = 2.6470:06.
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Next step gives us maximum mass of non-rotating hot compact stars, using universality

0.05 0.05
M%(2,0.1) = 2191003, ME(3,0.1) = 2361005,
The universality is broken, but we can deduce an upper limit on the maximum mass of cold
compact stars. The average values C3; = 1.19 +0.04 for § = 2 and Cj; = 1.18 £ 0.11
for S = 3 can now be used to obtain, respectively,

v 1240.0940.16 v g 10.1040.44
Moy = 215500750 160 Moy = 22470 0750 44

(20 standard deviation)

@ Constant entropy per baryon and constant electron fraction star (?)

@ S/A =2 and 3 - average values for the inner part of the merger remnant.

@ more precise result would require a profile for S
Conclusion: Accounting for the finite temperature of the merger remnant relaxes the
derived constraints on the maximum mass of the cold, static compact star, obtained in by
Margalit-Metzger 2017, Rezzolla et al 2018, Ruiz et al (2018), Shibata et al (2019a).
Universality is lost and the final upper limit becomes EoS dependent due to the EoS

dependence of Cy;.
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Equation of
state for binary
neutron star
mergers and
core-collapse

supernovae: Summary of topics covered in Lecture 1
Lecture 1:

Hadronic

Phases
A Sedrakian @ Astrophysical constraints

@ Density functionals for non-relativistic nuclear matter (Skyrme)

@ Density functionals for relativistic hypernuclear matter with A resonances
@ Mass, radius, tidal deformabilities for static stars

@ Rapidly rotating stars

@ Universalities of global parameters

The & -w model
Computing the currents
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