Lecture 2. The Galactic Archaeology

Chiaki Kobayashi (Univ. of Hertfordshire, UK)

The Origin of Elements

CK, Karakas, Lugaro 2020, ApJ

※Purely theoretical, no empirical equations.※Mass-loss is counted toward AGB or ccSN.

dotted lines: solar values

Galactic Chemical Evolution (GCE)

The amount of each element in the interstellar medium (ISM) at time t $\frac{d(Zf_g)}{dt} = E_{SW} + E_{SNcc} + E_{SNIa} - ZV + Z_{inflow}R_{inflow} - ZR_{outflow}$

decreased by

star formation

NSM

Metal ejection rates

- nucleosynthesis yields
- initial mass function (IMF) •
- binaries, SNIa/NSM progenitors •
- nuclear reaction rates

Nuclear Astrophysics

Nuclei in the Cosmos XIII, Debrecen 2014

Galaxy Evolution

One-zone models (1)

(Tinsley 80, Pagel 97, Matteucci 01...)

Inflow

Outflow

instantaneous mixing approximation

Stochastic models (2)

(Argast+04, Cescutti 08, Wehmeyer+15)

- inhomogeneous enrichment
- Hydrodynamical simulations (3)
 - inhomogeneous enrichment
 - internal structures
 - metallicity gradients
 - comparison to IFU!

Cosmological box, or "zoom-in" for MW

Initial Mass Function (IMF)

The number, or mass contribution, of stars formed at a given initial mass m

% In GCE models, Salpeter IMF with a suitable m_{ℓ} can give similar results with Kroupa IMF.

in MW, Ch is dominant (WD+WD mergers <25%)

different GCE models/observations

-1

-2

[Fe/H]

-3

GCE models challenge NSMs

Binary population synthesis

- Stellar evoluiton of two stars in a binary system
 - Roche-lobe overflow
 - Common envelope
 - Merger

SNIa Delay-Time Distribution (DTD)

Brussels (Mennekens & Vanbeveren 10, 12; SD, DD), StarTrack (Ruiter+14; Sd, DD, He dd), ComBinE (Kruckow+18, DD only, Ch, sub-Ch), BPASS (Briel+22; SD, DD) CK+23

NSM Delay-Time Distribution (DTD)

Binary Population Synthesis (BPS)

Points: observations of nearby stars

- DTDs are taken from BPS
- SNIa timescales too short
- NSM timescales too long
- ✤ 3D-GR yields: Wanajo+14
- K20 (black lines) include MRSNe as 3% of HNe.

CK, Mandel, Belczynski+ 23, ApJL

© 2023. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Can Neutron Star Mergers Alone Explain the r-process Enrichment of the Milky Way?

Chiaki Kobayashi¹^(b), Ilya Mandel^{2,3}^(b), Krzysztof Belczynski⁴, Stephane Goriely⁵, Thomas H. Janka⁶^(b), Oliver Just^{7,8}^(b), Ashley J. Ruiter⁹^(b), Dany Vanbeveren¹⁰, Matthias U. Kruckow¹¹^(b), Max M. Briel¹², Jan J. Eldridge¹²^(c), and Elizabeth Stanway¹³^(c)

NS-BH mergers?

Larger yieds including both dynamical ejecta (Ye<0.1) and v-driven winds from torus (Ye~0.2).

Higher rates depending on binary population synthesis.

Points: observations of nearby stars

Cosmological 'zoom-in' simulation

Gadget3-based code (CK+ 2007), Aquila IC (Scannapieco+12), 3x10⁵M_☉, 0.5kpc <u>https://star.herts.ac.uk/~chiaki/works/Aq-C-5-kro2.mpg</u> Basic features are the same in CK & Nakasato 11, Brook+12, Scannapieco+12, Auriga, FIRE-2, ARTEMIS, VINTERGATAN... but input stellar physics matters!

Metallicity Map

[O/Fe] Map

[e7/0]

The [O/Fe]-[Fe/H] relation

First shown in CK & Nakasato 2011 with chemodynamical simulations

The [O/Fe]-[Fe/H] relation

[X/Fe]-[Fe/H] relations in MW

