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Motivation

In relativistic heavy-ion collisions, a deconfined state of matter is produced,
known as Quark-Gluon Plasma (QGP).

The kinetic theory and hydrodynamics have been essential effective models to
understand the evolution of this system.

Relativistic generalization of Navier-Stokes equations known to be acausal and
unstable - Higher order theories are introduced.

A new solution to the causality and stability problems for first-order theory
recently proposed by Bemfica, Disconzi, Noronha, and Kovtun (BDNK).



Microscopic Theory

The relativistic Boltzmann transport equation:
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The distribution function for small deviation from local equilibrium:
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The collision operator in linear orvder becomes:
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Properties of the linearized collision operator:

Self-Adjoint Microscopic Conservation Summation Invariant
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The out-of-equilibrium distribution function

In general, the out-of-equilibrium distribution function can be expressed as
S. R. de Groot, Relativistic Kinetic Theory
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The unknown coefficients are the function of space-time, particle momentum, rest mass
and temperature. We expand the coefficients a polynomial basis as:
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Hydrodynamic Frame

General hydrodynamic frame or general matching conditions.
/ dF,Ei¢ =0, / dF,El ¢ =0, / dE,Efp ¢ =0

For Landau-Lifshitz (LL) frame (i,j,k) = (2,1,1) and for Eckart frame (i,j,k) = (2,1,0).

For the properties of linearized collision operator, we can t determine homogeneous
solutions from transport equation. Using general matching conditions we calculate the
homogeneous part:
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The rests are known as inhomogeneous/interaction solution can be estimated from the
transport equation.



Homogeneous and Inhomogeneous Solution

The entire out-of-equilibrium distribution function for any order can be determined
separately for frame (homogeneous) and interaction (inhomogeneous) parts as:
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The homogeneous part:

I ~
s [dnEd +i4) - % [ ap il

,J

I
[ i / AR, B + (i 44 j)| -
D W)

The inhomogeneous/interaction part:
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Tensor decomposition of energy-momentum and particle current

General expressions for energy-momentum tensor and particle four-current:
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In kinetic theory, the energy-momentum tensor and particle four-current defined as:
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From the general tensor decomposition it follows:
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System Dynamics
We use the momentum-dependent relaxation time approximation (MDRTA) for solving

the relativistic transport equation as a model study. K_Dusling et al., PRC 81, 034907 (2010)
G.S. Rocha et al., PRL 127, 042301 (2021)

E . S. Mitra, PRC 103, 014905 (2021)
S — P £(0) ()Y — -0 A
POt = TRf (L 7)o Tr(2,p) = TR(2) B, D. Dash et al., PLB 831, 137202 (2022)

Appropriate collision kernel:
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The inhomogeneous/interaction part: Rocha et al., arXiv: 2205.00078
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First-Order Field Redefinition

The first-order thermodynamic field corrections in a general frame written as:
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Not all transport coefficients are invariant under the general first-order field redefinition,
the invariant ones are:
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The detailed expressions of bulk and shear viscosity and heat conductivity are given in
S. Mitra, PRC 105, 014902 (2022)
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Shear Channel
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For certain range of microscopic interactions, the shear channel become acausal.
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Sound Channel

Using Routh-Hurwitz criteria, we find the following conditions for stability of the
sound channel are:

A6>O, A5>0, Ag>0, BQZ(A2A5—AQA6)/A5>O

All A; are function of the transport coefficients. Here we show few transport coefficients:
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> €1,V1 vanish both for i=1, j=2 (LL+Eckart) for all A , and alsoat A =0
for all frame.

> &3,V3 obey the same but also vanish for A =1 at all frames.
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Sound Channel

The coefficients make As and A9 vanish for A = 0 and Ag vanish for both A =0 and 1
at any frame.
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Also the stability of sound modes becomes unstable for certain range of
microscopic interactions.



Conclusion

% A first-order, relativistic stable and causal hydrodynamic theory has been derived
in a general frame from the Boltzmann transport equation

»  We have shown that in order to hold stability and causality at first-order theories,

besides a general frame, the system interactions need to be carefully taken into
account.

% The conventional momentum independent RTA leads to acausality in general
frame.

Thank You!!
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