Karpacz Winter School

in collaboration with Oscar-Garcia Montero, Marco Müller and Hannah Elfner

June 20TH 2022

Nils Sass

Signals of Polarization

Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner 2

L. Adamczyk et al. [STAR], Nature 548 (2017), 62-65 Snellings 2011 New J. Phys. 13 055008 (adoption)

STAR Measurement

- Global spin-polarization of Λ hyperons in non-central Au+Au collisions at $\sqrt{s_{NN}}$ = 3 - 200 GeV and mid-rapidity
- Hyperon polarization is a direct hint of vorticity of the QGP
- Polarization decreases for lower beam energies

- collisions by inducing vorticity
- transfer to the fireball is crucial
- signals

Angular momentum of the nuclei is the driver of spin polarization in heavy-ion

To model hyperon polarization, the dynamic description of angular momentum

Detailed understanding of the dynamics is important to identify phase transition

Pb-Pb collision at $E_{lab} = 40 \text{ GeV}$

t = 6 fm

© Justin Mohs

t = 12 fm

http://smash-transport.github.io

- *Simulating Many Accelerated Strongly-Interacting Hadrons
- Dynamical non-equilibrium description of HICs at low beam energies (FAIR) and late stage rescattering at high beam energies (RHIC/LHC)
- Includes all hadrons up from the PDG to m ~ 2.35 GeV

SMASH Setup

Geometric collision criterion

$$d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}} \qquad d_{trans}^2 = (\vec{r}_a - \vec{r}_b)^2 - \frac{((\vec{r}_a - \vec{r}_b) \cdot (\vec{p}_a - \vec{p}_b))^2}{(\vec{p}_a - \vec{p}_b)^2}$$

- Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner 5

SMASH

Weil et al., Phys. Rev. C 94 (2016)

Effective solution of the relativistic Boltzmann equation

$$p^{\mu}\partial_{\mu}f_{i}(x,p) + m_{i}F^{\alpha}\partial_{\alpha}^{p}f_{i}(x,p) = C_{coll}^{i}$$

Test particle method $\sigma \rightarrow \sigma \cdot N_{test}^{-1}$, $N \rightarrow N \cdot N_{test}$

Angular Momentum & Fermi Motion in SMASH

- SMASH accesses the full phase-space information of every particle and thus its angular momentum
- Fermi motion: nucleonic momentum distribution due to Pauli exclusion principle
- In the ground state nucleus, nucleon momentum distribution corresponds to a uniformly filled Fermi sphere with radius

$$p_F(\vec{r}) = \hbar c \left(3\pi^2 \rho(\vec{r})\right)^{\frac{1}{3}}$$

Angular Momentum & Fermi Motion in SMASH

- Energy dependence of impact parameter b_{max} for which the remaining angular momentum L_r becomes maximal
- Fermi motion induces additional angular momentum into the system

7 Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner

N. Sass et al, in preparation

- System size dependence of the ratio of the fireball's angular momentum over the initial angular momentum L_r / L_0
- More angular momentum is deposited at mid rapidity in more central collisions and at lower beam energies

Angular Momentum Evolution

- Broken angular momentum conservation

Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner 9

N. Sass et al, in preparation

Secondary collisions at higher beam energies shift the flattening of L_{sp} and L_r to later times

We observe a kink in the total angular momentum at the time when both nuclei collide

For higher beam energies the kink occurs at smaller times due to faster time evolution

Angular Momentum Conservation

- Additional momenta by Fermi motion slightly increase non-conservation of angular momentum
- Geometrical Interpretation of the cross section breaks angular momentum conservation in binary in/elastic collisions

Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner 10

• Collective "loss" of angular momentum in Au-Au collisions amounts to 3.5% for small impact parameters

Treating Conservation in Elastic Scatterings

Calculate the change in angular momentum ΔL and mass moment ΔK for each binary collision:

$$\Delta \overrightarrow{L} = (\overrightarrow{x}_1 - \overrightarrow{x}_2) \times \overrightarrow{p} - (\overrightarrow{x}_1' - \overrightarrow{x}_2') \times \overrightarrow{p'}$$

$$\Delta \overrightarrow{K} = (t_1 - t_2)(\overrightarrow{p} - \overrightarrow{p'}) - (\overrightarrow{x}_1 - \overrightarrow{x}_1')E_1 - (\overrightarrow{x}_2 - \overrightarrow{x}_2')E_2$$

Get the corrected positions of the scattered particles restricting collision trajectories to a plane and solving

$$\Delta \vec{L} = 0, \quad \Delta \vec{K} = 0$$

Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner 11

Conclusion & Outlook

- Impact parameter b_{max} for which the angular momentum of the fireball becomes maximal is nearly energy independent for a broad energy range → $b_{max} \in [4.5 \text{ fm}, 6.6 \text{ fm}] \text{ for } \sqrt{s_{NN}} \in [2.41 \text{ GeV}, 200 \text{ GeV}]$
- Higher relative transfer of initial angular momentum to the fireball in more central collisions
- Fermi motion induces additional angular momentum
- Predictions for expectation of high angular momentum is important for future experimental measurements
- Detailed understanding of the dynamics is crucial for extracting phase transition signals
- Long-term goal: Implementing spin degrees of freedom to describe hadronic polarization within the transport approach

Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner 12

Backup Slides

Spin Polarization

L. Adamczyk et al. [STAR], Nature 548 (2017), 62-65

- Spin polarization: Alignment of particle spins with system's angular momentum
- polarization (Chiral Magnetic Effect)

Global polarization of quarks & anti-quarks due to spin-orbit coupling

Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner 3

Deng and Huang, Phys. Rev. C 93 (2016) no.6, 064907

Non-central heavy-ion collisions induce vorticity and orbital angular momentum in the QGP Studying polarization observables might give hints of magnetic fields as another source for

Initial Conditions

Sampling of the initial nuclei in coordinate space according to the Woods-Saxon distribution

$$\frac{dN}{d^3r} = \frac{\rho_0}{\exp\left(\frac{r-r_0}{d}+1\right)}$$

- d: diffusiveness of the nucleus
- ρ_0 : nuclear ground state density

• Hard sphere limit: $d \rightarrow 0$

14 Nils Sass, Oscar-Garcia Montero, Marco Müller, Hannah Elfner

SMASH

Fermi Motion

- Nuclei get additional momenta
- Nuclei are "stable" if additional potentials are turned on
- "Frozen" Fermi motion only considered for collision and turned off for propagation

 $\Gamma_{R \to ab} = \Gamma^0_{R \to ab} \frac{\rho_{ab}(m)}{\rho_{ab(M_0)}}$

__ Resonances

 $\mathscr{A}(m) = \frac{2\mathscr{N}}{-\!\!-\!\!-}$

- Particles with widths < 10 keV treated as stable
- Unstable particles assigned a relativistic Breit-Wigner spectral function

$$\frac{m^2 \Gamma(m)}{(m^2 - M_0^2)^2 + m^2 \Gamma(m)^2}$$

$$\frac{m : \text{ resonance m}}{M_0 : \text{ pole mass}}$$

$$\Gamma(m) : \text{ width function}$$

$$\mathcal{N} : \text{ normalization}$$

• Decay width of two body decay $R \rightarrow ab$ by treatment of Manley et al.

$$\rho_{ab}(m)$$
: mass integrals over resonance spectral fur

$$\Gamma^0_{R \to ab} = \Gamma_{R \to ab}(M_0)$$

ELEMENTS General Assembly

Angular Momentum And Impact Parameter

- Angular Momentum as function of the impact parameter shows a distinct maximum at a single b_{max}
- Qualitative agreement with predictions from geometrical Glauber model

Becattini et al, Phys. Rev. C77:024906, 2008

