
Transport and Hybrid Approaches

Hannah Elfner


June 23rd, 2022, Karpacz Summer School Lecture



• Heavy-ion collision dynamics 

• Transport approaches


–  Boltzmann equation

–  Degrees of freedom and their interactions

–  Resonances and string excitations


• A specific approach: SMASH

–  General ingredients and validation

–  Bulk observables and equation of state

–  Transport coefficients of the hadron gas 


• Summary & questions (please ask also during the talk!) 
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The Plan for Lecture I



Introduction



• Main goals of heavy-ion research: 
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The QCD Phase Diagram

• What are the relevant degrees of  
freedom at high densities? 


• Phase transition, critical endpoint?

• Properties of neutron star mergers? 

Dana Berry, SkyWorks Digital, Inc

STAR experiment at RHIC

Relevant for neutron 
star mergers as 

detected by 
gravitational waves 

(GW170817)



• Status: Two regimes with well-
established approaches


• Goals: 

– Constraint on the equation of 

state of nuclear matter

– Limit of applicability of hadronic 

transport approaches

– Qualitative signatures of first 

order phase transition and 
critical point 
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Dynamical Modeling
Standard approach at high energies

•Non-equilibrium initial evolution

•Viscous hydrodynamics

•Hadronic rescattering

Standard approach at low beam 
energies

• Hadronic transport approaches

• Resonance dynamics 

• Nuclear potentials



• Event-by-event fluctuations negligible, but sizable spread in 
single events ➞ Different centralities increase spanned regions 


• Absolute values are highly dependent on the Equation of State/ 
degrees of freedom


• Scan in rapidity windows might allow to divide spacing even more
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Experimental Access to Phase Diagram

G. Gräf, J. Steinheimer, UrQMD-3.4 on urqmd.org 
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• FAIR construction is in progress on GSI campus


• High luminosity at beam energies up to Au+Au at 11A GeV
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FAIR Construction Site

May 2020, SIS-100 tunnel, 

GSI Helmholtzzentrum für Schwerionenforschung, D. Fehrenz/GSI/FAIR

Visualization of FAIR, 

GSI Helmholtzzentrum für Schwerionenforschung, ion42




Transport Approaches



• Transport of a non-equilibrium 
system of microscopic particles


• Either hadronic or partonic 
degrees of freedom


• Effective solution of Boltzmann 
equation


• Point particles, binary collisions

• Whole evolution and history of 

the evolution including full 
phase-space information 
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Transport Approaches
Reference to PRC 78, 2016
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• Different species are highlighted by color, the size 
indicates the mass of the particles
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Wealth of Particles
Reference to PRC 78, 2016



• Light colors flash interactions, all the interactions are 
traced in this simulation 
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Highlight Interactions
Reference to PRC 78, 2016



• Transport models are solving a (modified and/or 
complicated) version of the Boltzmann equation


• Non-relativistic: 


• Solutions are fi(x,p,t), the single-particle distribution 
functions


• Coupled integro-differential equations for multiple particle 
species
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Boltzmann Equation



•Starting point is the Lagrangian: 
Free part:

From G. Mao

13Karpacz Lecture 
06/23/22Hannah Elfner

A ‘real’ Equation for Low Energies



 
 
 
 
 

Derived Transport (Boltzmann) equation:
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+Interactions +Approximations and Transformations 



• Simplification: omit the potential (cascade mode)

–  Straight line trajectories between collisions

– At point of closest approach interactions are possible as 

given by cross section

• Other methods: 


–  Test particles, transition probabilities

• Problems: 


–  Multi-particle collisions 

–  Consistency between ‘potential’ and  

cross section

–  Memory effects (Markovian limit),…
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How to Solve the Equation?



• Initialization of projectile and target (Lorentz-contracted 
Woods-Saxon)

• Generate table with collision/decay sequence from


•Propagate to next collision

• Perform collision according to cross sections


•Elastic scattering 

•Inelastic scattering


• Resonance production

• Soft string formation and fragmentation

• pQCD hard scattering / fragmentation


• Update particle arrays, update collision table, perform next 
collisions

Monte Carlo methods

16Karpacz Lecture 
06/23/22Hannah Elfner

 Reaction Stages



• QMD, IQMD, BQMD (non-relativistic models, limited particle 
species)


• RQMD (the grandfather of  relativistic transport models) 
  development stopped around 2000


• UrQMD (development started 1996 at Frankfurt)

• (P)HSD (Giessen, Cassing), GiBUU (Giessen, Mosel)

• Parton cascades (ZPC, MPC, GPC, VNI/B, BAMPS….)

• NOT transport/cascade models (geometry based):


–  HIJING

–  PYTHIA/FRITIOF

–  NEXUS, VENUS

–  DPM

SMASH (C++, FFM) 
= Simulating Many Accelerated  

Strongly-Interacting Hadrons 
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 Transport/Cascade Models 
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Included Particles

UrQMD particle list

• Problem: at least 60x60 
cross sections needed  
→need to group into 
classes



Cross-Sections and Processes
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Cross-Sections

fitted to data



• Total cross section for pp/pπ 
collisions


• Parametrized elastic cross 
section


• Many resonance 
contributions to inelastic 
cross section


• Reasonable description of 
experimental data


• Strings at higher energies
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Elementary Cross Sections

J. Weil et al, PRC 94 (2016), updated SMASH-1.5



• Phase space x Matrix element


• Physics is in Matrix elements
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Scattering Cross Section

d�a!b =
|M|2

64⇡2s

~pb
~pa
d⌦

4Y

i=3

dµi

hard mass shell condition  
(stable particles) 
 
soft mass shell condition 
(resonances)

take care of 
Clebsch-
Gordans
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Resonance Cross Sections
Reference to PRC 78, 2016



• Approximation to spectral 
function with Breit-Wigner 
distribution 


• Peak corresponds to mass

• Lifetime is inverse width

• Are propagated explicitly in 

many transport approaches 
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Resonances

• Important to differentiate: 

• Vacuum parameters from PDG or fits to data

• Dynamical collisional broadening, rescattering of 

resonances

• Actual medium modifications of spectral functions 



• High energy cross-section is dominated by string 
excitation and fragmentation
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Moving to Higher Energies
J. Mohs, S. Ryu and HE, J.Phys.G 47 (2020) 

• Soft strings 

– Pythia is only employed 

for fragmentation

– Single-diffractive, double 

diffractive and non-
diffractive processes


• Hard strings

– Fully treated by Pythia

– All species mapped to 

pions and nucleons



• If the quarks travel away from each other the QCD potential 
leads to particle production in the critical field


•Color flux tube (gluon fields)
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QCD Potential



•We expect the production of new q-qbar pairs out of the 
decay of the critical vacuum between the quarks

! q….qbar-q….qbar-q….qbar-q….qbar-q…qbar "
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How are Hadrons Formed? 



• The form of the potential is


• Solving the Klein-Gordon 
equation  
 
leads to Schrödinger equation


• Applying the WKB 
approximation,  
we obtain the penetrability 

z<0 z>LV(z)=-κz

V (z) =

8
><

>:

0 z < 0

�z 0 < z < L

�L L < z

[(p̂�A)2 �m2] = 0


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2

2m?
+ Veff � Eeff

�
f(z) = 0
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⇣
�⇡m?



⌘
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Pair Production



• Integration over transverse momentum yields


• This is similar to the full QED Schwinger result


• The string model predicts strangeness suppression


• It also predicts di-quark suppression


dN
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κ = 1 GeV/fm, mu = 325 MeV, ms = 450 MeV
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Suppression factors



• Boltzmann Approach of MultiParton Scatterings


–  A transport algorithm solving the Boltzmann equations for 
on-shell partons with pQCD interactions


–  Elastic scatterings are ineffective in thermalization

–  Inelastic interactions are needed

–  Detailed balance

New Development
(Z)MPC, VNI/BMS, AMPT, PACIAE
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BAMPS
Z. Xu and C. Greiner Phys.Rev.C 71 (2005) 064901



Δ3x
collision probability -- stochastic

Space is divided

into small cells !

x

y
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Stochastic Algorithm

→

→

→



• At high densities multiparticle interactions will become 
relevant  also in hadronic transport approaches


• 2<->2, 2<->1, 3<->1 and 2<->3 is implemented 

• Application to interesting physics will be shown tomorrow
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Multi-particle Interactions

• , , ω ↔ 3π BB̄ ↔ 5π M ↔ N

Dilute System
 Dense System




SMASH - A Specific Example



• Hadronic transport 
approaches are 
successfully applied 
for decades


• Goals for new code: 

– Reference for 

hadronic system with 
vacuum properties


– Modeling of non-
equilibrium phase 
transition
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History of Transport Models



• Boltzmann Uhling Uhlenbeck equation governs single-
particle distribution function

–  Potentials are density dependent 

–  Density and forces (gradients) are calculated with test 

particles 

–  Parallel ensembles allow to recover some event-by-event 

fluctuations

• Quantum Molecular Dynamics


–  Each particle is represented by a Gaussian wave packet 

–  Potentials are sums of two-particle forces 


• Difference only relevant when mean fields are important, 
for cascade calculations (higher beam energies, 
afterburner) both are identical  
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BUU vs QMD



• Hadronic transport approaches are successfully applied for 
the dynamical evolution of heavy ion collisions 


• New experimental data for cross-sections and resonance 
properties is available (e.g. COSY, GSI-SIS18 pion beam etc) 


• Philosophy: Flexible, modular approach condensing 
knowledge from existing approaches 


• Goal: Baseline calculations with hadronic vacuum properties 
essential to identify phase transition
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Why a new Approach?

• Hadronic non-equilibrium dynamics is 
crucial for

– Full/partial evolution at low/  
 intermediate beam energies


– Late stage rescattering at high beam 
 energies (RHIC/LHC)



• Hadronic transport approach: 

–  Includes all mesons and baryons up to ~2 GeV

–  Geometric collision criterion

–  Binary interactions: Inelastic collisions through      
 resonance/string excitation and decay


–  Infrastructure: C++, Git, Doxygen, (ROOT) 
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SMASH* 

* Simulating Many Accelerated Strongly-Interacting Hadrons

Au+Au at EKin = 0.8 AGeV, b=3 fm

https://smash-transport.github.io

J. Weil et al, PRC 94 (2016)

https://smash-transport.github.io


• In US: 

–  Dmytro Oliinychenko

–  Agnieszka Sorensen

• In Frankfurt: 

– Oscar Garcia-Montero

– Gabriele Inghirami

– Alessandro Sciarra

– Jan Staudenmaier

– Justin Mohs

– Jan Hammelmann

– Niklas Götz

– Renan Hirayama

– Nils Saß 

– Jonas Rongen

– Antonio Bozic

– Orhan Özel

– Lucas Constantin

– Julia Gröbel

– Branislav Balinovic
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The SMASH Team

Group excursion in May 2022



• Transport models provide an effective solution of the 
relativistic Boltzmann equation 


• Particles represented by Gaussian wave packets for 
density calculations


• Geometric collision criterion


• Test particle method

39Karpacz Lecture 
06/23/22Hannah Elfner

General Setup

As in UrQMD



• Nuclear Collisions

–  Woods-Saxon distribution in coordinate space


–  optional: deformed nuclei and (frozen) Fermi motion

–  optional: read-in of more realistic initial states with 

correlations, neutron skin 
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Initial Conditions

Cu



• Fermi motion is randomly assigned to each nucleon 
depending on the local density pF( ⃗r ) = ℏc(3π2ρ( ⃗r ))1/3
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Fermi Motion

J. Weil et al., PRC 78, 2016

82
Pb nucleus

neutrons

r < 3.5 fm, SMASH

full nucleus, SMASH

r < 3.5 fm, expected

full nucleus, expectedN1
 d

(p
/p

F
)3

d
N

0

1

2

(p/pF)
3

0 0.5 1 1.5 2

• Fermi motion would lead to 
unstable nuclei


• Attractive part of mean field has 
to balance Fermi motion


• For higher beam energies where 
mean fields are not required


• -> Frozen Fermi motion 

• Fermi momentum is not taken 

into account for propagation 
only for collisions



• SMASH includes the most basic deformation parameters

• After sampling nucleons, the whole configuration is rotated 

by random Euler angles to provide independent initial 
states


• Specific values for certain known nuclei are provided 
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Deformation of Nuclei

J. Weil et al., PRC 78, 2016

ρ(r, θ, φ) =
ρ0

1 + exp( r − r(θ, φ)
d )

r(θ, φ) = r0 (1 +
∞

∑
l=1

l

∑
m=−l

βlmYm
l )

• BSc student works on  
extending this by β3  and γ
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Degrees of Freedom
Reference to PRC 78, 2016

New jpg from JB

Blab

• Mesons and baryons according to particle data group

• Isospin multiplets and anti-particles are included



• Spectral function

–  All unstable particles 

(„resonances“) have 
relativistic Breit-Wigner 
spectral functions


• Decay widths

–  Particles stable, if width 

< 10 keV 
 


–  Treatment of Manley et al
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Resonances

D. M. Manley and E. M. Saleski, 

Phys. Rev. D 45, 4002 (1992) 

(⇡, ⌘, K, ...)

N*(1440)

As in GiBUU



• Scaling of on-shell decay width:


• Definition of rho-function:


• Hadronic Form Factor:
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Treatment of Manley
D. M. Manley and E. M. Saleski, Phys. Rev. D 45, 4002 (1992) 

…

Blatt Weisskopf functions

M. Post, S. Leupold, U. Mosel, Nucl. Phys. A 741, 81 (2004)



• Inverse absorption cross section calculated from 
production cross section


• Conservation of detailed balance (only 1 <—> 2 or  
2 <—> 2 processes)


• Infinite matter calculations —> Important cross-check
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Detailed Balance

J. Weil et al, PRC 94 (2016), updated SMASH-1.5 



• Comparison to analytic solution of Boltzmann equation 
within expanding metric


• Perfect agreement proves correct numerical 
implementation of collision algorithm 
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Analytic Solution

J. Tindall et al., PLB 770 (2017) D. Bazow et al., PRL 116 (2016) and PRD 94 (2016) 



Bulk Observables 

and Equation of State



• Potentials decrease pion 
production, while Fermi 
motion increases yield


• Nice agreement with SIS  
experimental data
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Pion Production in Au+Au
Reference to PRC 78, 2016

Note: consecutive addition of features J. Weil et al, PRC 94 (2016)



• Density and temperature in a central cell for heavy ion 
collisions at SIS-18 energies


• 2-4 times nuclear ground state density reached
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Time Evolution 

J. Staudenmaier, N. Kübler and HE, arXiv:2008.05813

see also, T. Galatyuk et al. and S. Endres et al



• Potentials in SMASH

–  Basic Skyrme and symmetry potential


–  Describes interactions between nucleons, repulsive at high 
densities


–  Default values according to transport code comparison
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Collective Behaviour

J. Xu et al., PRC 93 (2016)

USkyrme = ↵(⇢/⇢0) + �(⇢/⇢0)
⌧ USymmetry = ±2SPot

⇢I3
⇢0



• Transition from squeeze-out at low energies to in-plane flow at 
high energies-> hadron transport underestimates flow


• Sensitive to equation of state of nuclear matter, here in terms of a 
mean field between nucleons
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v2 Excitation Function

H. Petersen (now Elfner) et al, PRC 74, 2006 H.Petersen (now Elfner) et al, NPA 982, 2019



• ‚Danielewicz constraint‘ and newer constraints 
->varying mean field parameters to fit flow observables 
best


• Open issues: Results are dependent on details of 
transport code and in particular mean field properties
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Nuclear Matter Equation of State

P. Danielewicz at EMMI Workshop 2019, https://indico.gsi.de/event/8242/timetable/#20190213.detailed
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 W

an
g 

et
 a

l, 
ar

Xi
v:

18
04

.0
42

93

https://indico.gsi.de/event/8242/timetable/#20190213.detailed


• Challenging to describe multiple data sets within one 
approach consistently (FOPI, HADES, v1/v2, protons/
deuterons/pions) 


• Degrees of freedom matter and resonance dynamics 
influences mean field parameters


• Medium-modified cross-sections

• Influence of Coulomb potential 

• Clustering and light nuclei production

• Spectators and mixing of forward and central dynamics 

• To do: Bayesian analysis to see how well data can 

constrain EoS/mean field

–  Add future data to study sensitivities

–  Assess systematic uncertainties in modeling
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Issues



Transport Coefficients of Hadron Gas



• Within hydrodynamics/hybrid approaches the shear 
viscosity is an input parameter


• The low temperature part corresponds to a hadron gas 
with its interactions 
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Transport Coefficients

J. Bernhard et al, Phys.Rev. C94 (2016)

RH
IC

 W
hi

te
 p

ap
er

, 2
01

2



• Long standing question: Why are the results so 
different from each other?
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Shear Viscosity of the Hadron Gas

N. Demir and S.A. Bass, PRL 102 (2009)

Green-Kubo formalism 

UrQMD

Discrepancy with 

hydro-inspired B3D and VISHNU

N. Demir and S.A. Bass, PRL 102 (2009)

J.-B. Rose, J. M. Torres-Rincon, A. Schäfer, D. Oliinychenko and HP, PRC97 (2018) and JPCS 1024 (2018) 



• Hadron gas in thermodynamic equilibrium realised by box 
with periodic boundary conditions


• Entropy is calculated via Gibbs formula from thermodynamic 
properties


• The shear viscosity is extracted following the Green-Kubo 
formalism:
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Shear Viscosity over Entropy Density
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J.-B. Rose, J. M. Torres-Rincon, A. Schäfer, D. Oliinychenko and HP, PRC97 (2018) and JPCS 1024 (2018) 
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Chapman-Enskog

• Energy-dependence of cross-sections is modelled via 
resonances


• Point-like in analytic calculation and finite lifetime in 
transport approach


• Agreement recovered by  
decreasing ρ meson lifetime
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Resonance Dynamics

J.-B. Rose, J. M. Torres-Rincon, A. Schäfer, D. Oliinychenko and HP, PRC97 (2018) and JPCS 1024 (2018) 



• Closest similarity to Bass/Demir result as expected
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Comparison to Literature

Reference to PRC 78, 2016

J.-B. Rose, J. M. Torres-Rincon, A. Schäfer, D. Oliinychenko and HP, PRC97 (2018) and JPCS 1024 (2018) 
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• Adding a constant elastic cross section leads to 
agreement with B3D result


• Approximately linear relationship between relaxation time 
and mean free time is recovered


• Viscosity constrains the hadronic interactions
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Point-like Interactions

J.-B. Rose, J. M. Torres-Rincon, A. Schäfer, D. Oliinychenko and HP, PRC97 (2018) and JPCS 1024 (2018) 



• Addition of elastic cross-
sections leads to decrease 
of shear viscosity to entropy 
ratio


• The anisotropy of elastic 
scatterings has only small 
effect


• Direct decay of ω into 3 
pions leads to smaller 
viscosity than the process 
via an intermediate ρ meson 


• Enabled by multi-particle 
reactions
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Update in SMASH

J. Hammelmann, work in progress
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• Bulk viscosity is very sensitive to the resonances and their 
dynamics


• Comparison to analytic solution successful, but correlation 
function is very sensitive to life time assumptions 
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Bulk Viscosity of the Hadron Gas
J.-B. Rose, J. M. Torres-Rincon and HE, J.Phys.G 48 (2020)  
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• Tail of correlation function is dominated by slow modes 
that are not relevant for the evolution of heavy-ion 
collisions 


• The effective bulk viscosity excluding slow modes is in 
accordance with findings from Bayesian analysis
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Effective Bulk Viscosity

SMASH	full
SMASH	eff.
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J.-B. Rose, J. M. Torres-Rincon and HE, J.Phys.G 48 (2020)  



• Comparison to linear response kinetic theory to validate 
our approach


• Infinite matter with constant σ = 30 mb
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Electric Conductivity

J. Hammelmann et al, Phys.Rev. D99 (2019) no.7, 076015
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• Results for electric conductivity are independent of 
resonance lifetimes


• Electric current relaxes already at formation of resonances 
and not only at the decay (full momentum exchange)
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Influence of Lifetime

J. Hammelmann et al, Phys.Rev. D99 (2019) no.7, 076015



• The different species in a hadron gas have mixed quantum 
numbers, currents develop and mix


• Comparison in simple π-Κ-P system to analytic calculation 
successful 
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Cross-Conductivities
M. Greif et al, Phys.Rev.Lett. 120 (2018) 

J. Fotakis et al, Phys.Rev.D 101 (2020)


⃗jQ = σQQ
⃗EQ

⃗jS = σQS
⃗EQ

⃗jB = σQB
⃗EQ

J.-B. Rose et al, Phys.Rev.D 101 (2020)



• All conductivities are highly dependent on the degrees of 
freedom employed in the calculation


• Potential to constrain active degrees of freedom in the 
hadron gas by comparison to future lattice results

68Karpacz Lecture 
06/23/22Hannah Elfner

Cross-Conductivities

J.-B. Rose et al, Phys.Rev.D 101 (2020)
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• Visit the webpage to find publications and link to SMASH-2.2 results 
https://smash-transport.github.io


• Download the code at  
https://github.com/smash-transport/smash


• Checkout the Analysis Suite at  
https://github.com/smash-transport/smash-analysis 


• Find user guide and documentation at 
https://github.com/smash-transport/smash/releases


• Animations and Visualization Tutorial under  
https://smash-transport.github.io/movies.html


•  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How to Use SMASH?

SMASH-2.2 has  
HepMC and RIVET 

https://smash-transport.github.io
https://github.com/smash-transport/smash
https://github.com/smash-transport/smash-analysis
https://github.com/smash-transport/smash/releases
https://smash-transport.github.io/movies.html


• Transport approaches are an indispensable tool to 
understand observables from heavy-ion reactions


• In contrast to thermal and fl



• Coupled Boltzmann equations need to be solved 
numerically 


• SMASH as a specifi

– Bulk observables are sensitive to equation of state

– Transport coeffi


• Source code is public and ready to use!  

• In general: Transport codes have to be thoroughly validated 

and are the only way to describe the non-equilibrium 
evolution properly 
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Summary



• What is the difference between geometrical cross sections 
and transition probabilities in transport approaches? 


• How can one describe the phase transition in microscopic 
transport approaches?


• What is a hadronic resonance? 

• How are the inputs for hadronic transport approaches, the 

degrees of freedom and their interactions, constrained? 

• How are the transport coefficients in a box calculation 

related to the ones in a full dynamic calculation? 

• Which other transport properties would be interesting? 

• For which stages of the reaction are transport approaches 

applicable? 
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Questions


