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Diversity of supernovae
| Main topic
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Takiwaki+2016 | Matsumoto+ sub. MNRAS | Takiwaki+ 2021

Recently various type of initial condition is employed
for numerical simulations and the features of the
explosions could be different.

(-, y




4 N
Parameter Plane & Explosion Mechanism
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Parameter Plane & Explosion Mechanism
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4 . . .
Rotational instabilities of stars
Q: How the rotation destabilize the star?
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Rotation deforms stars.

Altair, 7)L3A)

P 1 0 -1 -2
See Belle 2012 and references therein

The rotation breaks spherical symmetry.

The rotation also breaks axi—symmetry.




Non-axisymmetric patterns in stars and disks

olar Jet

AGN

Varniere et al. 2019

»

B

Sun  Jupiter

Neptune
—H—

Jupiter

protoplanetary

1. Red = CCW Vorticity

disk

Tsukagoshi et al. 2019

o

S

Ha’rhav\/ay et al. 2021 /




/History of non-axisymmetric instability

T/W is often used for the criteria.

‘[’ Rotational energy

W Gravitational binding energy

Classical threshold of the instability for rigidly rotating stars.
T/W ~27% (dynamlcal) See Shapiro and Teukolsky

T/W ~ 14% (secular)
Modern calculations, for differentially rotating neutron stars

T/W ~ 1% :ISHibataletﬂaI..b.(?QIZ IZ:(I) ‘:

1

Differential rotation significantly relax the
threshold. However, detailed mechanism
was not well understood.
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Phenomenologically, it is called low-T/W instability. il
@ => Later we call it Rossby wave instability. % /R
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Low T/W instability in Proto-neutron stars
Takiwaki et al. 2021
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Rotation => Low T/W instability
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Isolated rotating star.

Rigid rotation:
T/W >27%

In cold neutrons stars,
differential rotation:

T/W > 1% (Shibata+2003)

In proto—neutrons stars,

convection promotes the
instability (Takiwaki+2021)

I’ Il show it later.
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Explosion mechanism Takiwaki et al. 2016, 2021
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low-T/W instability triggers a explosion.
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Energy transport by low T/W

Takiwaki et al. 2016

Density Pressure Radial Velocity

e

100ms  300km |100ms  300km

low-T/W instability launch ejecta from PNS, which has high
density and pressure.
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Energy transport and Heating
Energy transport by thermal convection

Entropy~T”"3/p Heated by

/neutring Fe=>n, p

cooled by

photo-
dissociation

Proto Energy transport b

Neutron Low T/W instability ~200km

Star :
Rad|u§‘

~20km ~100km

@




Energy transport and Heating
Energy transport by thermal convection
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Neutrino emission

Takiwaki et al. 2018, 2021

™~

e RO ]

L M= i AT 2 I I T E
80 L 10kpc R1.0-3D —— | : IceCube E
"o H2.0-9D | E | 10kpc R20-3D
E 60 equator 2 10| equator _
o i g8
S sl &
= o 1l 4
) - g : E
D 20 L g : :

D _|||||I|...I T B B T B S R R 01 L1 | T P A A I-Il ------ 1 -I-rl-'l ------ I...n.l.J-.|..
0 50 100 150 200 250 300 350 0 100 200 300 400
Time after bounce [ms] Frequency [Hz]

Strong time variability is found in rotating models!

Green: No rotation, SASI occurs

Blue: Slow rotation, has a peak at 150Hz, rotational freq.
Red: Rapid rotation, has peaks at 200Hz and 300Hz

G rotational freq. slightly different positions.
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Gravitational wave W
Takiwaki et al. 2018, 2021
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Rapidly rotating model excites two hydrodynamic mode, and
the three modes are excited in GWSs.
h ~ C% [ dVp (v,v, — VUL |— 20, + 20, D)
Jew = 2/1, J1+ f2, 2f2
@ 200Hz & 300Hz => 400Hz, 500Hz, 600HZz
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Circular Polarization

Shibagaki et al. 2021

T EO
toy [ms] to, [ms]

Observing GW from the direction of north/south
pole, circular polarization is found.




4 N
Direction dependence in Rotating model

Weak or No Neutrino Variability
Strong GW Variability
Circular polarization

Strong Neutrino Variability
Moderate GW Variability
Liner polarization

Rotating
Neutron Star
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/Mechanism of low-T/W instability?

T/W is often used for the criteria.

‘[’ Rotational energy

%% Gravitational binding energy

Classical threshold of the instability for rigidly rotating stars.
T/W ~27% (dynam|ca|) See Shapiro and Teukolsky
T/W ~ 14% (secular)

Modern calculations, for differentially rotating neutron stars

T/W ~ 1%

Phenomenologically, it is called low- =
T/W instability. -
=> The mechanism would be

(trapping Rossby wave. T T




/ . " mgn \
Kelvin-Helmholtz instability

Rossby wave instability is in some sense, Kelvin Helmholtz
Instability.
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Kelvin-Helmholtz instability

instability. In incompressible [imit.

Perturbation equation.

0,V + 8y?)y — () Continuum

<00y + UOpvy + v,0,U = =0y

Euler eq.

Orvy + U0zvy = —0,p

Steam function

1Y

Rossby wave instability is in some sense, Kelvin Helmholtz

i

('Ua:a Uy) — (ay7,0, _aa:w)

»

0y + Uy ) V20 — 0,C0pb = 0

Advection Laplacian  Source

Common structure of KH type instability.
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85[] = 0,( ( =V XU the derivative of vorticity is important.
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Kelvin-Helmholtz instability

As usual, let us take Fourier component.

W = Y(y) exp(i(kz — wt))
(0y + U, ) V2 — 0,COytb = 0

» L (Uk — @) V20 — k¢ = 0

» F =V — gyt =0

f dy [¢*F] =0 And some mathematics

» Im[w] 7£ () systemis unstable

If JyC change the sign somewhere in y.
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Kelvin-Helmholtz instability

Intuitive analogy is as follows.
¥(y) exp(i(kz — wt)) 1
V) — U= w/k)w =0

The equation is similar to Schrodinger equation.

—h° 2
[% V ‘|— ‘/eff} \If — O
(%C change the sign, potential energy change the sign

Then the wave is trapped and amplified.

KH instability is initiated when the sign of
derivative of vorticity changes.

@ Vett becomes huge when w = Uk => idea of corotation.
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Rossby wave instability in disk

Lovelace et al. 1999 Ono et al. 2018

In the disk, density bump triggers KH-like instability.

=> Rossby wave instability.
Density R
Dl ity bum
sity bump I

__ees
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Il ~ C/p Potential vorticity
In the case of isothermal EOS

A

@277;_(77’1,&91_[ 77&:0

mQ—w)

Rossby wave instability in disk

We obtain similar perturbation equation.

™~

Ono et al. 2018

(9 + Q04) V2 — 0, TT0s1) = 0 2l
Advection Laplacian  Source p i

¥ = (R) exp(i(me — wt)) "
Oy 11+

0.6

(-

Rossby instability is initiated when the sign
of derivative of potential vorticity changes
and pattern frequency matches angular

frequency.
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Rossby wave instability in PNS

Complex version of Kelvin Helmholtz instability.

Consider stellar rotation and
L  density, entropy and Ye,
2« Sstructures. We obtain similar
< perturbation equation.
(0r + Q) [AT + -] 49,1122 = 0

Proto neutron star y

)
i il

I[I=C(-VA/p  Potential vorticity.

In the case of adiabatic EOS

. C =V XU vorticity
A=35,Y,
U = yexp (1meo — wt) A+ - = T(Z%?Z;EQ) Y = Vg

Important point here : the effective potential is function of rotation velocity and
K density and entropy and Ye. /
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Typical evolution

Polar Jet _ _
Subtropical Jet

\

Takiwaki et al. 2021
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w, [10% rad/s] at 30 km 80 ms

In our case, m=4 modes
appears and immediately it
becomes m=1 mode.

azimuthal equidistant projection
from north pole

/
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Takiwaki et al. 2021

- New stability analysis
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___White line is corotation point.
There, color change from blue
to red. This satisfy the condition
of Rossby wave trapping.
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+ Apava.
P 06V

Small BV makes this term large!,
@ This instability is expected near convection zone in general./
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Unsolved issues

Theory, concept and name of Rossby wave instability are not well
organized.

Potential vorticity = Vortensity

The name of the trapped wave is not identified.

r—mode: restoring force is stellar rotation, Rossby wave
p—mode: restoring force is pressure, sound wave, acoustic wave
g—mode: restoring force is pressure and gravity, gravity wave
f-mode: p—mode or g~mode or mixture of it. It depends context.
Inertial wave: mixture or Rossby wave and g—mode

Yoshida+ (2017) consider f-mode and p—mode trapping in cold
neutron stars.

(-
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Rossby wave

Governing equation in rotating frame

gf | 6-V6:—Vp/p+V¢>—QQxﬁ

Coriolis force

Some algebra with several approximations
=> conservation of absolute vorticity (=V X

8(f§ta I fl_f . VCa — O - ﬂucﬁ‘) ’; >>/
Ca — 202 cos § + C r

‘h‘ . -
nt > 0) “"! ’ »
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A few types of Rossby waves

Bekki et al. 2022

(traditional) Rossby wave
(r-modes)

thermal Rossbhy wave topographic Rossby wave

We do not know the detail of Rossby wave.

Our morphology looks like topographic Rossby wave.
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Unsolved issues

Can Rossby wave and Rossby wave instability survive in
convective zone?

Classical argument: No.

Recently: Yes. (e.g., Callies and Ferrari 2018)

Q2
e o ¥

-

2Q
Oyll = — sin#
: r

» F
| + 2cos” 8—d)y

+ Apava.
P 06V

BV

QQ/Q%VB important. But not sure this formula is applicable if Q%V <0

And how much angular frequency is necessary to trigger the instability?

Does the B-fields suppress the Rossby wave instability?
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Parameter Plane & Explosion Mechanism

A

() Rotation
MHD, jet,MRI Which instability
dominantly
occurs?
ow LW Or Mixture?
ossby wave
Lots of question.
Spiral-:SASI
B N Let's investigate it.
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Summary

e The low—T/W instability or Rossby wave instability is found
In proto neutron stars.

e The instability triggers explosion! Imposes large time—
variability in neutrino observation and emits strong
gravitational waves.

e The mechanism is identified as Rossby wave instability,
which is governed by potential vorticity . It is similar to
Kelvin—Helmholtz instability, which is governed by vorticity.

[I=(,-VA/p A=sY

Differential rotation, density, entropy or induce it.

e Unsolved issues is competition to buoyancy. The angular
velocity should be comparable to BV frequency but no

Qquantitative answer Is obtained.
N,
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