Core-collapse Supernova Models with Heavy Axion-like Particles

Kanji Mori (森寬治)

Research Institute of Stellar Explosive Phenomena, Fukuoka University

Messengers from Supernova Core

Gravitational waves

V

Outline

1. Brief review on supernova limits on axion-like particles (ALPs)

2. Possible impacts of ALPs on supernova dynamics Mori, Takiwaki, Kotake & Horiuchi, PRD 105 (2022) 063009

3. Pair-instability supernova models with ALPs (preliminary) Mori, Moriya, Sakstein, Croon, Takiwaki, Kotake & Horiuch, in preparation.

Axions

[Wilczek PRL 40 (1978) 279, Weinberg PRL 40 (1978) 223.]

4 / 36

 Hypothetical particles introduced to solve the strong CP problem in QCD

$$\mathcal{L}_{QCD} \supset \theta \frac{g_s^2}{32\pi^2} G^{a\,\mu\nu} \tilde{G}^a_{\mu\nu} : CP-violating term \qquad ? Exp: \theta < 10^{-10}$$

Possible coupling with photons and nucleons

- → Axions can be produced in astrophysical plasma
- A candidate of the dark matter
- Signature in a recent experiment?

[XENON Collaboration PRD 102 (2020) 072004]

Axion-like Particles (ALPs)

- A class of hypothetical pseudo-scalar bosons
- Many models
 - ✓QCD axions

✓String axions

[Svrcek & Witten JHEP 2006 (2006) 51. Arvanitaki et al., PRD 81 (2010) 123530.]

 $\checkmark \cdots$

ALPs are generalization of axions

Interaction with SM particles

ALP-photon coupling

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4}g_{a\gamma}a\tilde{F}^{\mu\nu}F_{\mu\nu}$$

ALP-electron coupling

$$\mathcal{L}_{ae} = \frac{g_{ae}}{2m_e} \bar{e} \gamma_\mu \gamma_5 e \partial^\mu a$$

• ALP-nucleon coupling

$$\mathcal{L}_{aN} = \sum_{i=p,n} \frac{g_{ai}}{2m_N} \bar{N}_i \gamma_\mu \gamma_5 N_i \partial^\mu a$$

Primakoff process

electron-ion bremsstrahlung

nuclear bremsstrahlung

π

N

N'

N

N'

e.g. Lucente & Carenza PRD 104 (2021) 103007

ALP Production Processes

[e.g. di Lella et al. PRD 62 (2000) 125011.]

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4}g_{a\gamma}a\tilde{F}^{\mu\nu}F_{\mu\nu}$$

Primakoff process

$$\frac{d^2 n_a}{dt dE} = g_{a\gamma}^2 \frac{T\kappa^2}{32\pi^3} \frac{kp}{e^{\frac{E}{T}} - 1} \left(\frac{((k+p)^2 + \kappa^2)((k-p)^2 + \kappa^2)}{4kp\kappa^2} \ln\left(\frac{(k+p)^2 + \kappa^2}{(k-p)^2 + \kappa^2}\right) - \frac{(k^2 - p^2)^2}{4kp\kappa^2} \ln\left(\frac{(k+p)^2}{(k-p)^2}\right) - 1 \right)$$

k: photon wave number in plasma*p*: ALP momentum*κ* : Debye-Hückel scale

Photon coalescence

Possible only when $m_a > 2\omega_{pl}$

ALP Luminosity from a SN

When we discuss heavy ALPs, photon coalescence cannot be ignored.

Constraints on ALPs

The ALP-photon coupling $g_{a\gamma}$ has been explored experimentally and astrophysically

Jaeckel & Spannowsky PLB 753 (2016) 482

ALP-photon Conversion

[Raffelt & Stodolsky PRD 37 (1988) 1237.]

ALPs are converted into photons by Galactic magnetic field

 $\rightarrow \gamma$ -ray may be observable

$$P_{a\gamma} = (\Delta_{a\gamma}d)^2 \frac{\sin^2\left(\frac{\Delta_{\rm osc}d}{2}\right)}{\left(\frac{\Delta_{\rm osc}d}{2}\right)^2}$$

$$\Delta_a = -\frac{m_a^2}{2E}, \ \Delta_{\rm pl} = -\frac{\omega_{\rm pl}^2}{2E}$$
$$\Delta_{a\gamma} = g_{a\gamma} \frac{B_{\rm T}}{2} \qquad \Delta_{\rm osc} = \sqrt{(\Delta_a - \Delta_{\rm pl})^2 + 4\Delta_a^2}$$

ALP-photon Conversion

[Raffelt & Stodolsky PRD 37 (1988) 1237.]

ALPs are converted into photons by Galactic magnetic field

 $\rightarrow \gamma$ -ray may be observable

$$P_{a\gamma} = (\Delta_{a\gamma}d)^2 \frac{\sin^2\left(\frac{\Delta_{\rm osc}d}{2}\right)}{\left(\frac{\Delta_{\rm osc}d}{2}\right)^2}$$

$$\Delta_a = -\frac{m_a^2}{2E}, \ \Delta_{\rm pl} = -\frac{\omega_{\rm pl}^2}{2E}$$
$$\Delta_{a\gamma} = g_{a\gamma} \frac{B_{\rm T}}{2} \qquad \Delta_{\rm osc} = \sqrt{(\Delta_a - \Delta_{\rm pl})^2 + 4\Delta_a^2}$$

a- γ conversion prob. with $B=1 \mu$ G and $g=5 \times 10^{-12}$ GeV⁻¹

Mori, Takiwaki & Kotake, PRD 105 (2022) 023020.

SN 1987A Constraints on ALPs

γ -rays from SN 1987A

Observation: *F*(25-100 MeV)<0.6 γ/cm² Chupp, Vestrand & Reppin PRL 62 (1989) 505

Theory

Payez et al., JCAP 1502 (2015) 006

Non-detection of γ -rays from SN 1987A has provided constraints on ALPs

12/36

Constraints on ALPs

The ALP-photon coupling $g_{a\gamma}$ has been explored experimentally and astrophysically

Energetics of Core-collapse SNe

- Gravitational energy release $E_g = \left(-\frac{GM^2}{R_{star}}\right) \left(-\frac{GM^2}{R_{NS}}\right) \approx 10^{53} \text{ erg}$
- Kinetic energy

Radiation

- $E_k = \frac{1}{2} M_{ejecta} v_{ejecta}^2 \approx 10^{51} \text{ erg (= 1 Bethe)}$
- $E_r \approx 10^{49} \text{ erg}$
- Neutrino (SN 1987A obs.)

http://www-sk.icrr.utokyo.ac.jp/sk/_images/photo/sk/shinsei_gazou02.jpg

14/36

Energy budget:
$$E_{g} = E_{k} + E_{r} + E_{v}$$

~1% ~0.01% ~99%

 $E_{\nu} \approx 10^{53} \, \mathrm{erg}$

Additional Energy Loss from SNe

[Lucente et al. JCAP 12 (2020) 008.]

 $E_{\rm g} = E_{\rm k} + E_{\rm r} + E_{\rm v} + E_{\rm axion}$

- The ALP luminosity L_a is so large that the neutrino burst duration (~10 s) cannot be explained.
- A criterion $L_a < 20 \times 10^{51}$ erg/s is often adopted.

Beyond Post-processing

- Previous calculations are mainly performed with hydrodynamics and ALPs decoupled
- In order to predict the signature of ALPs in neutrino and gravitational wave signals, one should go beyond post-processing
- We developed a new method to calculate the backreaction of ALPs

Outline

1. Brief review on supernova limits on axion-like particles (ALPs)

2. Possible impacts of ALPs on supernova dynamics Mori, Takiwaki, Kotake & Horiuchi, PRD 105 (2022) 063009

3. Pair-instability supernova models with ALPs (preliminary) Mori, Moriya, Sakstein, Croon, Takiwaki, Kotake & Horiuch, in preparation.

E_{exp} **Problem in Supernova Models**

Nakamura, Takiwaki & Kotake MNRAS 514 (2022) 3941

Modern multi-D models tend to show $E_{exp} < 1$ B 😥

Radiative Decay of Heavy ALPs

Heavy ALPs are unstable:

 $a \rightarrow \gamma + \gamma$

• Mean free path:

$$\lambda_{a \to \gamma\gamma} \sim 6 \times 10^4 \,\mathrm{km} \left(\frac{g_{a\gamma}}{10^{-9} \,\mathrm{GeV}^{-1}}\right)^{-2} \left(\frac{E}{150 \,\mathrm{MeV}}\right) \left(\frac{m_a}{100 \,\mathrm{MeV}}\right)^{-4}$$

• When ALPs are heavy enough, ALPs decay in a star

→Effect on SN dynamics?

SN Simulation Coupled with ALPs

Code: 3DnSNe [Takiwaki, Kotake & Suwa MNRAS 461 (2016) L112] with IDSA [Liebendörfer, Whitehouse, & Fischer ApJ 698 (2009) 1174]

Dimension: 1D **EoS**: LS220 **Progenitor**: $20M_{\odot}$

ALP production:

Primakoff process Photon coalescence ALP absorption: Inverse Primakoff process Radiative decay

 $abla \cdot \mathbf{F} = Q_{\text{cool}} - Q_{\text{heat}} \xrightarrow{\text{discretize}}$ ALP ALP production absorption

$$L_{i+\frac{1}{2}} = L_{i-\frac{1}{2}} + (Q_{\text{cool}, i} - Q_{\text{heat}, i})\Delta V_i$$
$$Q_{\text{heat}, i}\Delta V_i = L_{i-\frac{1}{2}} \left(1 - \exp\left(-\frac{r_{i+1} - r_i}{\lambda_{a, i}}\right)\right)$$

for the *i*-th cell

Modification on internal energy:

$$e_{\text{int, }i}^{n+1} = e_{\text{int, }i}^{n} + (Q_{\text{heat, }i}^{n} - Q_{\text{cool, }i}^{n})\Delta t$$

ALP Cooling & Heating Rates

✓ ALPs are produced at ~10 km

✓ ALPs decay after running a mean free path → additional heating

ALP Cooling & Heating Rates

ALP mass is fixed: $m_a = 100 \text{ MeV}$

 Q_{heat} is a steep function of the ALP-photon coupling constant g

Shock Revival Assisted by ALPs

ALPs may heat the shock wave and lead to shock revival 23 /36

Explodability

Successful explosions with ALP heating even in 1D models!

Explosion Energy

- Some models approach 10⁵² erg
- In general, larger coupling constants lead to more energetic explosion

$$\begin{bmatrix} E_{\exp} = \int_D dV \left(\frac{1}{2} \rho v^2 + e - \rho \Phi \right) \end{bmatrix}$$

Explosion Energy

SN explosion energy (schematic)

 $\begin{array}{l} {\it E_{exp}}{>}1~{\it B} \rightarrow {\it Excluded} \\ {\it E_{exp}}{\sim}1~{\it B} \rightarrow {\it Possible \ solution \ for \ the \ {\it E_{exp}} \ problem \ (?)} \\ {\it E_{exp}}{<}1~{\it B} \rightarrow {\it Allowed} \end{array}$

We need …

- Long-term simulations
- Multi-D simulations
- Parameter studies (progenitor, EoS, …)

Summary (1)

- Astrophysical objects such as core-collapse SNe and stars offer unique opportunities to explore ALPs.
- Heavy ALPs with $m_a \sim 100$ MeV can assist the shock revival in SNe.
- If the ALP-photon coupling is large enough, the explosion can be more energetic than >1 B.
- I am planning to perform multi-D simulations to predict GW signals.

Outline

1. Brief review on supernova limits on axion-like particles (ALPs)

2. Possible impacts of ALPs on supernova dynamics Mori, Takiwaki, Kotake & Horiuchi, PRD 105 (2022) 063009

3. Pair-instability supernova models with ALPs (preliminary) Mori, Moriya, Sakstein, Croon, Takiwaki, Kotake & Horiuch, in preparation.

Pair-instability Supernova (PISN)

- Very massive stars with
 - $M_{\rm ZAMS} \sim 150-250 M_{\odot}$
- Explosive O-burning
- →Total disruption of the star
- No confirmed event

ALP Effect on PISNe

ALPs with $m_a < 2m_e$ can be effectively produced \rightarrow If g is sufficiently large, ALPs can reach equilibruin and soften the EoS

Sukstein et al. PRD 105 (2022) 095038

EoS Modification

$$\begin{split} \beta(T) &= \frac{m_{\phi}c^2}{k_BT} \\ P_{\phi}(\beta) &= m_{\phi}c^2C\left(\frac{g_{\phi}}{2}\right)H_1(\beta) \\ \rho_{\phi}(\beta) &= m_{\phi}C\left(\frac{g_{\phi}}{2}\right)H_2(\beta) \\ u_{\phi}(\beta) &= m_{\phi}c^2C\left(\frac{g_{\phi}}{2}\right)H_3(\beta) \\ s_{\phi} &= \frac{k_BC\beta}{\rho}\left(\frac{g_{\phi}}{2}\right)\left[H_1(\beta) + H_3(\beta)\right] \\ H_1(\beta) &= \int_{\varepsilon=\beta}^{\infty}G\left(\frac{\varepsilon}{\beta}\right)B(\varepsilon)\frac{d\varepsilon}{\beta} \\ H_2(\beta) &= \int_{\varepsilon=\beta}^{\infty}G'\left(\frac{\varepsilon}{\beta}\right)B(\varepsilon)\frac{d\varepsilon}{\beta} \\ H_3(\beta) &= \int_{\varepsilon=\beta}^{\infty}\varepsilon G'\left(\frac{\varepsilon}{\beta}\right)B(\varepsilon)\frac{d\varepsilon}{\beta^2} \\ B(\varepsilon) &= \frac{1}{e^{\varepsilon} - 1} \\ G(x) &= \frac{1}{3}(x^2 - 1)^{\frac{3}{2}}. \end{split}$$

[Sukstein et al. PRD 105 (2022) 095038]

Quantity	Definition	Units in MESA	Formula
P_g	gas pressure	$\rm ergs/cm^3$	$P_g = \bar{P}_g + P_\phi$
E	specific internal energy	ergs/g	$E = ar{E} + rac{u_{\phi}}{ ho}$
8	specific entropy	ergs/g/K	$s = \bar{s} + s_{\phi}$
c_V	$\left(\frac{\partial E}{\partial T}\right)_{\rho}$	ergs/g/K	$ar{c}_v - k_B C rac{g_\phi}{2} rac{eta^2}{ ho} rac{\mathrm{d} H_3(eta)}{\mathrm{d}eta}$
$\chi_{ ho}$	$\left. \frac{\partial \ln P}{\partial \ln \rho} \right _T$	none	$rac{ar{P}}{ar{P}}ar{\chi}_{ ho}$
χ_T	$\left. \frac{\partial \ln P}{\partial \ln T} \right _{\rho}$	none	$\frac{\bar{P}}{P}\bar{\chi}_T - k_B C \frac{g_{\phi}}{2} \beta^2 \frac{T}{P} \frac{\mathrm{d}H_1(\beta)}{\mathrm{d}\beta}$
$\left(\frac{\partial s}{\partial T}\right)_{\rho}$	_	$\rm ergs/g/K^2$	$\left(\frac{\partial \bar{s}}{\partial T}\right)_{\rho} - \frac{k_B C}{\rho} \frac{g_{\phi}}{2} \frac{\beta}{T} \left[H_1(\beta) + H_3(\beta)\right]$
			$+\beta\left(\frac{\mathrm{d}H_1(\beta)}{\mathrm{d}\beta}+\frac{\mathrm{d}H_3(\beta)}{\mathrm{d}\beta}\right)\bigg]$
$\left(\frac{\partial s}{\partial \rho}\right)_T$	_	${\rm ergs}~{\rm cm}^3/{\rm g}^2/{\rm K}$	$\left(\frac{\partial \overline{s}}{\partial \rho}\right)_T - \frac{s_\phi}{\rho}$
$\left(\frac{\partial E}{\partial \rho}\right)_T$	_	${\rm ergs}~{\rm cm}^3/{\rm g}^2$	$\left(\frac{\partial \bar{E}}{\partial \rho}\right)_T - \frac{u_\phi}{\rho^2}$
Γ_3	$1 + \left(\frac{\partial \ln T}{\partial \ln \rho}\right)_s$	none	$1 + \frac{X}{Y}$
Γ_1	$\left(\frac{\partial \ln P}{\partial \ln \rho}\right)_s$	none	$\chi_{\rho} + \chi_T \frac{X}{Y}$
$ abla_{ m ad}$	$\left(\frac{\partial \ln T}{\partial \ln P}\right)_s$	none	$\frac{X}{Y\Gamma_1}$
CP	$\left(\frac{\partial h}{\partial T}\right)_{R}$	ergs/g/K	$\frac{c_V}{\chi_a}\Gamma_1$

ALP Effect on PISNe

- ALPs can soften the EoS
- → Lighter stars can cause PISNe
- ALPs can lower the edges of the BH mass gap
- → Comparison with GW
 observations of BH binaries
- Effects on optical signals?

Sukstein et al. PRD 105 (2022) 095038

⁵⁶Ni Mass & Explosion Energy

MESA models with EoS modification (He star, $Z=10^{-5}$)

ALPs can increase $M_{\rm Ni}$ and $E_{\rm exp}$ in PISNe

Effect on Light Curves

Light curves estimated with Arnett's law (heating by the ⁵⁶Ni decay chain)

ALPs shorten t_{max} because of higher explosion energy

Summary (2)

- PISNe may be affected by ALPs if $m_a < ~2m_e$
- Lighter stars can become PISNe
- The edges of the BH mass gap can be lighter
- ⁵⁶Ni mass and explosion energy can become higher
- The peak time of the light curves can be shorter
- Future optical/GW observations may find these signatures

Summary

Supernovae are a laboratory for ALPs!

Jaeckel & Spannowsky PLB 753 (2016) 482