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The fate of massive stars (>~10Msun)

Liberation of 
gravitational binding 
energy of ~1053 erg



Why are SNe important?

They are the source/origin of:
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Heavy elements
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Our understanding of underlying SN explosion physics

and of the formation channel to various compact stars

has been remaining patchy in these several decades.

In SN physics, all the four fundamental forces play substantial roles.

• GR governs the overall dynamics.

• The nuclear force (i.e. strong force) determines structure of compact stars.

• SN explosion is driven by the neutrino heating (weak force).

• Or sometimes by magnetic fields (electromagnetic force).

SN theory is one of the most challenging subjects in astrophysics!

And numerical simulation is the most powerful tool

to model such complex systems.



Müller+, ‘17

The fundamental question: What mechanisms drive SNe?

Nomoto+, ’13

Even in this narrow mass range (10~45 Msun, thus Ugrv could vary only several 
times), the explosion energies show a large difference Eexp~1051-52 ergs.



It is very unlikely that only one explosion 
mechanism explains all observed SNe.

Müller+, ‘17

The fundamental question: What mechanisms drive SNe?

Nomoto+, ’13

Even in this narrow mass range (10~45 Msun, thus Ugrv could vary only several 
times), the explosion energies show a large difference Eexp~1051-52 ergs.

ϵ =
Eexp

Ugrv

ϵ ∼ 1 %
ϵ ∼ 10 %



Possible SN explosion mechanisms

Various properties

of progenitor stars:


mass, spin, 
magnetic fields, 

etc.

Various explosion 
mechanisms:

• v-driven

• MRE

• PT

• (P)PI

• axion-driven

• ???

Various remnants:

• NSs

• BHs

• magnetars

• exotic stars

1.Neutrino driven explosion (ν-driven) 


2.Magneto rotational explosion (MRE)

3.(Pulsational) pair instability ((P)PI)

4.Other mechanisms                                                             
(e.g. phase transition from hadronic to quark matters (PT))



Bicudo+, 2011
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Are these very massive NSs

really a pure NS? 

Theoretical support of the existence of QSs
PSR J0952-0607  2.35±0.17Msun



Annala+, ‘20

These two limits 
(nuclear and pQCD regions) 
are relatively well understood.

Theoretical support of the existence of QSs

Constraints: 
✓From causality, Cs<=1 
✓Asymptotically, Cs2<1/3 in QCD region 
✓                  and Cs2<<1 in the lower limit

Blue/cyan for 1.4Msun 

Red/magenta for Mmaximum

Cs2

P/PFD

γ



Very massive NSs (≳2Msun) are likely 
to be composed of not only normal hadronic matters, 

but some exotic nuclei.

Theoretical support of the existence of QSs

Blue/cyan for 1.4Msun

Red/magenta for Mmaximum

Cs2

γ

Annala+, ‘20



Theoretical support of the existence of QSs

MR of QS (and hybrid, hyperon star) is 
within the error band of observations.

Bauswein+



Fischer+,’17

Collapse of PNSs and formation of QSs.
Hadron-Quark phase transition 

(HQ-PT)

Progenitor: 50Msun w/ Zsun



BSSN	equations	(17	variables):		4th	order	accuracy	in	space	and	time

– 6 –

2.1. Metric equations

We write the spacetime metric in the standard (3+1) form:

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt), (4)

where α, βi, and γij are the lapse, shift, and spatial metric, respectively. The extrinsic curvature
Kij is defined by

(∂t − Lβ)γij = −2αKij , (5)

where Lβ is the Lie derivative with respect to βi. The evolution of γij and Kij is governed by the
Einstein equation Gµν = 8πTµν (total), where Gµν is the Einstein tensor and Tµν (total) is the total
stress-energy tensor (e.g., Equation (1)).

We evolve γij and Kij using the BSSN formulation (Baumgarte & Shapiro 1999; Shibata &
Sekiguchi 2005b; Duez et al. 2006), in which the fundamental variables are

φ ≡ 1
12

ln[det(γij)] , (6)

γ̃ij ≡ e−4φγij , (7)

K ≡ γijKij , (8)

Ãij ≡ e−4φ(Kij −
1
3
γijK) , (9)

Γ̃i ≡ −γ̃ij
,j . (10)

The Einstein equation gives rise to the evolution equations for the BSSN variables as,

(∂t − Lβ)γ̃ij = −2αÃij (11)

(∂t − Lβ)φ = −1
6
αK (12)

(∂t − Lβ)Ãij = e−4φ
[
α(Rij − 8πγiµγjνT

µν
(total) − DiDjα

]trf
+ α(KÃij − 2Ãikγ̃

klÃjl)

(13)

(∂t − Lβ)K = −∆α + α(ÃijÃ
ij + K2/3) + 4πα(nµnνT

µν
(total) + γijγiµγjνT

µν
(total)) (14)

(∂t − βk∂k)Γ̃i = 16πγ̃ijγiµnνT
µν
(total)

−2α(
2
3
γ̃ijK,j − 6Ãijφ,j − Γ̃i

jkÃ
jk)

+γ̃jkβi
,jk +

1
3
γ̃ijβk

,kj − Γ̃jβi
,j +

2
3
Γ̃iβj

,j + βjΓ̃i
,j − 2Ãijα,j , (15)

where D denotes covariant derivative operator associated with γij , ∆ = DiDi,“trf” denotes the
trace-free operator, nµ = (−α, 0) is the time-like unit vector normal to the t = constant time slices.
In Equation (13), the explicit form of DiDjα reads

DiDjα = ∂i∂jα − Γk
ij∂kα

= ∂i∂jα −
[
Γ̃k

ij + 2
(
δk
j ∂iφ + δk

i ∂jφ − γ̃ij γ̃
kl∂lφ

)]
∂kα. (16)

(2011), we take the variable Eddington factor ( )c e as

F F F5 6 2 6

15
, 7

2 3 4¯ ¯ ¯
( )( )

( ) ( ) ( )c =
+ - +

e
e e e

where

F
h H H

J
. 82

2
¯ ( )( )

( ) ( )

( )
ºe

mn e
m

e
n

e

In Equation (8), h g u uº +mn mn m n is the projection operator.
As we will discuss later, by the definition of F̄( )e in Equation (8),
one can appropriately reproduce several important neutrino
behaviors, for example, neutrino trapping in the rapidly
collapsing opaque core. We iteratively solve the simultaneous
Equations (7)–(8) to find the converged solution of ( )c e .

The hydrodynamic equations are written in a conservative
form as
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where W
*
r r g= , S hWui ir= , S hu u Pij i j ijr g= + ,

S Sk
k ij

ijg= , S hW P0
2r= - , and log 12( )f g= . ρ is the rest

mass density, W is the Lorentz factor, h e P1 r= + + is the
specific enthalpy, v u ui i t= , S W0t r= - , Y n ne e bº is the
electron fraction (nX is the number density of X), e and P are the
specific internal energy and pressure of matter, respectively,
and mu is the atomic mass unit. P s Y, , e( )r and e s Y, , e( )r are
given by an equation of state (EOS) with s denoting the entropy
per baryon. We employ an EOS by Lattimer & Douglas Swesty
(1991, hereafterLS220;see Section 5.1 for more details). In
the right-hand side (rhs) of Equation (11), Di represents the
covariant derivative with respect to the three metric ijg .

2.2. Conservation of Energy and Lepton Number

As explained in Section 2.1, the formalism of our code that
treats the radiation-hydrodynamics equations in a conservative
form is suitable to satisfy the energy conservation of the total
system (neutrinos and matters;see also Kuroda & Umeda
2010and Kuroda et al. 2012 for more details). Let us first show
how the energy conservation law is obtained in our code.

To focus only on the energy exchange between the matter
and neutrino radiation field, we omit the gravitational source
term in the following discussion. Then, the equations of energy
conservation of matter and neutrinos (e.g., Equations (4) and

(11)) become

v P v d S n , 13t i
i i i( ( )) ( )( )ògt g t b e ga¶ + ¶ + + = e

m
m

E F E M n

S n . 14
t i

i i( ) ( ˜ )
( )

( ) ( ) ( ) ( )

( )

g g a b ga e

ga

¶ + ¶ - + ¶

= -
e e e e e

m
m

e
m

m

From the above two equations, one can readily see that the total
energy (sum of matter and neutrinos) contained in the
computational domain, E dx d Em

3 ( )( )ò òg t eº +n e , is con-
served in our basic equations as long as there is no net energy
flux through the numerical and momentum space boundaries
(i.e., d M n 0[ ( ˜ )]( )ò e e¶ =e e

m
m ).

The lepton number conservation needs to be satisfied with
good accuracy because it determines the PNS mass and the
postbounce supernova dynamics. We here explain how we treat
it in our code. As for the electron and neutrino number
conservation, the basic equations are given by

Y
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e
ab
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e
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q T h u , 181 ( ) ( )( ) ( ) ( ) ( ) $eº = +e
ab

e
gb

g
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e
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e
ab-

with J H L, , , ,1( ) ( )"  $ eºa ab a ab- . The conservation equa-
tion for neutrinos(16) corresponds to Equation (3.22) (divided
by ε) in Shibata et al. (2011). Since the neutrino number
density measured by an Eulerian observer is expressed as

n d q , 19,Euler ,
0 ( )( )ò e ga=n n e

the equation of the total lepton number conservation becomes

Y Y v m d q q 0.

20
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Here the total lepton fraction Yl is defined by
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¯
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e
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n n

n e n e

From Equation (20), one can readily see that the total lepton
number is conserved irrespective of the included neutrino
matter interaction processes in case there is no net flux through
the numerical and energy space boundaries. The distribution of
Yl into the each component (e.g., Y Y Y, ,e e ēn n ) is determined by
the details of the implemented microphysics, which should be
checked carefully and will be reported in Section 5.
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GRMHD (9 variables):  3rd and 2nd order 
accuracy in space and time, respectively

∂tBi = ∂k(Bkvi − Bivk)

formalism (Thorne 1981), which is extended by Shibata et al.
(2011) in a more suitable manner applicable to the neutrino
transport problem. Regarding the neutrino–matter interaction
terms, we employ a baseline set of weak interactions as given
in Bruenn (1985) and Rampp & Janka (2002), where nucleon–
nucleon bremsstrahlung is additionally taken into account. Our
newly developed code is designed to evolve the Einstein field
equation together with the GR radiation hydrodynamic
equations in a self-consistent manner while satisfying the
Hamiltonian and momentum constraints. A nested structure
embedded in the 3D Cartesian computational domain enables
us to follow the dynamics starting from the onset of
gravitational collapse of a 15 Me star (Woosley & Wea-
ver 1995), through bounce, up to about ∼50 ms postbounce.
Since, it is still computationally too expensive to follow long-
term evolution in full 3D until the neutrino-driven explosion
takes place (e.g., at the earliest ∼200 ms after bounce (Bruenn
et al. 2009; Marek & Janka 2009) or ∼500 ms in 2D-GR
calculation (Müller & Janka 2014), we mainly focus on
detailed comparisons between our pseudo-1D neutrino profiles
computed in the 3D Cartesian coordinates and previous 1D
results to check the validity of our new code in the early
postbounce phase.

This paper is organized as follows. In Section 2, after we
shortly introduce the formulation of the GR transport scheme,
we describe the governing equations of hydrodynamics and
neutrino transport in detail. Some practical implementation
schemes how to satisfy important conservative quantities such
as lepton number, energy, and momentum are given in
Section 3. The main results and detailed comparisons with
previous studies are presented in Section 5. Note that
geometrized unit system is used in Sections 2 and 3, i.e., the
speed of light, the gravitational constant and the Planck
constant are set to unity: c G h 1= = = , and cgs units
areused in Section 5. Greek indices run from 0 to 3 and Latin
indicesfrom 1 to 3.

2. FORMALISM

This section starts with a brief summary of the basic equations
and the numerical schemes of GR radiationhydrodynamics.

Following our previous work (Kuroda et al. 2012), our code
consists of the following three parts, where the evolution
equations of metric, hydrodynamics,and neutrino radiation are
solved. Each of them is solved in an operator-splitting manner,
but the system evolves self-consistently as a whole, satisfying
the Hamiltonian and momentum constraints. Regarding the
metric evolution, the spatial metric ijg (in the standard (3+1)
form: ds dt2 2 2a= - + dx dt dx dt ,ij

i i j j( )( )g b b+ + with α

and ib being the lapse and shift, respectively) and its extrinsic
curvature Kij are evolved using the BSSN formulation (Shibata
& Nakamura 1995; Baumgarte & Shapiro 1999;see Kuroda
et al. 2012, 2014 for more details).

2.1. Radiation Hydrodynamics

There are major differences compared to our previous code
(Kuroda et al. 2012).On the one hand, we evolved anenergy-
integrated (“gray”) neutrino radiation field with an approximate
description of neutrino–matter interaction based on the neutrino
leakage scheme, andon the other hand we now solve the
spectral neutrino transport where the source terms are treated
self-consistently following a standard procedure of the M1

closure scheme (Shibata et al. 2011). For convenience, we
briefly summarize the basic equations of our newly developed
code in the following (see Shibata et al. 2011 and Cardall et al.
2013a for the complete derivation).
The total stress–energy tensor T total( )

ab is expressed as

T T d T , 1total fluid
, ,

,
e e x

( )( ) ( )
¯

( )ò åe= +ab ab

n n n n
n e
ab

Î

where T fluid( )
ab and T ,( )n e

ab arethe stress–energy tensor of fluid and
theenergy-dependent neutrino radiation field, respectively.
Note in the above equation, summation is taken for all species
of neutrinos ( , ,e e x¯n n n ) with xn representing heavylepton
neutrinos (i.e., ,n nm t and their anti-particles), and ε represents
neutrino energy measured in the comoving frame with the fluid.
For simplicity, the neutrino flavor index ν is omitted below.
With introducing radiation energy (E( )e ), radiation flux

F( )( )e
m ,and radiation pressure P( )( )e

mn , measured by an Eulerian
observer or (J( )e , H( )e

m and L( )e
mn) measured in a comoving frame,

T( )e
mn can be written in covariant form as

T E n n F n F n P , 2( )( ) ( ) ( ) ( ) ( )= + + +e
mn

e
m n

e
m n

e
n m

e
mn

J u u H u H u L . 3( )( ) ( ) ( ) ( )= + + +e
m n

e
m n

e
n m

e
mn

In the above equations, n 1 , k( )a b a= -m is a unit vector
orthogonal to the space-like hypersurface and um is the four
velocity of fluid. In the truncated moment formalism
(Thorne 1981; Shibata et al. 2011), one evolves radiation
energy (E( )e ) and radiation flux (F( )e

a ) in a conservative form
and P( )e

mn is determined by an analytic closure relation (e.g.,
Equation (6)). The evolution equations for E( )e and F( )e

a are
given by

E F E M n

P K F S n , 4

t i
i i

ij
ij

i
i

( ) ( ˜ )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

g g a b ga e

g a a a

¶ + ¶ - + ¶

= - ¶ -

e e e e e
m

m

e e e
m

m

and

F P F M

E F P S2 ,

5

t i j i
j j

i i

i j i
j jk

i jk i

( ) ( ˜ )
[ ( ) ]

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

g g a b ga e g

g a b a g a g

¶ + ¶ - - ¶

= - ¶ + ¶ + ¶ +

e e e e e
m

m

e e e e
m

m

respectively. Here γ is the determinant of the three metric
det ij( )g gº and S( )e

m is the source term for neutrino matter
interactions (see Appendix A for the currently implemented
processes). M̃( )e

m is defined by M M u˜( ) ( )º �e
m

e
mab

b a,where M( )e
mab

denotes the third rank moment of theneutrino distribution
function (seeShibata et al. 2011 for the explicit expression).
By adopting the M1 closure scheme, the radiation pressure

can be expressed as

P P P
3 1

2

3 1

2
, 6ij ij ij

thin thick

( )
( )( )

( )
( )

( )
( )

c c
=

-
+

-
e

e
e

e
e

where ( )c e represents the variable Eddington factor, andPij
thin( )e

and Pij
thick( )e correspondto the radiation pressure in the optically

thin and thick limit, respectively. They are written in terms of
J( )e and H( )e

m (Shibata et al. 2011). Following Minerbo (1978),
Cernohorsky & Bludman (1994), and Obergaulinger & Janka
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formalism (Thorne 1981), which is extended by Shibata et al.
(2011) in a more suitable manner applicable to the neutrino
transport problem. Regarding the neutrino–matter interaction
terms, we employ a baseline set of weak interactions as given
in Bruenn (1985) and Rampp & Janka (2002), where nucleon–
nucleon bremsstrahlung is additionally taken into account. Our
newly developed code is designed to evolve the Einstein field
equation together with the GR radiation hydrodynamic
equations in a self-consistent manner while satisfying the
Hamiltonian and momentum constraints. A nested structure
embedded in the 3D Cartesian computational domain enables
us to follow the dynamics starting from the onset of
gravitational collapse of a 15 Me star (Woosley & Wea-
ver 1995), through bounce, up to about ∼50 ms postbounce.
Since, it is still computationally too expensive to follow long-
term evolution in full 3D until the neutrino-driven explosion
takes place (e.g., at the earliest ∼200 ms after bounce (Bruenn
et al. 2009; Marek & Janka 2009) or ∼500 ms in 2D-GR
calculation (Müller & Janka 2014), we mainly focus on
detailed comparisons between our pseudo-1D neutrino profiles
computed in the 3D Cartesian coordinates and previous 1D
results to check the validity of our new code in the early
postbounce phase.

This paper is organized as follows. In Section 2, after we
shortly introduce the formulation of the GR transport scheme,
we describe the governing equations of hydrodynamics and
neutrino transport in detail. Some practical implementation
schemes how to satisfy important conservative quantities such
as lepton number, energy, and momentum are given in
Section 3. The main results and detailed comparisons with
previous studies are presented in Section 5. Note that
geometrized unit system is used in Sections 2 and 3, i.e., the
speed of light, the gravitational constant and the Planck
constant are set to unity: c G h 1= = = , and cgs units
areused in Section 5. Greek indices run from 0 to 3 and Latin
indicesfrom 1 to 3.

2. FORMALISM

This section starts with a brief summary of the basic equations
and the numerical schemes of GR radiationhydrodynamics.

Following our previous work (Kuroda et al. 2012), our code
consists of the following three parts, where the evolution
equations of metric, hydrodynamics,and neutrino radiation are
solved. Each of them is solved in an operator-splitting manner,
but the system evolves self-consistently as a whole, satisfying
the Hamiltonian and momentum constraints. Regarding the
metric evolution, the spatial metric ijg (in the standard (3+1)
form: ds dt2 2 2a= - + dx dt dx dt ,ij

i i j j( )( )g b b+ + with α

and ib being the lapse and shift, respectively) and its extrinsic
curvature Kij are evolved using the BSSN formulation (Shibata
& Nakamura 1995; Baumgarte & Shapiro 1999;see Kuroda
et al. 2012, 2014 for more details).

2.1. Radiation Hydrodynamics

There are major differences compared to our previous code
(Kuroda et al. 2012).On the one hand, we evolved anenergy-
integrated (“gray”) neutrino radiation field with an approximate
description of neutrino–matter interaction based on the neutrino
leakage scheme, andon the other hand we now solve the
spectral neutrino transport where the source terms are treated
self-consistently following a standard procedure of the M1

closure scheme (Shibata et al. 2011). For convenience, we
briefly summarize the basic equations of our newly developed
code in the following (see Shibata et al. 2011 and Cardall et al.
2013a for the complete derivation).
The total stress–energy tensor T total( )

ab is expressed as

T T d T , 1total fluid
, ,

,
e e x

( )( ) ( )
¯

( )ò åe= +ab ab

n n n n
n e
ab

Î

where T fluid( )
ab and T ,( )n e

ab arethe stress–energy tensor of fluid and
theenergy-dependent neutrino radiation field, respectively.
Note in the above equation, summation is taken for all species
of neutrinos ( , ,e e x¯n n n ) with xn representing heavylepton
neutrinos (i.e., ,n nm t and their anti-particles), and ε represents
neutrino energy measured in the comoving frame with the fluid.
For simplicity, the neutrino flavor index ν is omitted below.
With introducing radiation energy (E( )e ), radiation flux

F( )( )e
m ,and radiation pressure P( )( )e

mn , measured by an Eulerian
observer or (J( )e , H( )e

m and L( )e
mn) measured in a comoving frame,

T( )e
mn can be written in covariant form as

T E n n F n F n P , 2( )( ) ( ) ( ) ( ) ( )= + + +e
mn

e
m n

e
m n

e
n m

e
mn

J u u H u H u L . 3( )( ) ( ) ( ) ( )= + + +e
m n

e
m n

e
n m

e
mn

In the above equations, n 1 , k( )a b a= -m is a unit vector
orthogonal to the space-like hypersurface and um is the four
velocity of fluid. In the truncated moment formalism
(Thorne 1981; Shibata et al. 2011), one evolves radiation
energy (E( )e ) and radiation flux (F( )e

a ) in a conservative form
and P( )e

mn is determined by an analytic closure relation (e.g.,
Equation (6)). The evolution equations for E( )e and F( )e

a are
given by

E F E M n

P K F S n , 4

t i
i i

ij
ij

i
i

( ) ( ˜ )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

g g a b ga e

g a a a

¶ + ¶ - + ¶

= - ¶ -

e e e e e
m

m

e e e
m

m

and

F P F M

E F P S2 ,

5

t i j i
j j

i i

i j i
j jk

i jk i

( ) ( ˜ )
[ ( ) ]

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

g g a b ga e g

g a b a g a g

¶ + ¶ - - ¶

= - ¶ + ¶ + ¶ +

e e e e e
m

m

e e e e
m

m

respectively. Here γ is the determinant of the three metric
det ij( )g gº and S( )e

m is the source term for neutrino matter
interactions (see Appendix A for the currently implemented
processes). M̃( )e

m is defined by M M u˜( ) ( )º �e
m

e
mab

b a,where M( )e
mab

denotes the third rank moment of theneutrino distribution
function (seeShibata et al. 2011 for the explicit expression).
By adopting the M1 closure scheme, the radiation pressure

can be expressed as

P P P
3 1

2

3 1

2
, 6ij ij ij

thin thick

( )
( )( )

( )
( )

( )
( )

c c
=

-
+

-
e

e
e

e
e

where ( )c e represents the variable Eddington factor, andPij
thin( )e

and Pij
thick( )e correspondto the radiation pressure in the optically

thin and thick limit, respectively. They are written in terms of
J( )e and H( )e

m (Shibata et al. 2011). Following Minerbo (1978),
Cernohorsky & Bludman (1994), and Obergaulinger & Janka
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GR-Rad (4x3xNene variables):  3rd and 2nd 
order accuracy in space and time, respectively

In GRMRHD code, one solves these 3 
systems with (26+12*Nene) variables 
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New explosion mechanism: the PT from hadronic to quark matters

TK+,’21



TK+,’21

Various post (1st-)bounce evolutions

We have exhibited the first self-consistent full GR (2D-)simulations

of various compact star formations.

BH formation
hybrid star 
formation

NS

formation

Eexp~3x1051 ergsurvived NSs



~30ms after the PT ~80ms after the PT

Strong aspherical explosion!

Strong Rayleigh-Taylor 
mixing ejects low-Ye 

materials (Ye~0.2-0.3)!



Why do we need to bring up the PT mechanism?
✴Massive NSs (>2Msun) cannot be explained solely by hadronic matters, but 

rather by, e.g., a hybrid constituent of hadronic and exotic matters 
(Annala+,’20).


✴One of plausible mechanisms to explain super-luminous SNe (SLSNe).

• SLSNe, such as SN2006gy, can be well modeled by slightly larger 

explosion energy than normal type IIp SNe, a few times 1051 erg, and a 
dense CSM, with which the explosion collides (Smith+,’09, Moriya+,’13).


• From our simulations, it is likely that only massive stars with intermediate 
masses (~40-50Msun) encounter the PT. 


• From stellar evolution theory, these intermediate mass stars with Zsun may 
suffer heavy mass loss (Umeda&Nomoto,’08), producing dense CSM.

Smith+, 2007Nomoto+, ’13



Their multi-messenger signals

TK+,’21D=10kpc

GW

Neutrino signals



Progenitor mass dependence
Heger+,2003

Heavier mass and 
faster rotation at 

collapse



Heavier mass and 
faster rotation at 

collapse

Progenitor mass dependence

v-driven

MRE

PT

Heger+,2003



non-rotating model 
(c.f. Kuroda+, 2022) mildly rotating model

rapidly rotating model

tpb[ms]

The rapidly rotating model 
seems to be already entering 

the neutrino-driven 
explosion phase.

Rshock~150km



tpb~518.9ms

Xquark

Offset hadron-quark phase transition (PT) in mildly rotating model, 
unlike our previous non-rotating model!

@tpb~518.9ms

• Due to the meridional circulation,         
a hot disk is formed. 

• The phase transition occurs first in 
that hot disk region. 

• and then the “quark-torus” accretes 
onto the center.

Why offset?
tpb[ms]



log(Rho[g/cc])

T[MeV] Xquark

Tpb=126[ms] Tpb=330[ms]

TPT~519[ms]

Evolution of the PNS and HQ-PT

Entropy

20km



Tpb=502[ms] Tpb=512[ms]

TPT~519[ms]

Evolution of the PNS and HQ-PT

20km



Tpb=518.9[ms] Tpb=525[ms]

TPT~519[ms]

Evolution of the PNS and HQ-PT

20km



Rshock~100km Rshock~550km

Strong explosion driven by the HQ-PT.

150km 600km



Rho [g/cc]

tpb[s]

δX~225m

δX~110m

0.516  0.518   0.52   0.522   0.524  0.526   0.528

Short-lived QS

• too coarse resolution (δx=225m) ̶̶> (artificial) BH formation at the 2nd collapse 
• finer resolution (δx=110m) ̶̶> 2nd bounce and QS formation take place                                                        
b                                               



Rho [g/cc]

tpb[s]

δX~225m

δX~110m

tpb[s]
0.516  0.518   0.52   0.522   0.524  0.526   0.528

δX~55m

• too coarse resolution (δx=225m) ̶̶> (artificial) BH formation at the 2nd collapse 
• finer resolution (δx<110m) ̶̶> 2nd bounce and QS formation take place,                                                        
b                                                  but soon after that the QS collapses.

Short-lived QS

0.51         0.514       0.518        0.522         0.526

~8ms

~10ms



I explored two possible scenarios:

Why does the newly born QS immediately dies in a rotating case, 
while not in a non-rotating case?

Chandrasekhar,’64

GR instability: When the mass M is 
contracted within Rc, 

       the dynamical instability sets in.

Xquark

1. Due to GR instability? 2.Due to the peculiar offset-PT?



Why does the newly born QS immediately dies in a rotating case, 
while not in a non-rotating case?

Nakazato+,’07
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Density [g/cc]
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Tmax & D@Tmax

Dmax & T@Dmax

Nakazato+,’07



Density [g/cc]
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 1×1010
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 1×1012

 1×1010  1×1011  1×1012  1×1013  1×1014  1×1015  1×1016

Thick lines=> non-rotating

Nakazato+,’07



1.GR instability 
2.Due to the peculiar offset-HQ-PT?

γad

Dmax [g/cc]

at tp2b~ several ms, 
γad~2 (non-rotating)

 0

 2

 4

 6

 8

 10

 12

 0  2×1014  4×1014  6×1014  8×1014  1×1015  1.2×1015  1.4×1015  1.6×1015  1.8×1015  2×1015

Note: in the QCD region, 
the higher the density is, 
the smaller the γad is.

γad~1.3 (rotating)



hadronic 
matter

When the quark torus accretes on the centre: 
1a. the γ inside the quark torus is not so high (as it is a hot torus) 
      and, thus, a stronger overshooting 
1b. extremely rapid rotation (Ω~104 rad/s) supports the 2nd bounce 

After the ring down, 
2. Dmax is slightly larger in rotating model (~10% compared to non-rot.) 
3. The γad of quark core becomes smaller (this time ~1.3).



!We showed the first self-consistent formation process of NSs, BHs, and 
hybrid-stars.
!If the explosion is triggered by the QCD phase transition, the strong 
Rayleigh-Taylor instability may develop and transport low-Ye material 
outward.
!Strong GWs and neutrino signals would be detectable as observable 
signatures of the QCD phase transition in CCSNe.

Future plans: 
1. Slowly rotating models, that experience the PT at center. 
2. Beyond the BH formation!!


