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Various faces of QCD

model-independent methods to explore QCD (and in general QFT):
@ perturbative QCD
e works at high energies where strong interaction is weak
@ lattice QCD

e works best around Aqcp, ms (hadronic scale ~ 1 GeV)
e light pion sees itself around the torus if volume is too small
e but advantage: quark masses can be varied

@ (chiral) effective field theory ~ works at low energies

@ dispersion theory ~ works if there are only a few channels
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model-independent methods to explore QCD (and in general QFT):
@ perturbative QCD
e works at high energies where strong interaction is weak
@ lattice QCD

e works best around Aqcp, ms (hadronic scale ~ 1 GeV)
e light pion sees itself around the torus if volume is too small
e but advantage: quark masses can be varied

@ (chiral) effective field theory ~ works at low energies
@ dispersion theory ~ works if there are only a few channels

@ experiment! ~ but quark masses fixed
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Unitarity and analyticity

@ constraints from local quantum field theory:
partial-wave amplitudes for reactions/decays must be

e unitary:
sst=1, S=14iT = 2ImT=TT!

< note that this is a matrix equation:

ImTasg =D x Tasx T)T(_>B
e analytic (dispersion relations):

T(S)Zi/ds’ SImT(Sl)

I'—s—Je
— 00

~> can be used to calculate whole amplitude from imaginary part

@ practical limitation: too many states X at high energies
< in practice dispersion theory is a low-energy method (< 1 GeV)
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three lightest quark masses are small (m,, my < ms < Aqcp)
consider “chiral” limit where they are massless

obtain symmetry group SU(3),x SU(3)r

which is spontaneously broken to SU(3)y

(and explicitly broken by quark masses)

obtain hadron multiplets classified by flavor SU(3)y

and (very) light Goldstone bosons (pions, kaons, eta)

one multiplet is the baryon decuplet ~~ next page

3xXx3x3=10s®8y B8y P14
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Flavor decuplet
A~ A° At A+t

@ Gell-Mann predicted existence and mass of 2~ baryon
— Nobel Prize 1969
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some more facts and history related to the baryon decuplet

@ in particular: A*", A~ and Q~ are states of pure flavor
(note: Q7. and Q,,, not found yet)

ccc
— e.g. A++(J3 +3/2) ~ U T, u T, T (flavor up, spin up)
@ to save Pauli principle:
e color was introduced
— finally we got QCD
e (7 is only known long-living state with J > %
o lowest-lying S = —3 state cannot decay strongly
(kaon-cascade system is heavier)
o lowest-lying J = 3/2 state cannot decay electromagnetically
(Pauli principle forbids lower-lying J = 3 state)

— all  decays are interesting!
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Lattice QCD agrees with phenomenology

2000
| ~a
1500 Pl
S ] N o EJE A
> J
=,1000- e N
= ] ==
500; K —_— e%periment
1 == width
i o input
{—— T & QCD
0

S. Diirr et al., Ab-Initio Determination of Light Hadron Masses, Science 322, 1224 (2008)
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New physics: exploring neutrinos

@ explore neutrino oscillations, CP violation in lepton sector, ...

@ want to count how many neutrinos one has
(of specific type and at specific distance)

< need to know how many react with matter (nuclei!)

Q (GeV)

N

& F nthreshold
KA threshold

s : L Lol e v
2 25 3 35 09 1 11 12 13 14 17 18 19 2 21 22 23 2
W (GeV) W (GeV)

(v/ Q2: energy transfer to hadronic system; W: mass of produced hadronic system)

L. Alvarez Ruso et al., Contribution to Snowmass 2021, arXiv: 2203.09030 [hep-ph]
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New physics: exploring neutrinos
o} C— s1s af B SIS

N
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5 Enireshold
KA threshold
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25 3 35 09 1 11 12 13 14
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@ how neutrinos interact with matter
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e - \
T E,=7GeV E,=3GeV
ol N a s N

T threshold
KA threshold

S ilreshold
KA threshold

NG Tesonant processed,

L
35 09 1
W (GeV)

@ how neutrinos interact with matter
e at high energies: neutrinos “see” quarks
< perturbative QCD
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@ how neutrinos interact with matter
e at high energies: neutrinos “see” quarks
< perturbative QCD
o at lowest energies: neutrinos “see” nuclei
— nuclear-structure physics
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New physics: exploring neutrinos

[~ - \
™ E,=7GeV E, =3GeV

o[ [CJsis 1 a B SIS

T threshold
KA threshold

S ilreshold
> F KA threshold

L
25 3 35 09 1 11 12 13 14
W (GeV) W (GeV)

@ how neutrinos interact with matter

e at high energies: neutrinos “see” quarks

< perturbative QCD
e at lowest energies: neutrinos “see” nuclei

— nuclear-structure physics
e at low energies: neutrinos see “nucleons”

— vector and axial-vector form factors of nucleon

and pion production! ~» A(1232)

true for all energies: need to get stuff out from the nucleus
< transport theory, e.g. U. Mosel, J. Phys. G 46 (2019) 11, 113001

1718 19 2

10



Why is A interesting?

Axial-vector (and vector) transition form factors

@ interesting for scattering
neutrino-nucleon to
electron-A or muon-A

@ subsequently: A — 7N

@ low energies: want to know
deviation from current-algebra
result

NuSTEC Collaboration, L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100 (2018) 1;

M. Hilt, T. Bauer, S. Scherer, L. Tiator, Phys. Rev. C 97 (2018) 3, 035205;
M. Holmberg, SL, Phys. Rev. D 100 (2019) 11, 114001;
Y. Unal, A. Kiiciikarslan, S. Scherer, Phys. Rev. D 104 (2021) 9, 094014;

S.K. Singh, M.J. Vicente Vacas, Phys. Rev. D 74 (2006) 053009

11
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How about lattice QCD?

@ currently under investigation using lattice QCD:

e form factors of stable baryons
e and their quark-mass dependence

@ interpretation of results by chiral effective field theory

e.g. M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844;
Phys. Rev. D 105 (2022) 5, 054005

F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001

12



Dzt ke
How about lattice QCD?

@ currently under investigation using lattice QCD:
e form factors of stable baryons
e and their quark-mass dependence

@ interpretation of results by chiral effective field theory

e.g. M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844;
Phys. Rev. D 105 (2022) 5, 054005

F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001
@ but for transition form factors A-N:

e much more complicated because A is unstable
— essentially four-point function instead of three-point function

12



Dzt ke
How about lattice QCD?

@ currently under investigation using lattice QCD:
e form factors of stable baryons
e and their quark-mass dependence

@ interpretation of results by chiral effective field theory

e.g. M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844;
Phys. Rev. D 105 (2022) 5, 054005

F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001
@ but for transition form factors A-N:

e much more complicated because A is unstable
— essentially four-point function instead of three-point function

@ to circumvent problem: study stable flavor partners

— ()-= transition form factors

12
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My suggestion for a research program

2
o
o

study (2 transition form factors in lattice QCD and experiment
(and quark-mass dependence on lattice)

interpret results using
(dispersively modified) chiral effective field theory (dimyEFT)

extrapolate to A transition form factors using
(dim)xEFT and experimental data (hyperons)

obtain improved input for neutrino scattering
(and obtain better understanding of structure of hadrons)

UU contribution: develop dimyEFT

13
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Does all this make sense?

@ comparison to experiment:

e vector transition A-N is experimentally much better known
than axial-vector
— How well does dimyEFT work there?

@ comparison to lattice QCD:
e Can dimyEFT describe quark-mass dependence?

14
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Does all this make sense?

transition form factors from nucleon to A
using subtracted dispersion relations
(data from JLab, Mami, ...)

g
= -6
I - g~ 2.7, Hy~23
------ hy=27,Hy =23 L ne w2l
by =29, Hy =23 — hyx24.H 23
. hu= 24 Hy =23 10 hi~2.7,Hy ~ 25
hy = 2.7, Hy 2.5 —— hy~27,Hy~2.0
oy~ 27H,~20
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ! 0.0 0.1 0.2 03 04 0.5 0.6
07 [GeV?] 0*(GeV?]
M. M

. Aung, SL, E. Perotti, Y. Yan, arXiv: 2401.17756 [hep-ph]
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Does all this make sense?

quark-mass and momentum dependence

1.0

0.8

0.6
w

0.4

0.2

0.8.

m ChPT | !
m disp '
m disp+ChPT '

0 02 04 06
Q% (GeV?)
Mz = 0.130 GeV

0.8

1.0

of nucleon Dirac form factor

1.0

0.8f
0.6¢

w
0.4
0.2

0.8.

rm ChPT :
[ m disp \
= disp+ChPT ‘

0 02 04 06 08
Q% (GeV?)
M, = 0.223 GeV

F. Alvarado, D. An, L. Alvarez-Ruso, SL, Phys. Rev. D 108 (2023) 11, 114021

lattice data from Darmstadt-Edinburgh-Mainz group:

D. Djukanovic et al., Phys. Rev. D 103 (2021) 9, 094522

16
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Dirac vector isovector form factor of nucleon

1.0 : 10
08 N i 0.8 "N
06 06}
[y N Ty T T
0.4Fm ChPT NG 0.4} m ChPT ‘ -
0 o W disp ’,{7 M 0.0 W disp |
m disp+ChPT | m disp+ChPT
0'8.0 0.2 0.4 0.6 0.%3 1.0 0.8.0 0.2 04 0.6 0.8 1.0
Q% (GeV?) Q% (GeV?)
M, = 0.130 GeV M, = 0.223 GeV
10 : 10 :
08 \ 3 0.8} 1
0.6 0.6 ‘
w : w
0.4rm ChPT 0.4} @ ChPT ‘
0.2 m disp ‘ 0.2/® disp
m disp+ChPT w m disp+ChPT ;
0. - 0.
8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0

Q% (GeV?)

My = 0.278 GeV

Q% (GeV?)

My = 0.353 GeV

17
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Neutrino-baryon interactions

@ interesting for scattering
neutrino-nucleon to
electron-Delta

@ low energies: want to know
deviation from current-algebra
result ~» LEC cg

@ in chiral perturbation theory at next-to-leading order (NLO):

only one LEC c¢ for whole multiplet
< study Q= — =%e~ 7, instead of Nv, — Ae™

lingo of low-energy effective field theory:
@ LO: leading-order calculation
@ NLO: next to leading order

@ LEC: low-energy constant, i.e. coupling constant

18
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Branching ratio 2~ — Eoe_ﬂe (measured)

@ so far only next-to-leading-order (NLO) calculation finished
@ contribution from LO Lagrangian (~ hy) related to ©* — X7
@ contributions from NLO Lagrangian ~ cp, ce

< |cm| related to 0 — Ay

< get constraints on cg from measured branching ratio:

BRQ »=v.e)%

1.0
Uncertainty

0.8
Measurement 0.6

)4
T e ¢ (GeV)”!

6 -4 -2
M. Holmberg, SL, Eur. Phys. J. A 54 (2018) 6, 103; Phys. Rev. D 100 (2019) 11, 114001
C.J.G. Mommers, SL, Phys. Rev. D 106 (2022) 9, 093001
first steps beyond tree level: H. De Munck; M. Bertilsson, master theses UU 2023

19



Stefan Leupold Decuplet baryons

Dalitz pIOt Q- — Eoe_De (not measured yet)
o different values for cg and sign of cy influence Dalitz plot:

QO ->Pvee Q" -520v.e

0,00 e e e N1
1.8 20 22 24 26 28

m*(2 v,) [GeV?] m*( ve) [GeV?]
ce = 0.52 GeV 1, cg = —5.1GeV L,
cm = —1.92GeV~1 cm = —1.92GeV1

@ sign change of ¢y flips plots right < left

20



Dzt ke
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Back to QCD: Why are As interesting?

Low-energy QCD (aka chiral effective field theory)
e ‘“definition”, i.e. range of applicability:
momenta |p], pion mass m, < nucleon mass my
@ purposes:

precision tests of standard model

o
e ab-initio calculations of nuclei
o
o

description of properties of nuclear matter, neutron stars, ...

21
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Role of A in low-energy QCD?

unclear: how important are A baryons?

@ is the following the right way of ordering scales?
1], Mx, ma — my < my

< must include A as relevant degree of freedom

@ or is rather the following sufficient?
|ﬁ’a my < ma — my, My

< not enough energy to excite A

< need only pions and nucleons to construct low-energy QCD

22
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consider nucleon-nucleon scattering:

N N
W

@ is it necessary to consider s a
N

or is 7 T sufficient?
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Role of A in low-energy QCD?

consider nucleon-nucleon scattering:

N N
W

@ is it necessary to consider s a
N

@ how important is T

@ coupling constant A-A-m e unknown!

23
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What is unknown for A baryons?

@ coupling constant A-A-7 e completely unknown;
not even sign is clear

o further example for its impact: is interference of

\ / / \ / /

\ 7 7 \ 4 ’
\ / 7 \ 4 ’
\ / / \ 4 /
——X and =

constructive or destructive?
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What is unknown for A baryons?

U

coupling constant A-A-7 e completely unknown;
not even sign is clear

further example for its impact: is interference of

constructive or destructive?

one problem to determine A properties with better precision:
As are rather broad states (I ~ 100 MeV)

worth to study strange siblings from decuplet
e.g. 2-=*-K coupling

24
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A couplings and A-N transition form factors

@ A loops enter calculation of A-N transition form factors

but coupling constant A-A-7 (g1) unknown in size and sign

(actually there are two couplings, p and f wave ~» here: p-wave coupling)

004 @
one of the axial-vector
029 e i == | transition form factors;

R — RelCA(Q) g1 enters indirectly at

— = Imich@] loop level

«+ Empirical |4

A 1Q%

—0.4

T T T — T T T T

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
Q2 [GeV?] Q2 [GeV?]

Y. Unal, A. Kiiglikarslan, S. Scherer, Phys. Rev. D 104 (2021) 9, 094014
@ quark model and large-N. QCD suggest positive gy (figure: left-hand side)

@ recent analysis of m-N scattering suggests negative g1
De-Liang Yao et al., JHEP 05 (2016) 038
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Decay Q- — = OE Vg (not measured yet)

@ provides access to sign and size of coupling constant 2-=*(1530)-K
via Golberger-Treiman relation

@ flavor related to sign and size of coupling constant A-A-7 (Ha = g1)

@ so far only leading-order calculation for branching ratio and
forward-backward (fb) asymmetry (Wu-type experiment)

(rest frame of dilepton, measuring angle between baryons and charged lepton)

sz /Taet | T/Tosz
{=e, Hy=+2 1.2-10* +0.011
l=e Hy=0 6.7-107° —0.00043
l=e, Hy= -2 1.2-107* —0.012
{=p, Hy=+2 43.10°° —0.23
{=pu, HA=0 25-10° —0.33
{=p, Hy = -2 43.10°° —0.25
(] note = ( 53 ) easy” to reconstruct via sequence
0 _,=—gt, = =Nt , A= pr—

M. Bertilsson, SL, Phys. Rev. D 109 (2024) 3, 034028
26
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Some fun with group theory in hot QCD

0\£00£

SU(2), x SU(2)g — SU(2)y (isospin symmetry)

what happens at chiral restoration?

parity doublet models: assign chiral representation (L,R)
to nucleon and identify its parity partner

N: (2,1) <» N*(1535): (1,2)

note: pions and sigma live in (2,2)

but how about A?

is it in (4,1) orin (3,2)? (e.g., upu uy or u U Ug)
pion-nucleon system:

(2,2) x (2,1) = (3.2) @ (1, 2)
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Some fun with group theory in hot QCD

0\£00£

SU(2), x SU(2)g — SU(2)y (isospin symmetry)
what happens at chiral restoration?
parity doublet models: assign chiral representation (L,R)
to nucleon and identify its parity partner
N: (2,1) <» N*(1535): (1,2)
note: pions and sigma live in (2,2)
but how about A?
is it in (4,1) orin (3,2)? (e.g., upu uy or u U Ug)
pion-nucleon system:

(2,2)x (2.1) = (3.2) & (1,2)
no three-point coupling A-N-7 if A lives in (4,1)
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Some fun with group theory in hot QCD
SU(2), x SU(2)g — SU(2)y (isospin symmetry)

what happens at chiral restoration?
@ parity doublet models: assign chiral representation (L,R)
to nucleon and identify its parity partner
— N: (2,1) <> N*(1535): (1,2)
@ note: pions and sigma live in (2,2)
@ but how about A?
(_>
°

is it in (4,1) orin (3,2)? (e.g., upu uy or u U Ug)
pion-nucleon system:
(22) % (2,1) = (3.2) & (1,2)
< no three-point coupling A-N-7 if A lives in (4,1)
@ in vacuum, coupling is effectively generated by A-N-7-(o)
(2.2) x (2,2) x (2,1) = (4,3) ® (4,1) ® 2% (2,3) ® 2% (2, 1)

C. Kummer, L. von Smekal, SL, work in progress
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Summary and outlook

D elta (transition) form factors are interesting for neutrino physics
and low-energy QCD

O mega transition form factors are a better starting point
L attice QCD can tackle these (plus experimental guidance)

Q ==, Q — =*°(1530) ¢ &

C hiral effective field theory can interpret results

E xtrapolation to Delta (EFT plus experimental guidance)

— DOLCE
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dimyEFT: electromagnetic baryon form factors

how to obtain a form factor?

B B,
need to resolve at least the finite size < 1fm

but inverse size of a hadron is larger than pion mass

first one probes something universal (independent of B »):

// \
! VT
' !

B]%\B

@ now we are in the game with dispersion theory

the “pion cloud”:

2
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Deconstruct a form factor

pions interact

with each what is not
other contained is
hard (short-

) distance)

o I ol - physics

~ \\ ' ~ \\ 7&
B B, %\ %

B By ™ i B B,

just a
number!
B B

2
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How to get the pion vector form factor?

apply same pion hard part of
logic to pion scattering pion charge pion vector
vector FF L e FF
input: ’ l
T ~T
™ ™ ™ T ™ ™
[ ds i(s)
Fy(s)=(1+ays)expgs —_—
v(s) = ( vs) exp / 7 s'(s'—s—ie)

2
4mz

with pion phase shift §
and ay ~ 0.12 GeV~2 (from fit to FF data)
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Pion vector form factor and data

e Belle Data

— (1 +avs)Q(s)®

0 =
b0 05 10 15 20

Alvarado/An/Alvarez-Ruso/SL, Phys. Rev. D 108 (2023) 11, 114021
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Deconstruct a form factor

pions interact

with each what is not
other contained is
hard (short-

) distance)

o I ol - physics

~ \\ ' ~ \\ 7&
B B, %\ %

B By ™ i B B,

just a
number!
B B

2
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Scattering processes

from data _
part that is

dis;):;:ion not pion low-energy approximation:
T~ T
theory: rescattermg: \ L

e e PRy

what is not covered is hard physics
(contact terms)
B, B,

35
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Known input

pion : low-ener. imati
. - gy approximation
scattering pron gharge T LT
AN T . S
% /T\
7r . ™ T B B

@ baryon-pion coupling constants from decay widths

— sometimes only moduli known

2
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Unknown: some numbers

part without

two
intermediate
pions
B B,

< fit to data
(now)

or

intermediate intermediate
state with state that is
more than not one
two pions baryon

L 7 7
T o Bl/\B

2

calculate with quark-gluon based methods
(future)
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Why all decays of €2~ are interesting

e QO - =%, (Br=6-10"3; experiment)
flavor related to neutrino-nucleon scattering
e O~ — =0%e 7, (Bra 107%; our estimate)
flavor related to A-A-7 via Goldberger-Treiman relation
e O — AK~ (Br=68%)
has decay asymmetry o« = 0.0157 + 0.0021 # 0
< probably accuracy can be improved; search for CP violation ...
e O~ — = 7% =% has suspicious ratio of branching fractions
e QO —» =77 (Br=4-107%)
e exp: seems not to show =*(1530) as intermediate state
— flaw in resonance saturation?
— EFT construction:
What are the relevant degrees of freedom in Q decays?

C.J.G. Mommers, SL, Phys. Rev. D 106 (2022) 9, 093001
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@ standard picture for non-leptonic decays {2 — meson + baryon
— dominated by transition s — d, e.g. penguin diagram
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W
s d
u/eft u/eft
A Q* #E**
g
S S
S S

< thus intermediate state is an offshell =*~ with J =32, / =1
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Non-leptonic decays

@ standard picture for non-leptonic decays {2 — meson + baryon
— dominated by transition s — d, e.g. penguin diagram

W
s d
u/eft u/eft
A Q* #E**
g
S S
S S

< thus intermediate state is an offshell =*~ with J = % | =

— A/:%rule

1
2

39
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o O = (2 =)= 70:

R Y R

2 2|72/ T
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Non-leptonic decays
@ consider decays:
o O~ — =70 (Br=9%)
o and Q= — =07~ (Br=24%)

< determine Clebsch-Gordans for =*~ — == 70, =07
o O = (2 =)= 70:
1 1 1 1 1
< =5 L0y 2> V3
e O = (= — ):Oﬂ'_
1 1 1 1 2
< k=3 b 1’2’+2> V3
— prediction
rQ —=077) _ 5
Q- — =% "~

40



Stefan Leupold Decuplet baryons

Non-leptonic decays
@ consider decays:
o O~ — =70 (Br=9%)
o and Q= — =07~ (Br=24%)

< determine Clebsch-Gordans for =*~ — == 70, =07
o O = (2 =)= 70
1 1 1 1 1
< h="3|L0% 2> V3
o O — (=¥ —)=0n-
1 1 1 1 2
< k=3 b 1’2’+2> V3
— prediction
NQ — =07~ 24,
@ 5 2r) %
[ =) )
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Some details about main decays of 2~

o Br(Q~ — AK™) = (67.8 £0.7)%
o Br(Q — =%7) = (23.6 £ 0.7)%
@ Br(Q - =7% =(86+04)%
@ measured at SPS (=~ 1984), recently confirmed by BES IlI

Phys. Rev. D 108 (2023) 9, L091101

o if Br(Q™ — AK™) =~ 68% and if Al =1/2 rule holds:
Br(Q — =7 )~213%, Br(Q — = 7°) ~10.7%

— deviation by about 30 and 50, respectively

< worth to check Al =1/2 rule, e.g. in Q — =77
C.J.G. Mommers, SL, Phys. Rev. D 106 (2022) 9, 093001
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Not everything is a penguin

example for a non-penguin diagram (contribution to Q= — =~ 770)
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Reminder about multiplets

A~ A° At AT
n P
5
=" =0
baryon octet baryon decuplet
@ antisym. in color @ antisym. in color

@ antisym. in flavor, spin @ sym. in flavor, spin
43
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Large-N. QCD

for a large number of colors, N, — oo,

@ baryons consist of N. quarks

13
5155

@ couplings to pions are related to each other (Dashen, Jenkins, Manohar)
— nucleon (I =J=13%)and A (I =J=2) are
(approximately) equal in mass

@ states with J =1 = ,% are mass degenerate

< can be useful to treat them on equal footing for low-energy QCD
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Large-N. QCD

for a large number of colors, N, — oo,
@ baryons consist of N. quarks
o states with J =/ =13 ... 2 are mass degenerate
@ couplings to pions are related to each other (Dashen, Jenkins, Manohar)
— nucleon (I =J=13%)and A (I =J=2) are
(approximately) equal in mass
< can be useful to treat them on equal footing for low-energy QCD

< extension to three flavors (baryon octet and decuplet) also useful

(expansion in 1/Nc could be as meaningful/meaningless as expansion in electric charge e =~ 0.3)
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A penguin and its diagram

by Quilbert - own work derived from a LaTeX source code given in
http://cnlart.web.cern.ch/cnlart/221 /node63.html (archived) (slightly modified) and
Image:Pygoscelis papua.jpg by User:Stan Shebs, CC BY-SA 2.5,

https://commons.wikimedia.org/w/index.php?curid=2795824
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