Delta and Omega Baryons Old Friends and New Physics

Stefan Leupold

Uppsala University

Wrocław, April 2024

Table of Contents

- Various faces of QCD
- Old friends: baryon decuplet
- **(3)** How Δ and Ω help to explore new physics

Back to QCD

Various faces of QCD

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at low energies
- dispersion theory ~ works if there are only a few channels

Various faces of QCD

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at low energies
- dispersion theory ~ works if there are only a few channels
- experiment!

Various faces of QCD

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at low energies
- dispersion theory ~> works if there are only a few channels
- experiment! ~ but quark masses fixed

Unitarity and analyticity

- constraints from local quantum field theory: partial-wave amplitudes for reactions/decays must be
 - unitary:

 $S S^{\dagger} = 1$, $S = 1 + iT \Rightarrow 2 \operatorname{Im} T = T T^{\dagger}$

→ note that this is a matrix equation: $Im T_{A \to B} = \sum_{X} T_{A \to X} T^{\dagger}_{X \to B}$ • analytic (dispersion relations):

$$T(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} ds' \, \frac{\operatorname{Im} T(s')}{s' - s - i\epsilon}$$

- can be used to calculate whole amplitude from imaginary part
 practical limitation: too many states X at high energies
- \hookrightarrow in practice dispersion theory is a low-energy method ($\lesssim 1\,{\rm GeV})$

• three lightest quark masses are small $(m_u, m_d \ll m_s < \Lambda_{
m QCD})$

• three lightest quark masses are small $(m_u, m_d \ll m_s < \Lambda_{\rm QCD})$ \hookrightarrow consider "chiral" limit where they are massless

- ullet three lightest quark masses are small $(m_u,m_d\ll m_s<\Lambda_{\rm QCD})$
- \hookrightarrow consider "chiral" limit where they are massless
- \hookrightarrow obtain symmetry group SU(3)_L × SU(3)_R which is spontaneously broken to SU(3)_V (and explicitly broken by quark masses)

- ullet three lightest quark masses are small $(m_u,m_d\ll m_s<\Lambda_{\rm QCD})$
- \hookrightarrow consider "chiral" limit where they are massless
- \hookrightarrow obtain symmetry group SU(3)_L × SU(3)_R which is spontaneously broken to SU(3)_V (and explicitly broken by quark masses)
- \hookrightarrow obtain hadron multiplets classified by flavor SU(3)_V and (very) light Goldstone bosons (pions, kaons, eta)

- ullet three lightest quark masses are small $(m_u,m_d\ll m_s<\Lambda_{\rm QCD})$
- \hookrightarrow consider "chiral" limit where they are massless
- \hookrightarrow obtain symmetry group SU(3)_L × SU(3)_R which is spontaneously broken to SU(3)_V (and explicitly broken by quark masses)
- \hookrightarrow obtain hadron multiplets classified by flavor SU(3)_V and (very) light Goldstone bosons (pions, kaons, eta)
- \hookrightarrow one multiplet is the baryon decuplet \rightsquigarrow next page

 $3 \times 3 \times 3 = \mathbf{10}_{5} \oplus \mathbf{8}_{M} \oplus \mathbf{8}_{M} \oplus \mathbf{1}_{A}$

Flavor decuplet

• Gell-Mann predicted existence and mass of Ω^- baryon \hookrightarrow Nobel Prize 1969

some more facts and history related to the baryon decuplet

some more facts and history related to the baryon decuplet

 in particular: Δ⁺⁺, Δ⁻ and Ω⁻ are states of pure flavor (note: Ω⁺⁺_{ccc} and Ω⁻_{bbb} not found yet)

some more facts and history related to the baryon decuplet

• in particular: Δ^{++} , Δ^{-} and Ω^{-} are states of pure flavor (note: Ω_{ccc}^{++} and Ω_{bbb}^{-} not found yet)

 \hookrightarrow e.g. $\Delta^{++}(J_3=+3/2)\sim u\uparrow, u\uparrow, u\uparrow$ (flavor up, spin up)

some more facts and history related to the baryon decuplet

- in particular: Δ^{++} , Δ^{-} and Ω^{-} are states of pure flavor (note: Ω_{ccc}^{++} and Ω_{bbb}^{-} not found yet)
- $\label{eq:alpha} \hookrightarrow \text{ e.g. } \Delta^{++}(J_3=+3/2)\sim u\uparrow, u\uparrow, u\uparrow \qquad ({\rm flavor } {\rm up, \ spin \ up})$ • to save Pauli principle:

some more facts and history related to the baryon decuplet

- in particular: Δ^{++} , Δ^{-} and Ω^{-} are states of pure flavor (note: Ω_{ccc}^{++} and Ω_{bbb}^{-} not found yet)
- \hookrightarrow e.g. $\Delta^{++}(J_3=+3/2)\sim u\uparrow, u\uparrow, u\uparrow$ (flavor up, spin up)
 - to save Pauli principle:

color was introduced

some more facts and history related to the baryon decuplet

- in particular: Δ^{++} , Δ^{-} and Ω^{-} are states of pure flavor (note: Ω_{ccc}^{++} and Ω_{bbb}^{-} not found yet)
- \hookrightarrow e.g. $\Delta^{++}(J_3=+3/2)\sim u\uparrow, u\uparrow, u\uparrow$ (flavor up, spin up)
 - to save Pauli principle:
 - color was introduced
 - \hookrightarrow finally we got QCD

some more facts and history related to the baryon decuplet

- in particular: Δ^{++} , Δ^{-} and Ω^{-} are states of pure flavor (note: Ω_{ccc}^{++} and Ω_{bbb}^{-} not found yet)
- \hookrightarrow e.g. $\Delta^{++}(J_3=+3/2)\sim u\uparrow, u\uparrow, u\uparrow$ (flavor up, spin up)
 - to save Pauli principle:
 - color was introduced
 - \hookrightarrow finally we got QCD
 - Ω^- is only known long-living state with $J \geq \frac{3}{2}$
 - lowest-lying S = -3 state cannot decay strongly (kaon-cascade system is heavier)
 - lowest-lying J = 3/2 state cannot decay electromagnetically (Pauli principle forbids lower-lying $J = \frac{1}{2}$ state)

 \hookrightarrow all Ω decays are interesting!

Lattice QCD agrees with phenomenology

S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322, 1224 (2008)

- explore neutrino oscillations, CP violation in lepton sector, ...
- want to count how many neutrinos one has (of specific type and at specific distance)

- explore neutrino oscillations, CP violation in lepton sector, ...
- want to count how many neutrinos one has (of specific type and at specific distance)
- \hookrightarrow need to know how many react with matter (nuclei!)

- explore neutrino oscillations, CP violation in lepton sector, ...
- want to count how many neutrinos one has (of specific type and at specific distance)
- \hookrightarrow need to know how many react with matter (nuclei!)

 $(\sqrt{Q^2}:$ energy transfer to hadronic system; W: mass of produced hadronic system) L. Alvarez Ruso et al., Contribution to Snowmass 2021, arXiv: 2203.09030 [hep-ph]

Decuplet baryons

New physics: exploring neutrinos

• how neutrinos interact with matter

Decuplet baryons

New physics: exploring neutrinos

• how neutrinos interact with matter

- at high energies: neutrinos "see" quarks
- \hookrightarrow perturbative QCD

Decuplet baryons

- how neutrinos interact with matter
 - at high energies: neutrinos "see" quarks
 - \hookrightarrow perturbative QCD
 - at lowest energies: neutrinos "see" nuclei
 - \hookrightarrow nuclear-structure physics

Decuplet baryons

New physics: exploring neutrinos

how neutrinos interact with matter

- at high energies: neutrinos "see" quarks
- \hookrightarrow perturbative QCD
 - at lowest energies: neutrinos "see" nuclei
- \hookrightarrow nuclear-structure physics
 - at low energies: neutrinos see "nucleons"
- \hookrightarrow vector and axial-vector form factors of nucleon and pion production! $\rightsquigarrow \Delta(1232)$

true for all energies: need to get stuff out from the nucleus \hookrightarrow transport theory, e.g. U. Mosel, J. Phys. G 46 (2019) 11, 113001

Why is Δ interesting?

Axial-vector (and vector) transition form factors

- interesting for scattering neutrino-nucleon to electron-Δ or muon-Δ
- subsequently: $\Delta \rightarrow \pi N$
- low energies: want to know deviation from current-algebra result

NuSTEC Collaboration, L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100 (2018) 1;

- M. Hilt, T. Bauer, S. Scherer, L. Tiator, Phys. Rev. C 97 (2018) 3, 035205;
- M. Holmberg, SL, Phys. Rev. D 100 (2019) 11, 114001;
- Y. Ünal, A. Küçükarslan, S. Scherer, Phys. Rev. D 104 (2021) 9, 094014;
- S.K. Singh, M.J. Vicente Vacas, Phys. Rev. D 74 (2006) 053009

How about lattice QCD?

- currently under investigation using lattice QCD:
 - form factors of stable baryons
 - and their quark-mass dependence
- interpretation of results by chiral effective field theory

e.g. M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844; Phys. Rev. D 105 (2022) 5, 054005

F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001

How about lattice QCD?

- currently under investigation using lattice QCD:
 - form factors of stable baryons
 - and their quark-mass dependence
- interpretation of results by chiral effective field theory

e.g. M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844; Phys. Rev. D 105 (2022) 5, 054005

F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001

- but for transition form factors Δ -*N*:
 - much more complicated because Δ is unstable
 - \hookrightarrow essentially four-point function instead of three-point function

How about lattice QCD?

- currently under investigation using lattice QCD:
 - form factors of stable baryons
 - and their quark-mass dependence
- interpretation of results by chiral effective field theory

e.g. M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844; Phys. Rev. D 105 (2022) 5, 054005

F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001

- but for transition form factors Δ -*N*:
 - $\bullet\,$ much more complicated because Δ is unstable
 - $\,\hookrightarrow\,$ essentially four-point function instead of three-point function
- to circumvent problem: study stable flavor partners
- $\hookrightarrow \Omega$ - Ξ transition form factors

My suggestion for a research program

- study Ω transition form factors in lattice QCD and experiment (and quark-mass dependence on lattice)
- interpret results using (dispersively modified) chiral effective field theory (dim χEFT)
- extrapolate to △ transition form factors using (dim) x EFT and experimental data (hyperons)
- obtain improved input for neutrino scattering (and obtain better understanding of structure of hadrons)

UU contribution: develop $\mathrm{dim}\chi\mathrm{EFT}$

Does all this make sense?

- comparison to experiment:
 - vector transition Δ -N is experimentally much better known than axial-vector
 - \hookrightarrow How well does dim χ EFT work there?
- comparison to lattice QCD:
 - Can dim χ EFT describe quark-mass dependence?

Does all this make sense?

transition form factors from nucleon to Δ using subtracted dispersion relations (data from JLab, Mami, ...)

M. M. Aung, SL, E. Perotti, Y. Yan, arXiv: 2401.17756 [hep-ph]

Does all this make sense?

quark-mass and momentum dependence of nucleon Dirac form factor

F. Alvarado, D. An, L. Alvarez-Ruso, SL, Phys. Rev. D 108 (2023) 11, 114021

lattice data from Darmstadt-Edinburgh-Mainz group:

D. Djukanovic et al., Phys. Rev. D 103 (2021) 9, 094522

Decuplet baryons

Dirac vector isovector form factor of nucleon

 $M_{\pi}=0.223\,{
m GeV}$

Neutrino-baryon interactions

- interesting for scattering neutrino-nucleon to electron-Delta
- low energies: want to know deviation from current-algebra result → LEC c_E

- in chiral perturbation theory at next-to-leading order (NLO): only one LEC c_E for whole multiplet
- \hookrightarrow study $\Omega^- \to \Xi^0 e^- \bar{
 u}_e$ instead of $N
 u_e \to \Delta e^-$

lingo of low-energy effective field theory:

- LO: leading-order calculation
- NLO: next to leading order
- LEC: low-energy constant, i.e. coupling constant

Branching ratio $\Omega^- \rightarrow \Xi^0 e^- \bar{ u}_e$ (measured)

- so far only next-to-leading-order (NLO) calculation finished
- contribution from LO Lagrangian $(\sim h_A)$ related to $\Sigma^*
 ightarrow \Sigma \pi$
- contributions from NLO Lagrangian $\sim c_M, c_E$
- $\,\, \hookrightarrow \,\, |c_{\mathcal{M}}|$ related to $\Sigma^{*0}
 ightarrow \Lambda \gamma$
- \hookrightarrow get constraints on c_E from measured branching ratio:

M. Holmberg, SL, Eur. Phys. J. A 54 (2018) 6, 103; Phys. Rev. D 100 (2019) 11, 114001
 C.J.G. Mommers, SL, Phys. Rev. D 106 (2022) 9, 093001
 first steps beyond tree level: H. De Munck; M. Bertilsson, master theses UU 2023

Stefan Leupold

Dalitz plot $\Omega^- ightarrow \Xi^0 e^- ar{ u}_e$ (not measured yet)

• different values for c_E and sign of c_M influence Dalitz plot:

• sign change of c_M flips plots right \leftrightarrow left

Low-energy QCD (aka chiral effective field theory)

• "definition", i.e. range of applicability: momenta $|\vec{p}|$, pion mass $m_\pi \ll$ nucleon mass m_N

- "definition", i.e. range of applicability: momenta $|\vec{p}|$, pion mass $m_\pi \ll$ nucleon mass m_N
- o purposes:

- "definition", i.e. range of applicability: momenta $|\vec{p}|$, pion mass $m_\pi \ll$ nucleon mass m_N
- purposes:
 - precision tests of standard model

- "definition", i.e. range of applicability: momenta $|\vec{p}|$, pion mass $m_\pi \ll$ nucleon mass m_N
- purposes:
 - precision tests of standard model
 - ab-initio calculations of nuclei

- "definition", i.e. range of applicability: momenta $|\vec{p}|$, pion mass $m_\pi \ll$ nucleon mass m_N
- o purposes:
 - precision tests of standard model
 - ab-initio calculations of nuclei
 - description of properties of nuclear matter, neutron stars, ...
 - ...

unclear: how important are Δ baryons?

unclear: how important are Δ baryons?

• is the following the right way of ordering scales?

 $|\vec{p}|, m_{\pi}, m_{\Delta} - m_N \ll m_N$

unclear: how important are Δ baryons?

• is the following the right way of ordering scales?

 $|\vec{p}|, m_{\pi}, m_{\Delta} - m_N \ll m_N$

 \hookrightarrow must include Δ as relevant degree of freedom

unclear: how important are Δ baryons?

• is the following the right way of ordering scales?

$$|\vec{p}|, m_{\pi}, m_{\Delta} - m_N \ll m_N$$

- \hookrightarrow must include Δ as relevant degree of freedom
 - or is rather the following sufficient?

$$|\vec{p}|, m_{\pi} \ll m_{\Delta} - m_N, m_N$$

unclear: how important are Δ baryons?

• is the following the right way of ordering scales?

$$|\vec{p}|, m_{\pi}, m_{\Delta} - m_N \ll m_N$$

- \hookrightarrow must include Δ as relevant degree of freedom
 - or is rather the following sufficient?

$$|ec{p}|, m_\pi \ll m_\Delta - m_N, m_N$$

 \hookrightarrow not enough energy to excite Δ

unclear: how important are Δ baryons?

• is the following the right way of ordering scales?

$$|\vec{p}|, m_{\pi}, m_{\Delta} - m_N \ll m_N$$

- \hookrightarrow must include Δ as relevant degree of freedom
 - or is rather the following sufficient?

$$|\vec{p}|, m_{\pi} \ll m_{\Delta} - m_N, m_N$$

- \hookrightarrow not enough energy to excite Δ
- \hookrightarrow need only pions and nucleons to construct low-energy QCD

consider nucleon-nucleon scattering:

- coupling constant Δ - Δ - π completely unknown; not even sign is clear
- further example for its impact: is interference of

- coupling constant Δ - Δ - π completely unknown; not even sign is clear
- further example for its impact: is interference of

constructive or destructive?

• one problem to determine Δ properties with better precision: Δs are rather broad states ($\Gamma\approx 100\,MeV)$

- coupling constant Δ - Δ - π completely unknown; not even sign is clear
- further example for its impact: is interference of

constructive or destructive?

- one problem to determine Δ properties with better precision: Δs are rather broad states ($\Gamma\approx 100\,MeV)$
- \hookrightarrow worth to study strange siblings from decuplet

- coupling constant Δ - Δ - π completely unknown; not even sign is clear
- further example for its impact: is interference of

constructive or destructive?

- one problem to determine Δ properties with better precision: Δs are rather broad states ($\Gamma\approx 100\,MeV)$
- \hookrightarrow worth to study strange siblings from decuplet
- \hookrightarrow e.g. Ω - Ξ^* -K coupling

Δ couplings and Δ -N transition form factors

- Δ loops enter calculation of Δ -N transition form factors
- but coupling constant Δ - Δ - π (g_1) unknown in size and sign
 - (actually there are two couplings, p and f wave \rightsquigarrow here: p-wave coupling)

one of the axial-vector transition form factors; g_1 enters indirectly at loop level

Y. Ünal, A. Küçükarslan, S. Scherer, Phys. Rev. D 104 (2021) 9, 094014

- quark model and large- N_c QCD suggest positive g_1 (figure: left-hand side)
- recent analysis of π-N scattering suggests negative g₁
 De-Liang Yao et al., JHEP 05 (2016) 038

Decay $\Omega^- ightarrow \Xi^{*0} \ell^- \bar{ u}_\ell$ (not measured yet)

- provides access to sign and size of coupling constant Ω-Ξ*(1530)-K via Golberger-Treiman relation
- flavor related to sign and size of coupling constant Δ - Δ - π ($H_A = g_1$)
- so far only leading-order calculation for branching ratio and forward-backward (fb) asymmetry (Wu-type experiment) (rest frame of dilepton, measuring angle between baryons and charged lepton)

	$\Gamma_{\Omega \to \Xi^* \ell \bar{\nu}_\ell} / \Gamma_{\Omega, \mathrm{tot}}$	$\Gamma_{\rm fb}/\Gamma_{\Omega\to \Xi^*\ell\nu}$
$\ell = e, H_A = +2$	$1.2 \cdot 10^{-4}$	+0.011
$\ell = e, H_A = 0$	$6.7 \cdot 10^{-5}$	-0.00043
$\ell = e, H_A = -2$	$1.2 \cdot 10^{-4}$	-0.012
$\ell = \mu, H_A = +2$	$4.3 \cdot 10^{-6}$	-0.23
$\ell = \mu, H_A = 0$	$2.5 \cdot 10^{-6}$	-0.33
$\ell = \mu, H_A = -2$	$4.3 \cdot 10^{-6}$	-0.25

- note: $\Xi^{*0}(1530)$ "easy" to reconstruct via sequence $\Xi^{*0} \rightarrow \Xi^- \pi^+$, $\Xi^- \rightarrow \Lambda \pi^-$, $\Lambda \rightarrow p \pi^-$
- M. Bertilsson, SL, Phys. Rev. D 109 (2024) 3, 034028

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ (isospin symmetry)

• what happens at chiral restoration?

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ (isospin symmetry)

- what happens at chiral restoration?
- parity doublet models: assign chiral representation (L,R) to nucleon and identify its parity partner

$$\hookrightarrow$$
 N: (2,1) \leftrightarrow N*(1535): (1,2)

• note: pions and sigma live in (2,2)

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ (isospin symmetry)

- what happens at chiral restoration?
- parity doublet models: assign chiral representation (L,R) to nucleon and identify its parity partner

$$\rightarrow$$
 N: (2,1) \leftrightarrow N*(1535): (1,2)

- note: pions and sigma live in (2,2)
- but how about Δ?
- \hookrightarrow is it in (4,1) or in (3,2)? (e.g., $u_L u_L u_L$ or $u_L u_L u_R$)

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ (isospin symmetry)

- what happens at chiral restoration?
- parity doublet models: assign chiral representation (L,R) to nucleon and identify its parity partner

$$\rightarrow$$
 N: (2,1) \leftrightarrow N*(1535): (1,2)

- note: pions and sigma live in (2,2)
- but how about Δ?
- \hookrightarrow is it in (4,1) or in (3,2)? (e.g., $u_L u_L u_L$ or $u_L u_L u_R$)

• pion-nucleon system:

 $(2,2) \times (2,1) = (3,2) \oplus (1,2)$

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ (isospin symmetry)

- what happens at chiral restoration?
- parity doublet models: assign chiral representation (L,R) to nucleon and identify its parity partner

$$\rightarrow$$
 N: (2,1) \leftrightarrow N*(1535): (1,2)

- note: pions and sigma live in (2,2)
- but how about Δ?
- \hookrightarrow is it in (4,1) or in (3,2)? (e.g., $u_L u_L u_L$ or $u_L u_L u_R$)

• pion-nucleon system:

 $(2,2) \times (2,1) = (3,2) \oplus (1,2)$

 \hookrightarrow no three-point coupling Δ -N- π if Δ lives in (4,1)

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ (isospin symmetry)

- what happens at chiral restoration?
- parity doublet models: assign chiral representation (L,R) to nucleon and identify its parity partner

$$\hookrightarrow$$
 N: (2,1) \leftrightarrow N^{*}(1535): (1,2)

- note: pions and sigma live in (2,2)
- but how about Δ?
- \hookrightarrow is it in (4,1) or in (3,2)? (e.g., $u_L u_L u_L$ or $u_L u_L u_R$)
 - pion-nucleon system:

$$(2,2) \times (2,1) = (3,2) \oplus (1,2)$$

- \hookrightarrow no three-point coupling Δ -*N*- π if Δ lives in (4,1)
 - in vacuum, coupling is effectively generated by Δ -N- π - $\langle \sigma \rangle$

 $(2,2) \times (2,2) \times (2,1) = (4,3) \oplus (4,1) \oplus 2 * (2,3) \oplus 2 * (2,1)$

C. Kummer, L. von Smekal, SL, work in progress

D elta (transition) form factors are interesting for neutrino physics and low-energy QCD

- D elta (transition) form factors are interesting for neutrino physics and low-energy QCD
- O mega transition form factors are a better starting point

- D elta (transition) form factors are interesting for neutrino physics and low-energy QCD
- O mega transition form factors are a better starting point
- L attice QCD can tackle these (plus experimental guidance)

- D elta (transition) form factors are interesting for neutrino physics and low-energy QCD
- O mega transition form factors are a better starting point
- L attice QCD can tackle these (plus experimental guidance)

$$\Omega^- \to \Xi^0 \ \ell^- \bar{\nu} \ , \qquad \Omega^- \to \Xi^{*0}(1530) \ \ell^- \bar{\nu}$$

C hiral effective field theory can interpret results
Summary and outlook

- D elta (transition) form factors are interesting for neutrino physics and low-energy QCD
- O mega transition form factors are a better starting point
- L attice QCD can tackle these (plus experimental guidance)

$$\Omega^- \to \Xi^0 \ \ell^- \bar{\nu} \ , \qquad \Omega^- \to \Xi^{*0}(1530) \ \ell^- \bar{\nu}$$

C hiral effective field theory can interpret results E xtrapolation to Delta (EFT plus experimental guidance)

Summary and outlook

- D elta (transition) form factors are interesting for neutrino physics and low-energy QCD
- O mega transition form factors are a better starting point
- L attice QCD can tackle these (plus experimental guidance)

$$\Omega^- \to \Xi^0 \ \ell^- \bar{\nu} \ , \qquad \Omega^- \to \Xi^{*0}(1530) \ \ell^- \bar{\nu}$$

C hiral effective field theory can interpret results E xtrapolation to Delta (EFT plus experimental guidance)

\hookrightarrow DOLCE

_ ___pice baryons

Spare slides

dim χ EFT: electromagnetic baryon form factors

• how to obtain a form factor?

- $\bullet\,$ need to resolve at least the finite size $\lesssim 1\,{\rm fm}$
- but inverse size of a hadron is larger than pion mass
- first one probes something universal (independent of $B_{1,2}$):

the "pion cloud": π

• now we are in the game with dispersion theory

Deconstruct a form factor

How to get the pion vector form factor?

$$F_{V}(s) = (1 + \alpha_{V} s) \exp \left\{ s \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{\delta(s')}{s'(s' - s - i\epsilon)} \right\}$$

with pion phase shift δ and $\alpha_V \approx 0.12 \,\text{GeV}^{-2}$ (from fit to FF data) Stefan Leupold

Decuplet baryons

Pion vector form factor and data

Alvarado/An/Alvarez-Ruso/SL, Phys. Rev. D 108 (2023) 11, 114021

Deconstruct a form factor

Scattering processes

Known input

• baryon-pion coupling constants from decay widths

 \hookrightarrow sometimes only moduli known

Unknown: some numbers

• $\Omega^- \rightarrow \Xi^0 e^- \bar{\nu}_e$ (Br = 6 · 10⁻³; experiment) flavor related to neutrino-nucleon scattering

- $\Omega^- \rightarrow \Xi^0 e^- \bar{\nu}_e$ (Br = 6 · 10⁻³; experiment) flavor related to neutrino-nucleon scattering
- $\Omega^- \rightarrow \Xi^{*0} e^- \bar{\nu}_e$ (Br $\approx 10^{-4}$; our estimate) flavor related to Δ - Δ - π via Goldberger-Treiman relation

- $\Omega^- \rightarrow \Xi^0 e^- \bar{\nu}_e$ (Br = 6 · 10⁻³; experiment) flavor related to neutrino-nucleon scattering
- $\Omega^- \rightarrow \Xi^{*0} e^- \bar{\nu}_e$ (Br $\approx 10^{-4}$; our estimate) flavor related to Δ - Δ - π via Goldberger-Treiman relation

•
$$\Omega^- \rightarrow \Lambda K^-$$
 (Br = 68%)
has decay asymmetry $\alpha = 0.0157 \pm 0.0021 \neq 0$

- $\Omega^- \rightarrow \Xi^0 e^- \bar{\nu}_e$ (Br = 6 · 10⁻³; experiment) flavor related to neutrino-nucleon scattering
- $\Omega^- \rightarrow \Xi^{*0} e^- \bar{\nu}_e$ (Br $\approx 10^{-4}$; our estimate) flavor related to Δ - Δ - π via Goldberger-Treiman relation

•
$$\Omega^- \rightarrow \Lambda K^-$$
 (Br = 68%)
has decay asymmetry $\alpha = 0.0157 \pm 0.0021 \neq 0$

 \hookrightarrow probably accuracy can be improved; search for CP violation ...

- $\Omega^- \rightarrow \Xi^0 e^- \bar{\nu}_e$ (Br = 6 · 10⁻³; experiment) flavor related to neutrino-nucleon scattering
- $\Omega^- \rightarrow \Xi^{*0} e^- \bar{\nu}_e$ (Br $\approx 10^{-4}$; our estimate) flavor related to Δ - Δ - π via Goldberger-Treiman relation

•
$$\Omega^- \rightarrow \Lambda K^-$$
 (Br = 68%)
has decay asymmetry $\alpha = 0.0157 \pm 0.0021 \neq 0$

- \hookrightarrow probably accuracy can be improved; search for CP violation ...
 - $\Omega^- \to \Xi^- \pi^0, \Xi^0 \pi^-$ has suspicious ratio of branching fractions

•
$$\Omega^- \rightarrow \Xi^0 e^- \bar{\nu}_e$$
 (Br = 6 · 10⁻³; experiment)
flavor related to neutrino-nucleon scattering

• $\Omega^- \rightarrow \Xi^{*0} e^- \bar{\nu}_e$ (Br $\approx 10^{-4}$; our estimate) flavor related to Δ - Δ - π via Goldberger-Treiman relation

•
$$\Omega^- \rightarrow \Lambda K^-$$
 (Br = 68%)
has decay asymmetry $\alpha = 0.0157 \pm 0.0021 \neq 0$

- \hookrightarrow probably accuracy can be improved; search for CP violation ...
 - $\Omega^- \to \Xi^- \pi^0, \Xi^0 \pi^-$ has suspicious ratio of branching fractions

•
$$\Omega^- \rightarrow \Xi^- \pi^+ \pi^-$$
 (Br = 4 \cdot 10⁻⁴)

- exp: seems not to show $\Xi^*(1530)$ as intermediate state
- \hookrightarrow flaw in resonance saturation?
- \hookrightarrow EFT construction:

What are the relevant degrees of freedom in Ω decays?

C.J.G. Mommers, SL, Phys. Rev. D 106 (2022) 9, 093001

- $\bullet\,$ standard picture for non-leptonic decays $\Omega \rightarrow\,$ meson + baryon
- \hookrightarrow dominated by transition $s \to d$, e.g. penguin diagram

• standard picture for non-leptonic decays $\Omega \rightarrow \text{ meson} + \text{baryon}$

Ω

 \hookrightarrow dominated by transition $s \to d$, e.g. penguin diagram

- standard picture for non-leptonic decays $\Omega \rightarrow \text{ meson} + \text{baryon}$
- \hookrightarrow dominated by transition $s \to d$, e.g. penguin diagram

 \hookrightarrow thus intermediate state is an offshell Ξ^{*-} with $J = \frac{3}{2}$, $I = \frac{1}{2}$

- standard picture for non-leptonic decays $\Omega \rightarrow \text{ meson} + \text{baryon}$
- \hookrightarrow dominated by transition $s \to d$, e.g. penguin diagram

↔ thus intermediate state is an offshell Ξ^{*−} with $J = \frac{3}{2}$, $I = \frac{1}{2}$ $↔ \Delta I = \frac{1}{2}$ rule

• consider decays:

•
$$\Omega^- \rightarrow \Xi^- \pi^0 \ (\mathrm{Br} = 9\%)$$

• and
$$\Omega^- \rightarrow \Xi^0 \pi^-$$
 (Br = 24%)

• consider decays:

•
$$\Omega^- \rightarrow \Xi^- \pi^0 (Br = 9\%)$$

• and
$$\Omega^- \rightarrow \Xi^0 \pi^-$$
 (Br = 24%)

 \hookrightarrow determine Clebsch-Gordans for $\Xi^{*-} \to \Xi^{-} \pi^{0}, \Xi^{0} \pi^{-}$:

•
$$\Omega^- \to (\Xi^{*-} \to) \Xi^- \pi^0$$
:

$$\left\langle I = \frac{1}{2}, I_3 = -\frac{1}{2} \left| 1, 0; \frac{1}{2}, -\frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}}$$

•
$$\Omega^- \rightarrow (\Xi^{*-} \rightarrow) \Xi^0 \pi^-$$
:

$$\left\langle I = \frac{1}{2}, I_3 = -\frac{1}{2} \left| 1, -1; \frac{1}{2}, +\frac{1}{2} \right\rangle = -\sqrt{\frac{2}{3}}$$

• consider decays:

•
$$\Omega^- \rightarrow \Xi^- \pi^0 (Br = 9\%)$$

- and $\Omega^- \rightarrow \Xi^0 \pi^-$ (Br = 24%)
- \hookrightarrow determine Clebsch-Gordans for $\Xi^{*-} \to \Xi^{-} \pi^{0}, \Xi^{0} \pi^{-}$:

•
$$\Omega^- \to (\Xi^{*-} \to) \Xi^- \pi^0$$
:

$$\left\langle I = \frac{1}{2}, I_3 = -\frac{1}{2} \left| 1, 0; \frac{1}{2}, -\frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}}$$

• $\Omega^- \rightarrow (\Xi^{*-} \rightarrow) \Xi^0 \pi^-$:

$$\left\langle I = \frac{1}{2}, I_3 = -\frac{1}{2} \left| 1, -1; \frac{1}{2}, +\frac{1}{2} \right\rangle = -\sqrt{\frac{2}{3}}$$

 \hookrightarrow prediction

$$\frac{\Gamma(\Omega^- o \Xi^0 \pi^-)}{\Gamma(\Omega^- o \Xi^- \pi^0)} pprox 2$$

• consider decays:

•
$$\Omega^- \rightarrow \Xi^- \pi^0 (Br = 9\%)$$

- and $\Omega^- \rightarrow \Xi^0 \pi^-$ (Br = 24%)
- \hookrightarrow determine Clebsch-Gordans for $\Xi^{*-} \to \Xi^{-} \pi^{0}, \Xi^{0} \pi^{-}$:

•
$$\Omega^- \rightarrow (\Xi^{*-} \rightarrow) \Xi^- \pi^0$$
:

$$\left\langle I = \frac{1}{2}, I_3 = -\frac{1}{2} \left| 1, 0; \frac{1}{2}, -\frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}}$$

•
$$\Omega^- \rightarrow (\Xi^{*-} \rightarrow) \Xi^0 \pi^-$$
:

$$\left\langle I = \frac{1}{2}, I_3 = -\frac{1}{2} \left| 1, -1; \frac{1}{2}, +\frac{1}{2} \right\rangle = -\sqrt{\frac{2}{3}}$$

 \hookrightarrow prediction

$$\frac{\Gamma(\Omega^{-} \to \Xi^{0} \pi^{-})}{\Gamma(\Omega^{-} \to \Xi^{-} \pi^{0})} \approx 2 \neq \frac{24.}{9.}$$

Some details about main decays of Ω^-

•
$$Br(\Omega^- \to \Lambda K^-) = (67.8 \pm 0.7)\%$$

•
$$Br(\Omega^- \to \Xi^0 \pi^-) = (23.6 \pm 0.7)\%$$

•
$${\sf Br}(\Omega^- \to \Xi^- \pi^0) = (8.6 \pm 0.4)\%$$

• measured at SPS (\approx 1984), recently confirmed by BES III Phys. Rev. D 108 (2023) 9, L091101

• if
$$\mathsf{Br}(\Omega^- o \Lambda \mathcal{K}^-) pprox 68\%$$
 and if $\Delta I = 1/2$ rule holds:

 $\operatorname{Br}(\Omega^- \to \Xi^0 \pi^-) \approx 21.3\%, \qquad \operatorname{Br}(\Omega^- \to \Xi^- \pi^0) \approx 10.7\%$

- \hookrightarrow deviation by about 3σ and 5σ , respectively
- \hookrightarrow worth to check $\Delta I = 1/2$ rule, e.g. in $\Omega \to \Xi \pi \pi$ C.J.G. Mommers, SL, Phys. Rev. D 106 (2022) 9, 093001

Not everything is a penguin

example for a non-penguin diagram (contribution to $\Omega^- \rightarrow \Xi^- \pi^0$)

Reminder about multiplets

• antisym. in flavor, spin

• sym. in flavor, spin

Large-N_c QCD

Large-*N_c* QCD

for a large number of colors, $N_c
ightarrow \infty$,

• baryons consist of N_c quarks

Large- N_c QCD

- baryons consist of N_c quarks
- states with $J=I=rac{1}{2},rac{3}{2},\ldots,rac{N_c}{2}$ are mass degenerate

Large- N_c QCD

- baryons consist of N_c quarks
- states with $J=I=rac{1}{2},rac{3}{2},\ldots,rac{N_c}{2}$ are mass degenerate
- couplings to pions are related to each other (Dashen, Jenkins, Manohar)

Large- N_c QCD

- baryons consist of N_c quarks
- states with $J=I=rac{1}{2},rac{3}{2},\ldots,rac{N_c}{2}$ are mass degenerate
- couplings to pions are related to each other (Dashen, Jenkins, Manohar)
- \hookrightarrow nucleon $(I = J = \frac{1}{2})$ and $\Delta (I = J = \frac{3}{2})$ are (approximately) equal in mass

Large-N_c QCD

for a large number of colors, $N_c
ightarrow \infty$,

- baryons consist of N_c quarks
- states with $J=I=rac{1}{2},rac{3}{2},\ldots,rac{N_c}{2}$ are mass degenerate
- couplings to pions are related to each other (Dashen, Jenkins, Manohar)
- → nucleon $(I = J = \frac{1}{2})$ and $\Delta (I = J = \frac{3}{2})$ are (approximately) equal in mass

 $\hookrightarrow\,$ can be useful to treat them on equal footing for low-energy QCD

Large-N_c QCD

for a large number of colors, $N_c
ightarrow \infty$,

- baryons consist of N_c quarks
- states with $J=I=rac{1}{2},rac{3}{2},\ldots,rac{N_c}{2}$ are mass degenerate
- couplings to pions are related to each other (Dashen, Jenkins, Manohar)
- \hookrightarrow nucleon $(I = J = \frac{1}{2})$ and $\Delta (I = J = \frac{3}{2})$ are (approximately) equal in mass

 $\hookrightarrow\,$ can be useful to treat them on equal footing for low-energy QCD

 \hookrightarrow extension to three flavors (baryon octet and decuplet) also useful

(expansion in $1/N_c$ could be as meaningful/meaningless as expansion in electric charge $e \approx 0.3$)

A penguin and its diagram

by Quilbert - own work derived from a LaTeX source code given in http://cnlart.web.cern.ch/cnlart/221/node63.html (archived) (slightly modified) and Image:Pygoscelis papua.jpg by User:Stan Shebs, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2795824