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Attractors in QGP dynamics

Partial loss of memory of the initial state

Initial state Hydrodynamic model Freezeout

* Why do hydrodynamic models work far from equilibrium?

* Possible answer: pre-hydrodynamic attractors

e Attractors appear in diverse models — perhaps also in QCD
e Kinematic origin: approximate boost invariance

e Traces of the initial state survive until freeze out



This talk

* How information about the initial state survives
* A analytic approach to the attractor of RTA kinetic theory

* Extending the Bjorken model to account for transverse dynamics
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Attractors for Bjorken flow

in conformal models
t
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* Conservation equation introduces a single integration constant
e Remaining initial data is contained in &/(w)

* In many models & (W) contains an attractor



The attractor

in conformal Mueller-Israel-Stewart theory
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W satisfies a first order ODE

C,=nls, C =17

An attractor connects
the early, far-from-equilibrium
domain to the hydrodynamic

region at late times

Solutions starting off the attractor
reach its vicinity even if
the pressure anisotropy is large
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The attractor — the late time asymptotic view

in conformal MIS
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At asymptotically late times
there is no memory
of the initial conditions
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The attractor — the transseries view

in conformal MIS
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Different initial conditions are captured
by exponentially-suppressed corrections
to the asymptotic gradient series through
the transseries parameter

The structure of the transseries
reflects the large order behaviour
of the gradient expansion
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The attractor — three stages

in conformal MIS

* Expansion-dominated, pre-hydro, asymptotic

* Freeze-out takes place before the late-time asymptotic region
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The expansion-dominated stage
depends weakly on the parameters

The pre-hydro stage
depends on both the parameters
and the initial state

The asymptotic stage
is independent of initial conditions



The attractor of RTA kinetic theory

for Bjorken flow

* Boltzmann Equation in the Relaxation Time Approximation
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* Moments of the distribution function (as in Blaizot & Yan)
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e Dimensionless moments
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* The pressure anisotropy is &/ = — 3./,

* The moments satisfy an infinite set of coupled ODEs



The attractor of RTA kinetic theory

the generating function approach and series at early times

* We introduce a generating function for moments
+00
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* The generating function satisfies a PDE which determines the

moments as power series valid at early/late times

* The attractor is given by a convergent series valid for early times,
which can be analytically continued to late times
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* The analytic continuation matches hydrodynamics very well
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e All moments follow the attractor



The attractor of RTA kinetic theory

the series at late times

e The structure of transseries corrections which encode initial state
data is still not completely clear
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Transverse dynamics as perturbations

a semi-analytic extension of the Bjorken model

Expansion around the homogenous attractor background

T(z,x) = 1T(7) + 01(z, X)

Normalised fields

Fourier modes
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Linearised MIS equations: a set of 6 coupled ODEs for each k

Initial states provide initial conditions for the modes



Transverse dynamics as perturbations

stability of perturbations around the attractor
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Perturbations initialised
on the attractor

Perturbations initialised
off the attractor



Transverse dynamics as perturbations

late time asymptotics
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Different initial conditions
are reflected by the amplitudes
which determine the physics
at freeze-out time
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Summary and Outlook

e Details of the initial state are encoded in transseries corrections
to boost-invariant, transversely-homogeneous attractors

* Generating function methods may lead to a better picture of how
initial data survives until freeze-out

* |Incorporation of transverse dynamics at the linearised level
provides a semi-analytic extension of the Bjorken model



