Attractors in Quark-Gluon Plasma dynamics

Michał Spaliński University of Białystok & National Centre for Nuclear Research

Various Faces of QCD Wrocław, 27/04/2024

Attractors in QGP dynamics

- Why do hydrodynamic models work far from equilibrium?
- Possible answer: pre-hydrodynamic attractors
- Attractors appear in diverse models perhaps also in QCD
- Kinematic origin: approximate boost invariance
- Traces of the initial state survive until freeze out

This talk

- How information about the initial state survives
- A analytic approach to the attractor of RTA kinetic theory
- Extending the Bjorken model to account for transverse dynamics

Xin An, MS 2312.17237; Aniceto, Noronha, MS 2401.06750

Attractors for Bjorken flow in conformal models

- Conservation equation introduces a single integration constant
- Remaining initial data is contained in $\mathscr{A}(w)$
- In many models $\mathscr{A}(w)$ contains an attractor

The attractor in conformal Mueller-Israel-Stewart theory

$$C_{\tau}\left(1+\frac{\mathscr{A}}{12}\right)\mathscr{A}'+\frac{C_{\tau}}{3w}\mathscr{A}^{2}=\frac{3}{2}\left(\frac{8C_{\eta}}{w}-\mathscr{A}\right)$$

The pressure anisotropy satisfies a first order ODE

$$C_{\eta} \equiv \eta/s, \quad C_{\tau} \equiv \tau_R T$$

An attractor connects the early, far-from-equilibrium domain to the hydrodynamic region at late times

Solutions starting off the attractor reach its vicinity even if the pressure anisotropy is large

The attractor – the late time asymptotic view in conformal MIS

The expansion coefficients do not depend on initial conditions

At asymptotically late times there is no memory of the initial conditions

The attractor – the transseries view in conformal MIS

The attractor – three stages in conformal MIS

- Expansion-dominated, pre-hydro, asymptotic
- Freeze-out takes place before the late-time asymptotic region

The expansion-dominated stage depends weakly on the parameters

The pre-hydro stage depends on both the parameters and the initial state

The asymptotic stage is independent of initial conditions

The attractor of RTA kinetic theory for Bjorken flow

Boltzmann Equation in the Relaxation Time Approximation

$$\left(\frac{\partial}{\partial \tau} - \frac{p_z}{\tau} \frac{\partial}{\partial p_z}\right) f(\tau, p) = \frac{f_{eq}(\tau, p) - f(\tau, p)}{\tau_R}, \qquad \tau_R = \gamma T(\tau)^{-\Delta}$$

• Moments of the distribution function (as in Blaizot & Yan)

$$\mathcal{L}_n \equiv \int \frac{d^3 p}{(2\pi)^3} p_0 P_{2n}(\cos \psi) f(\tau, p), \qquad \forall n \ge 0, \qquad \cos \psi = p_z / p_0$$

• Dimensionless moments

$$\mathcal{M}_n \equiv \frac{\mathcal{L}_n}{\mathcal{L}_0}, \qquad n \ge 0.$$

- The pressure anisotropy is $\mathscr{A} = -3\mathscr{M}_1$
- The moments satisfy an infinite set of coupled ODEs

The attractor of RTA kinetic theory

the generating function approach and series at early times

• We introduce a generating function for moments

$$G_{\mathcal{M}}(x,w) = \sum_{n=0}^{+\infty} x^n \mathcal{M}_n(w)$$

- The generating function satisfies a PDE which determines the moments as power series valid at early/late times
- The attractor is given by a convergent series valid for early times, which can be analytically continued to late times

$$\mathscr{A} = \sum_{n=0}^{\infty} c_n w^n \implies \text{Pade}[\mathscr{A}]_{(70,71)} \sim \frac{1.60004}{w} + \frac{0.27348}{w^2} + \dots$$

• The analytic continuation matches hydrodynamics very well

$$\mathscr{A} \sim \frac{8/5}{w} + \frac{32/105}{w^2} + \dots$$

• All moments follow the attractor

The attractor of RTA kinetic theory the series at late times

• The structure of transseries corrections which encode initial state data is still not completely clear

Branch points of the analytic continuation of the Borel transform of the gradient expansion suggest a non-hydrodynamic sector very different from what is seen in MIS theory

Off-axis branch points do not appear in hydrodynamic truncations of the moment equations

Transverse dynamics as perturbations a semi-analytic extension of the Bjorken model

• Expansion around the homogenous attractor background

$$T(\tau, \mathbf{x}) = T(\tau) + \delta T(\tau, \mathbf{x})$$

• Normalised fields

$$\delta \hat{T}(\tau, \mathbf{x}) = \frac{\delta T(\tau, \mathbf{x})}{T(\tau)}$$

• Fourier modes

$$\hat{\phi}(\tau, \mathbf{x}) = \int \frac{d^2k}{(2\pi)^2} e^{i\mathbf{k}\cdot\mathbf{x}}\hat{\phi}(\tau, \mathbf{k})$$

- Linearised MIS equations: a set of 6 coupled ODEs for each k
- Initial states provide initial conditions for the modes

Transverse dynamics as perturbations stability of perturbations around the attractor

Perturbations initialised on the attractor

Perturbations initialised off the attractor

Transverse dynamics as perturbations late time asymptotics

$$\delta \hat{T} = \sum_{i=1}^{4} \sigma_i (\Lambda \tau)^{\beta_i} e^{-i\omega_i \tau - A_i (\Lambda \tau)^{2/3}}$$

Different initial conditions are reflected by the amplitudes which determine the physics at freeze-out time

$$A_{1} = A_{2} = \frac{\alpha^{2}}{C_{\tau}c_{\infty}^{2}}, \quad A_{3} = \frac{3}{2C_{\tau}}, \quad A_{4} = \frac{1}{2C_{\tau}c_{\infty}^{2}}, \quad A_{5} = A_{6} = \frac{3}{4C_{\tau}},$$

$$\omega_{1} = -\omega_{2} = c_{\infty}k \left[1 + \frac{2\alpha^{2}}{3c_{\infty}^{2}} \left(2C_{\tau}(1 - \alpha^{2}) - \frac{(1 + \alpha^{2})\Lambda^{2}}{C_{\tau}^{2}c_{\infty}^{4}k^{2}} \right) (\Lambda\tau)^{-2/3} \right], \quad \omega_{3} = \omega_{4} = 0$$

$$c_{\infty} = \sqrt{\frac{1}{3} \left(1 + 4\frac{C_{\eta}}{C_{\tau}} \right)}, \quad \alpha \equiv \sqrt{\frac{C_{\eta}}{C_{\tau}}}$$

Summary and Outlook

- Details of the initial state are encoded in transseries corrections to boost-invariant, transversely-homogeneous attractors
- Generating function methods may lead to a better picture of how initial data survives until freeze-out
- Incorporation of transverse dynamics at the linearised level provides a semi-analytic extension of the Bjorken model