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Attractors in QGP dynamics

• Why do hydrodynamic models work far from equilibrium?

• Possible answer: pre-hydrodynamic attractors

• Attractors appear in diverse models – perhaps also in QCD 

• Kinematic origin: approximate boost invariance

• Traces of the initial state survive until freeze out

Initial state FreezeoutHydrodynamic model

Partial loss of memory of the initial state



This talk

• How information about the initial state survives 

• A analytic approach to the attractor of RTA kinetic theory

• Extending the Bjorken model to account for transverse dynamics
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• Conservation equation introduces a single integration constant 

• Remaining initial data is contained in          

• In many models           contains an attractor

Attractors for Bjorken flow
in conformal models
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The attractor
in conformal Mueller-Israel-Stewart theory
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An attractor connects
the early, far-from-equilibrium
domain to the hydrodynamic 

region at late times

The pressure anisotropy 
satisfies a first order ODE

Cη ≡ η/s, Cτ ≡ τRT

Solutions starting off the attractor
reach its vicinity even if 

the pressure anisotropy is large 



The attractor – the late time asymptotic view
in conformal MIS

Navier-Stokes

At asymptotically late times
there is no memory 

of the initial conditions
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depend on initial conditions



The attractor – the transseries view
in conformal MIS
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Different initial conditions are captured 
by exponentially-suppressed corrections 
to the asymptotic gradient series through 

the transseries parameter 

The structure of the transseries 
reflects the large order behaviour 

of the gradient expansion

Navier-Stokes



• Expansion-dominated, pre-hydro, asymptotic

• Freeze-out takes place before the late-time asymptotic region

•

The attractor – three stages
in conformal MIS

Navier-Stokes

The pre-hydro stage 
depends on both the parameters 

and the initial state

The expansion-dominated stage
depends weakly on the parameters

The asymptotic stage
is independent of initial conditions



• Boltzmann Equation in the Relaxation Time Approximation 

• Moments of the distribution function (as in Blaizot & Yan) 

• Dimensionless moments 

• The pressure anisotropy is 

• The moments satisfy an infinite set of coupled ODEs

The attractor of RTA kinetic theory
for Bjorken flow
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• We introduce a generating function for moments

• The generating function satisfies a PDE which determines the 
moments as power series valid at early/late times

• The attractor is given by a convergent series valid for early times, 
which can be analytically continued to late times 

• The analytic continuation matches hydrodynamics very well 

• All moments follow the attractor

The attractor of RTA kinetic theory
the generating function approach and series at early times
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• The structure of transseries corrections which encode initial state 
data is still not completely clear

The attractor of RTA kinetic theory
the series at late times
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Branch points of the analytic continuation 
of the Borel transform of the gradient expansion 

suggest a non-hydrodynamic sector 
very different from what is seen in MIS theory 

Off-axis branch points 
do not appear in hydrodynamic truncations 

of the moment equations 



Transverse dynamics as perturbations
a semi-analytic extension of the Bjorken model  

• Expansion around the homogenous attractor background

• Normalised fields 

• Fourier modes

• Linearised MIS equations: a set of 6 coupled ODEs for each k

• Initial states provide initial conditions for the modes

δ ̂T(τ, x) =
δT(τ, x)

T(τ)

T(τ, x) = T(τ) + δT(τ, x)

̂ϕ(τ, x) = ∫
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(2π)2
eik⋅x ̂ϕ(τ, k)



Transverse dynamics as perturbations
stability of perturbations around the attractor
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Transverse dynamics as perturbations
late time asymptotics
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Different initial conditions 
are reflected by the amplitudes
which determine the physics 

at freeze-out time



Summary and Outlook

• Details of the initial state are encoded in transseries corrections 
to boost-invariant, transversely-homogeneous attractors

• Generating function methods may lead to a better picture of how 
initial data survives until freeze-out

• Incorporation of transverse dynamics at the linearised level 
provides a semi-analytic extension of the Bjorken model


