Mass And Possible Quantum Numbers of $X(6900)$

Morgan Kuchta

Various faces of QCD

> 26.04.2024

Basic Information

Mass And Possible
 Quantum Numbers of $X(6900)$

Morgan Kuchta

Figure: Charmonium spectrum.
Source: Front. Phys. 10101401.

Morgan Kuchta

- Introduction of the problem
- Method of solving the problem
- Discussion of the results

The discovery of $\mathrm{X}(6900)$

Figure: Invariant mass spectrum of J / ψ-pair candidates.
Source: LHCb-PAPER-2020-011

The discovery of $X(6900)$

Morgan Kuchta

Exotic Hadrons

Mass And Possible Quantum Numbers of $X(6900)$

Morgan Kuchta

Figure: New hadrons by the date of their discovery. Source: LHCb-PUB-2022-013

All-charm Tetraquark

Morgan Kuchta

Quantum numbers for mesons:

- Quark content: $c c \bar{c} \bar{c}$
- Fully heavy
- Exotic meson
- $J=L+S$
- Known mass \approx
- $P=(-1)^{L+1}$ 6.87 GeV
- $C=(-1)^{L+S}$

The Problem

- What are the quantum numbers of $X(6900)$?

My attempt:

- Why the most prominent resonance has such a high mass?
- What are the other visible structures?
arXiv:2309.04794,
"All-charm tetraquark mass and possible quantum numbers of $X(6900){ }^{\prime \prime}$

The Solution

Morgan Kuchta

- Solutions of Schrödinger Equation for charmonium spectrum
- Construction of all-charm tetraquark structures and the tetraquark spectrum
- Discussion of the results

Solving Schrödinger Equation

Morgan Kuchta

The Hamiltonian:

$$
H=m_{1}+m_{2}
$$

- We are using the Runge-Kutta method: Int. J. Mod. Phys. C 10, 607-620 (1999)
- The Hamiltonian is meant to describe bound states: Source: Phys. Rept. 200, 127-240 (1991)

$$
\begin{aligned}
& +\frac{1}{2 \mu_{12}}\left(-\frac{d^{2}}{d r^{2}}+\frac{I(I+1)}{r^{2}}\right) \\
& +V_{12}^{G}+V_{12}^{S S}+V_{12}^{L S}+V_{12}^{T}
\end{aligned}
$$

The Strong Interaction

Morgan Kuchta

One gluon-exchange:

$$
V_{i j}^{G}\left(r_{i j}\right)=\kappa_{s} \frac{\alpha_{s}}{r_{12}}+\sigma r_{12}
$$

The Tetraquark Structure

Morgan Kuchta

- Quark-antiquark: $3 \otimes \overline{3}=1 \oplus 8$
- Quark-quark: $3 \otimes 3=\overline{3} \oplus 6$

The Tetraquark Structure

Morgan Kuchta

- Meson-meson: $8 \otimes 8=$ $1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27$
- Diquark-antidiquark:
- $6 \otimes \bar{\sigma}=1 \oplus 8 \oplus 27$
- $3 \otimes \overline{3}=1 \oplus 8$

Reference:

- R. Jaffe: Phys. Rev. D 15, 267 (1977)

Results

Mass And Possible Quantum Numbers of $X(6900)$

Morgan Kuchta

Triplet-antitriplet:

Sextet-antisextet:

Octet-octet:

Results

All 2 S states for the
 sextet-antisextet structure.

Wave function

Morgan Kuchta

$$
\left|D_{6}\left(1^{3} S_{1}\right)\right\rangle=\left|Y_{0}^{0} \times X_{\sigma}^{1,1} \times X_{c}^{6} \times X_{f}\right\rangle
$$

- Y_{0}^{0} - symmetric
- X_{c}^{6} - colour wave function - symmetric
- $\left|X_{1,1}^{\sigma}\right\rangle=|\uparrow \uparrow\rangle$
- $\left|X_{f}\right\rangle=|c c\rangle$

Possible answers

- The most prominent resonances: sextet-antisextet
- Possible quantum numbers: 0^{-+}or 1^{--}
- Lack of prominent ground state: effect of the Pauli exclusion principle

Thank you for your attention.
Special thanks to my supervisor, prof. David Blaschke.

Morgan Kuchta

Recommended literature:

- A. Ali, L. Maiani, A.D. Polosa, "Multiquark Hadrons"
- D. Blaschke, K. Redlich, C. Sasaki and L. Turko, Understanding the Origin of Matter: Perspectives in Quantum Chromodynamics"

Backup: Spin Dependent Terms

Morgan Kuchta

$$
\begin{gathered}
V_{i j}^{S S}\left(r_{i j}\right)=-\frac{8 \kappa_{s} \alpha_{s} \pi}{3 m^{2}}\left(\frac{\sigma_{s s}}{\sqrt{\pi}}\right)^{3} e^{-\sigma_{s s}^{2} r_{i j}^{2}} S_{i} S_{j} \\
V_{i j}^{L S}\left(r_{i j}\right)=\left[-\frac{3 \kappa_{s} \alpha_{s}}{2 m^{2}} \frac{1}{r_{i j}^{3}}-\frac{b}{2 m^{2}} \frac{1}{r_{i j}}\right] L S \\
V_{i j}^{T}\left(r_{i j}\right)=-\frac{12 \kappa_{s} \alpha_{s}}{4 m^{2}} \frac{1}{r_{i j}^{3}}\left(\frac{\left(S_{i} r_{i j}\right)\left(S_{j} r_{i j}\right)}{r_{i j}^{2}}-\frac{S_{i} S_{j}}{3}\right)
\end{gathered}
$$

Backup: Exotic Hadron Types

Figure: Diquarks and possible exotic hadrons. Source: Front. Phys. 10101401

Backup: Atlas results

Figure: Fitted mass spectra in the di- $J \Psi$ (left) and $J / \Psi+\Psi(2 S)$ (right) channel. Gathering and fitting was performed by the Atlas collaboration. Source: ATLAS Notes:ATLAS-CONF-2022-040

