Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Various faces of QCD

26.04.2024

Basic Information

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

- Mass of a charm guark ≈ 1.27 GeV
- $J/\Psi = 3.0969$ GeV
- $\eta_c = 2.9839 \text{ GeV}$

Figure: Charmonium spectrum. Source: Front. Phys. 10 101401.

1011c. 1 11y3. 10 101401.

Mass And Possible Quantum Numbers of X(6900)

- Introduction of the problem
- Method of solving the problem
- Discussion of the results

The discovery of X(6900)

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Figure: Invariant mass spectrum of J/ψ -pair candidates.

Source: LHCb-PAPER-2020-011

The discovery of X(6900)

Mass And Possible Quantum Numbers of X(6900)

Exotic Hadrons

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Figure: New hadrons by the date of their discovery. Source: LHCb-PUB-2022-013

All-charm Tetraquark

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Quantum numbers for mesons:

• Quark content: $cc\bar{c}\bar{c}$

- Fully heavy
- Exotic meson
- Known mass \approx 6.87 GeV

$$J^{PC}$$

•
$$J = L + S$$

•
$$P = (-1)^{L+1}$$

•
$$C = (-1)^{L+S}$$

The Problem

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

- What are the quantum numbers of X(6900)?
- Why the most prominent resonance has such a high mass?
- What are the other visible structures?

My attempt:

arXiv:2309.04794,
"All-charm tetraquark mass and possible quantum numbers of X(6900)"

The Solution

Mass And Possible Quantum Numbers of X(6900)

- Solutions of Schrödinger Equation for charmonium spectrum
- Construction of all-charm tetraquark structures and the tetraquark spectrum
- Discussion of the results

Solving Schrödinger Equation

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

- We are using the Runge-Kutta method: Int. J. Mod. Phys. C 10, 607–620 (1999)
- The Hamiltonian is meant to describe bound states: Source: Phys. Rept. 200, 127–240 (1991)

The Hamiltonian:

$$H=m_1+m_2$$

$$+rac{1}{2\mu_{12}}\Big(-rac{d^2}{dr^2}+rac{I(I+1)}{r^2}\Big) \ +V_{12}^G+V_{12}^{SS}+V_{12}^{LS}+V_{12}^T$$

The Strong Interaction

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

One gluon-exchange:

$$V_{ij}^{G}(r_{ij}) = \kappa_s \frac{\alpha_s}{r_{12}} + \sigma r_{12}$$

The Tetraquark Structure

Mass And Possible Quantum Numbers of X(6900)

- Quark-antiquark:
 - $\mathbf{3}\otimes\mathbf{\bar{3}}=\mathbf{1}\oplus\mathbf{8}$
- Quark-quark:

$$3\otimes 3=\bar{3}\oplus 6$$

The Tetraquark Structure

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

- Meson-meson: $8 \otimes 8 = 1 \oplus 8 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27$
- Diquark-antidiquark:
 - $\bullet \ \ 6\otimes \bar{6}=1\oplus 8\oplus 27$
 - $3 \otimes \bar{3} = 1 \oplus 8$

Reference:

 R. Jaffe: Phys. Rev. D 15, 267 (1977)

Results

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Triplet-antitriplet: Sextet-antisextet: Octet-octet:

Results

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

All 2S states for the sextet-antisextet structure.

Wave function

Mass And Possible Quantum Numbers of X(6900)

$$|D_6(1^3S_1)\rangle = |Y_0^0 \times X_{\sigma}^{1,1} \times X_c^6 \times X_f\rangle$$

- Y_0^0 symmetric
- X_c^6 colour wave function symmetric
- $|X_{1,1}^{\sigma}\rangle = |\uparrow\uparrow\rangle$
- $|X_f\rangle = |cc\rangle$

Possible answers

Mass And Possible Quantum Numbers o X(6900)

- The most prominent resonances: sextet-antisextet
- Possible quantum numbers: 0⁻⁺ or 1⁻⁻
- Lack of prominent ground state: effect of the Pauli exclusion principle

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Thank you for your attention. Special thanks to my supervisor, prof. David Blaschke.

Morgan Kuchta

Recommended literature:

- A. Ali, L. Maiani, A.D. Polosa, "Multiquark Hadrons"
- D. Blaschke, K. Redlich, C. Sasaki and L. Turko, Understanding the Origin of Matter: Perspectives in Quantum Chromodynamics"

Backup: Spin Dependent Terms

Mass And Possible Quantum Numbers of X(6900)

$$V_{ij}^{SS}(r_{ij}) = -\frac{8\kappa_s \alpha_s \pi}{3m^2} (\frac{\sigma_{ss}}{\sqrt{\pi}})^3 e^{-\sigma_{ss}^2 r_{ij}^2} S_i S_j$$

$$V_{ij}^{LS}(r_{ij}) = \left[-\frac{3\kappa_s \alpha_s}{2m^2} \frac{1}{r_{ij}^3} - \frac{b}{2m^2} \frac{1}{r_{ij}} \right] LS$$

$$V_{ij}^{T}(r_{ij}) = -\frac{12\kappa_s \alpha_s}{4m^2} \frac{1}{r_{ij}^3} (\frac{(S_i r_{ij})(S_j r_{ij})}{r_{ij}^2} - \frac{S_i S_j}{3})$$

Backup: Exotic Hadron Types

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Figure: Diquarks and possible exotic hadrons. Source: Front.

Phys. 10 101401

Backup: Atlas results

Mass And Possible Quantum Numbers of X(6900)

Morgan Kuchta

Figure: Fitted mass spectra in the di- $J\Psi$ (left) and $J/\Psi + \Psi(2S)$ (right) channel. Gathering and fitting was performed by the Atlas collaboration. Source: ATLAS Notes:ATLAS-CONF-2022-040