Experimental studies of the diagram of interacting matter

- Strangeness at SPS energies
- Beam energy and system size scan of K^{\pm} production
- $\blacktriangleright \langle K^+ \rangle + \langle K^- \rangle \stackrel{?}{=} 2 \langle K_S^0 \rangle$

Maciej Lewicki

Institute of Nuclear Physics Polish Academy of Sciences

Strangeness as a probe of deconfinement

- ► No strangeness content in colliding nuclei.
- Sensitive to the state of matter created in the fireball.

confined matterquark-gluon plasma
$$K$$
 mesons $T_C \approx 150 \text{ MeV}$ (anti-)strange quarks $g_K = 4$ $M \approx 2 \cdot 500 \text{ MeV}$ $g_s = 12$ $2M \approx 2 \cdot 500 \text{ MeV}$ $2m \approx 2 \cdot 100 \text{ MeV}$

Lightest strangeness carriers:

- ▶ relatively heavy kaons $(M > T_C)$ in the confined phase,
- ▶ relatively light strange quarks $(m \leq T_C)$ in QGP.

Main strangeness carriers in A+A collisions at high μ_B

Strange definitions

Strangeness production $\langle N_{s\bar{s}} \rangle$ – number of *s*-*s̄* pairs produced in a collision.

 $2\cdot \left< N_{s\bar{s}} \right> = \left< \Lambda + \bar{\Lambda} \right> + \left< K + \bar{K} \right> + \left< \phi \right> + \dots$

Strange definitions

Strangeness production $\langle N_{s\bar{s}} \rangle$ – number of *s*- \bar{s} pairs produced in a collision.

$$\begin{split} 2 \cdot \langle N_{s\bar{s}} \rangle &= \langle \Lambda + \bar{\Lambda} \rangle + \langle K + \bar{K} \rangle + \langle \phi \rangle + \dots \\ 2 \cdot \langle N_{s\bar{s}} \rangle &\approx \langle \Lambda \rangle + \langle K^+ + K^- + K^0 + \bar{K^0} \rangle \end{split}$$

Entropy production $\propto \langle \pi \rangle$

The experimental ratio of strangeness to entropy can be defined as:

$$E_{S} = \frac{\langle \Lambda \rangle + \langle K + \bar{K} \rangle}{\langle \pi \rangle} \approx \frac{2 \cdot \langle N_{s\bar{s}} \rangle}{\langle \pi \rangle}$$
$$\langle N_{s\bar{s}} \rangle \approx \langle K^{+} \rangle + \langle K^{0} \rangle \approx 2 \cdot \langle K^{+} \rangle, \qquad \langle \pi \rangle \approx \frac{3}{2} \left(\langle \pi^{+} \rangle + \langle \pi^{-} \rangle \right)$$
$$\frac{\langle N_{s\bar{s}} \rangle}{\langle \pi \rangle} \approx \frac{2}{3} \frac{\langle K^{+} \rangle}{\langle \pi^{+} \rangle}, \qquad E_{S} \approx \frac{4}{3} \frac{\langle K^{+} \rangle}{\langle \pi^{+} \rangle}$$

Models of strangeness production

There are multiple approaches to describe the strangeness production in HIC.

Some examples include:

- ► Statistical Models:
 - Hadron Resonance Gas
 - Statistical Hadronization Model
 - Statistical Model of Early Stage
- ► Dynamical Models:
 - Rafelski-Müller toy model
 - Parton-Hadron String Dynamics

include deconfinement explicitly

Particle yields - input to HRG model

The energy dependence of experimental hadron yields at mid-rapidity for various species produced in central nucleus-nucleus collisions.

Hadron Resonance Gas

Recipe for intepreting K^+/π^+ within HRG:

- Fit V, T, μ_B to experimentally measured yields
- **2** Parametrize the T, μ_B dependence on s_{NN}
- 3 Compare to the experimentally measured K^+/π^+

Expected:

- Smoother than data
- Approximately reproduces experimental data (because it was the input)

Notable:

- Fitted *T*, μ_B evolve smoothly with s_{NN}
- Addition of σ meson and heavier resonances "enhances" the horn-like shape in the K^+/π^+ dependence on s_{NN} (dotted line)

(Andronic, Braun-Munzinger, Stachel; Nucl.Phys. A834 (2010) 237C-240C)

No equilibrium? — dynamical Approach by Rafelski-Müller

strangeness production in confined matter

$$\begin{split} \mathbf{N} + \mathbf{N} &\rightarrow \mathbf{N} + \mathbf{Y} + \mathbf{K} \\ \pi + \mathbf{N} &\rightarrow \mathbf{K} + \mathbf{Y} & \pi + \overline{\mathbf{N}} &\rightarrow \overline{\mathbf{K}} + \overline{\mathbf{Y}} \\ \pi + \mathbf{Y} &\rightarrow \Xi + \mathbf{K} & \pi + \overline{\mathbf{Y}} &\rightarrow \overline{\Xi} + \overline{\mathbf{K}} \\ \pi + \Xi &\rightarrow \Omega + \mathbf{K} & \pi + \overline{\Xi} &\rightarrow \overline{\Omega} + \overline{\mathbf{K}} \end{split}$$

strangeness production in QGP

(Rafelski, Müller, Phys. Rev. Lett. 48 (1982) 1066)

Statistical Hadronization – γ_s , γ_q

Results on strangess in equilibrium HRG were not satisfactory.

Parameter of "phase-space occupancy" γ_s introduced to improve the fits:

$$\langle \frac{N_s}{V} \rangle = \langle \rho_s \rangle = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\lambda_s^{-1} \gamma_s^{-1} e^{E(p)/T} + 1}, \quad \langle \frac{N_{\bar{s}}}{V} \rangle = \langle \rho_{\bar{s}} \rangle = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\lambda_s \gamma_s^{-1} e^{E(p)/T} + 1}$$

Due to larger mass of *s* quark it requires more time to saturate and so it doesn't reach equilibrium value.

→ γ_s < 1 at lower collision energies (AGS, SPS). → γ_s = 1 at higher energies (from RHIC).

Similarly, γ_q factor can be introduced to reflect the undersaturation of *u*, *d* quarks.

dotted: $\gamma_q, \gamma_s = 1$ dashed: $\gamma_q = 1, \gamma_s < 1$ solid: $\gamma_q, \gamma_s < 1$

but is it still a statistical model?

(J. Rafelski; Eur.Phys.J.ST 155 (2008) 139-166)

Strangeness in Statistical Model of Early Stage

Mareks' horn: [Gaździcki, Gorenstein, Acta Phys.Polon. B30 (1999) 2705]

 K^+/π + ratio dependence on collision energy

K^+/π + ratio dependence on collision energy

System size dependence in statistical and dynamical models

- Arises due to differences between GC and C formulation.
- Local conservation of quantum numbers severely reduces the phase space available for particle production.

- ► PHSD features the onset of deconfinement.
- Predicts increase of strangeness production with system size at low collision energies (<10 GeV) and decrease at high collision energies (>10 GeV).

(Palmese et al. , PRC94 (2016) 044912)

System size dependence of strangeness production

System size dependence of strangeness production

System size dependence of strangeness production

 $p + p \approx Be + Be \neq Ar + Sc \ll Pb + Pb$

- ► No horn-like structure in Ar+Sc
- Be+Be close to p+p in K^+/π^+

- ► Good measure of the strangeness to entropy ratio...
- ...which is different in the confined phase (hadrons) and the QGP (quarks, anti-quarks and gluons).
- ► → probe of the **onset of deconfinement**.

Be+Be, Ar+Sc: K^+/π^+ ratio vs models

• K^+/π^+ ratio in midrapidity:

— reasonably well described for Be+Be by UrQMD and SMASH,

- none of the models works well for Ar+Sc.

• $\langle K^+ \rangle / \langle \pi^+ \rangle$:

— Be+Be data well reproduced by UrQMD and EPOS, underestimated by SMASH and overestimated by AMPT and PHSD,

— only PHSD reproduces the Ar+Sc measurements.

Eur.Phys.J.C 81 (2021) 1, 73 Eur.Phys.J.C 84 (2024) 4, 416

Beginning of the creation of large clusters of strongly interacting matter?

and large ones (Pb+Pb).

to intermediate (Ar+Sc)

Rapid change of observables when going from small (p+p, Be+Be)

► None of the models reproduce K^+/π^+ ratio nor *T* for whole $\langle W \rangle$ range

The new story: excess of charged over neutral kaons

The new story: excess of charged over neutral kaons

The new story: excess of charged over neutral kaons

for integrated in $y > 0 = 1.347 \pm 0.116$

 $K^{+} + K^{-}$

 $2 K_{s}^{0}$

► ~four additional charged *K* mesons per central Ar+Sc collision (extrapolating to 4π)

(Eur.Phys.J.C 84 (2024) 4, 416) (arxiv:2312.06572) 18/22

Why is it surprising?

Strong interactions are **independent of flavor** in the limit of massless quarks.

$$m_u = 2.16^{+0.49}_{-0.26}$$
 MeV, $m_d = 4.67^{+0.48}_{-0.17}$ MeV and $m_s = 93.4^{+8.6}_{-3.4}$ MeV

Assuming the two colliding nuclei are made of an equal number of protons and neutrons: \rightarrow equal number of valence *u* and *d* quarks *in the initial state*

 \rightarrow closely equal abundances of *u* and *d* (\bar{u} and \bar{d}) quarks *in the final state*

These symmetries should (?) translate to particle production:

 $K^+(u\bar{s})$ and $K^0(d\bar{s})$, $K^-(s\bar{u})$ and $\overline{K^0}(s\bar{d})$

What can affect the particles yields?

- ► Ar+Sc: 39 protons and 46 neutrons 5.5% excess of *d* over *u* quarks
- Uncertainty of the mean K_S^0 lifetime \rightarrow inadequate correction for the losses
- Mass difference of quarks
- ► Mass difference of kaons: $m_{K^+} = m_{K^-} = 493.677 \pm 0.016 \text{ MeV}, \quad m_{K^0} = m_{\overline{V^0}} = 497.611 \pm 0.013 \text{ MeV}$
- $\phi(1024)$ meson decays twice as frequently to charged kaons as into neutral ones

All of the above (and more) studied quantitatively by Bryliński et al in arxiv:2312.07176:

 \rightarrow "at energies larger than 10 GeV, the mass difference between charged and neutral kaons, implying isospin symmetry-breaking processes, increases the R_K ratio by about 0.03"

Warning! Other effects may apply (e.g. available phase space)

Summary

- Studying the properties of hadron production at SPS energies remains an interesting and poorly modelled topic
- ► New data from NA61/SHINE system size scan show unexpected features:
 - No *horn* in 40 Ar+ 45 Sc!
 - Threshold-like behavior when going from small (*p*+*p*, Be+Be) to intermediate (Ar+Sc) and large systems (Pb+Pb) visible in K⁺/π⁺ ratio
 - ► The significant excess of charged kaons over neutral ones (measured in Ar+Sc collisions at √s_{NN} = 11.9 GeV)
- ► Good amount of work ahead of Ludwik and his group in Wrocław!

BACKUP SLIDES

K_S^0 identification

- Reconstruction based on decay topology
- K_S^0 decays into π^+ and π^- with BR pprox 69.2%
- Breit-Wigner function is used to describe signal

 $y \in$ (0.5, 1.0), $p_T \in$ (1.2, 1.5) GeV/c

NA61/SHINE strong interactions program

Exploring the phase diagram of strongly interacting matter with a 2D scan in collision energy and system size

 $\sqrt{s_{NN}}\approx 5-17~{\rm GeV}$

K^+/π^+ ratio and inverse slope parameter in p+p

- Rates of increase of K⁺/π⁺ and T change sharply in p+p collisions at SPS energies
- Models assuming change from resonances to string production mechanism follow similar trend

Phys.Rev.C 102 (2020) 1, 011901

Uniqueness of ion results from NA61/SHINE

Model comparisons

- ► EPOS the reaction proceeds from the excitation of strings according to Gribov-Regge theory to string fragmentation into hadrons.
- UrQMD starts with a hadron cascade based on elementary cross sections for resonance production which either decay (mostly at low energies) or are converted into strings which fragment into hadrons (mostly at high energies).
- ► AMPT uses the heavy ion jet interaction generator (HIJING) for generating the initial conditions, Zhang's parton cascade for modeling partonic scatterings and the Lund string fragmentation model or a quark coalescence model for hadronization.
- ▶ PHSD is a microscopic offshell transport approach that describes the evolution of a relativistic heavy-ion collision from the initial hard scatterings and string formation through the dynamical deconfinement phase transition to the quark-gluon plasma as well as hadronization and the subsequent interactions in the hadronic phase.
- SMASH uses the hadronic transport approach where the free parameters of the string excitation and decay are tuned to match the experimental measurements in inelastic p+p collisions.

Selection of events in all model calculations follows the procedure for central collisions corresponding to the experimental results (selection based on forward spectator energy).