Intertwined chiral restoration and spin polarization

Wojciech Florkowski

Institute of Theoretical Physics, Jagiellonian University.

April 27, 2024

With: Samapan Bhadury, Arpan Das, Gowthama K. K., Radoslaw Ryblewski

Features of Non-central Collisions :

Before collision
After collision
Figure 1: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

- Special feature of Non-Central Collisions :
- Large Magnetic Field. [A. Bzdak and, v. Skokov, Phys. Lett. B 710 (2012) 171-174]
- Large Angular Momentum. [F. Becattini et. al. Phys. Rev. C 77 (2008) 204906]
- Particle polarization at small $\sqrt{S_{N N}}$. [STAR Collaboration, Nature 548 62-65, 2017]

Particle Polarization :

Figure 2: Origin of particle polarization. [W. Florkowski et al, PPNP 108 (2019) 103709]

- Large angular momentum \rightarrow Local vorticities \rightarrow spin alignment.
[Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005); Phys. Lett. B 629, 20 (2005)]

Particle Polarization :

Experimental evidence, [STAR Collaboration, Nature 548, 62 (2017), Phys. Rev. Lett. 123, 132301 (2019), Phys. Rev. Lett. 126, 162301 (2021)]

- Theoretical models assuming equilibration of spin d.o.f. explains the data.

Particle Polarization :

Figure 3: Observation (L) and prediction (R) of longitudinal polarization.
[Left: Phys. Rev. Lett. 123132301 (2019); Right: Phys. Rev. Lett. 120012302 (2018)]

- Theoretical models assuming equilibration of spin d.o.f. predict the opposite sign.

Recent Developments :

- Non-local collisions have been considered.
[N. Weickgenannt et. al., Phys. Rev. Lett. 127052301 (2021); Phys. Rev. D 106, 116021 (2022)]

Recent Developments :

- Non-local collisions have been considered.
[N. Weickgenannt et. al., Phys. Rev. Lett. 127052301 (2021); Phys. Rev. D 106, 116021 (2022)]
- Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103014030 (2021)]

Recent Developments :

- Non-local collisions have been considered.
[N. Weickgenannt et. al., Phys. Rev. Lett. 127052301 (2021); Phys. Rev. D 106, 116021 (2022)]
- Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814136096 (2021); Phys. Rev. D 103014030 (2021)]
- Effect of magnetic field has been acknowledged.
[SB et. al., Phys. Rev. Lett. 129192301 (2022); \quad R. Singh et. al., Phys. Rev. D 103094034 (2021)]

Recent Developments :

- Non-local collisions have been considered.
[N. Weickgenannt et. al., Phys. Rev. Lett. 127052301 (2021); Phys. Rev. D 106, 116021 (2022)]
- Dissipative spin-hydrodynamics has been formulated.
[SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103014030 (2021)]
- Effect of magnetic field has been acknowledged.
[SB et. al., Phys. Rev. Lett. 129192301 (2022); R. Singh et. al., Phys. Rev. D 103094034 (2021)]
- Role of shear stress has been included. (Some hope?)
[F. Becattini et. al., Phys. Lett. B 820136519 (2021); Phys. Rev. Lett. 127272302 (2021);
S. Y.F. Liu et. al., Phys. Rev. Lett. 125062301 (2020)]

Recent Developments :

- Non-local collisions have been considered.
[N. Weickgenannt et. al., Phys. Rev. Lett. 127052301 (2021); Phys. Rev. D 106, 116021 (2022)]
- Dissipative spin-hydrodynamics has been formulated.
[SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103014030 (2021)]
- Effect of magnetic field has been acknowledged.
[SB et. al., Phys. Rev. Lett. 129192301 (2022); R. Singh et. al., Phys. Rev. D 103094034 (2021)]
- Role of shear stress has been included. (Some hope?)
[F. Becattini et. al., Phys. Lett. B 820136519 (2021); Phys. Rev. Lett. 127272302 (2021);
S. Y.F. Liu et. al., Phys. Rev. Lett. 125062301 (2020)]
- Ambiguity still remains.
[W. Florkowski et. al., Phys. Rev. C 105064901 (2022)]

Recent Developments :

- Non-local collisions have been considered.
[N. Weickgenannt et. al., Phys. Rev. Lett. 127052301 (2021); Phys. Rev. D 106, 116021 (2022)]
- Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103014030 (2021)]
- Effect of magnetic field has been acknowledged.
[SB et. al., Phys. Rev. Lett. 129192301 (2022); R. Singh et. al., Phys. Rev. D 103094034 (2021)]
- Role of shear stress has been included. (Some hope?)
[F. Becattini et. al., Phys. Lett. B 820136519 (2021); Phys. Rev. Lett. 127272302 (2021);
S. Y.F. Liu et. al., Phys. Rev. Lett. 125062301 (2020)]
- Ambiguity still remains.
[w. Florkowski et. al., Phys. Rev. C 105064901 (2022)]
- We would like to examine the effects of the equation of state.

Roadmap :

- A theory with spin should be built from Quantum Field Theory.

Roadmap :

- A theory with spin should be built from Quantum Field Theory.
- Based on this QFT we have to formulate the macroscopic observables.

Roadmap :

- A theory with spin should be built from Quantum Field Theory.
- Based on this QFT we have to formulate the macroscopic observables.
- The connection between the two is established via Wigner function (WF).

Roadmap :

- A theory with spin should be built from Quantum Field Theory.
- Based on this QFT we have to formulate the macroscopic observables.
- The connection between the two is established via Wigner function (WF).

$$
\text { QFT } \xrightarrow{\text { WF }} \text { Kinetic Equation } \xrightarrow{\int_{\mathrm{p}}} \text { Macroscopic theory. }
$$

Lagrangian :

- Let us consider the Lagrangian:

$$
\mathscr{L}=\bar{\psi}\left(i \not \partial+m_{0}\right) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \psi\right)^{2}\right]
$$

[^0]
Lagrangian :

- Let us consider the Lagrangian:

$$
\mathscr{L}=\bar{\psi}\left(i \not \partial+m_{\circ}\right) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \psi\right)^{2}\right]
$$

- This leads to the equation of motion ${ }^{1}$:

$$
\begin{gathered}
{\left[i \not \partial-\sigma(x)-i \gamma_{5} \pi(x)\right] \psi=0 .} \\
\sigma=\langle\hat{\sigma}\rangle=-2 G\langle\bar{\psi} \psi\rangle, \quad \pi=\langle\hat{\pi}\rangle=-2 G\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle .
\end{gathered}
$$

[^1]
Lagrangian :

- Let us consider the Lagrangian:

$$
\mathscr{L}=\bar{\psi}\left(i \not \partial+m_{0}\right) \psi+G\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \psi\right)^{2}\right]
$$

- This leads to the equation of motion ${ }^{1}$:

$$
\begin{gathered}
{\left[i \not \partial-\sigma(x)-i \gamma_{5} \pi(x)\right] \psi=0 .} \\
\sigma=\langle\hat{\sigma}\rangle=-2 G\langle\bar{\psi} \psi\rangle, \quad \pi=\langle\hat{\pi}\rangle=-2 G\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle .
\end{gathered}
$$

- The next step is to obtain kinetic equations of the system.
[W. Florkowski et. al., Annals Phys. 245 445-463 (1996)]

[^2]
Wigner Function :

- The Wigner function is defined as:

$$
\mathscr{W}_{\alpha \beta}(x, k) \equiv \int d^{4} y e^{i k \cdot y} G_{\alpha \beta}\left(x+\frac{y}{2}, x-\frac{y}{2}\right)
$$

where, $G_{\alpha \beta}(x, y)=\left\langle\bar{\psi}_{\beta}(y) \psi_{\alpha}(x)\right\rangle$.

Wigner Function :

- The Wigner function is defined as:

$$
\mathscr{W}_{\alpha \beta}(x, k) \equiv \int d^{4} y e^{i k \cdot y} G_{\alpha \beta}\left(x+\frac{y}{2}, x-\frac{y}{2}\right)
$$

where, $G_{\alpha \beta}(x, y)=\left\langle\bar{\psi}_{\beta}(y) \psi_{\alpha}(x)\right\rangle$.

- The kinetic equation satisfied by the Wigner function is:

$$
\left[\left(k^{\mu}+\frac{i \hbar}{2} \partial^{\mu}\right) \gamma_{\mu}+\frac{i \hbar}{2}\left(\partial_{\mu} \sigma\right) \partial_{k}^{\mu}-i \gamma_{5} \pi-\frac{\hbar}{2} \gamma_{5}\left(\partial_{\mu} \pi\right) \partial_{k}^{\mu}\right] \mathscr{W}(x, k)=0
$$

Wigner Function :

- The Wigner function is defined as:

$$
\mathscr{W}_{\alpha \beta}(x, k) \equiv \int d^{4} y e^{i k \cdot y} G_{\alpha \beta}\left(x+\frac{y}{2}, x-\frac{y}{2}\right)
$$

where, $G_{\alpha \beta}(x, y)=\left\langle\bar{\psi}_{\beta}(y) \psi_{\alpha}(x)\right\rangle$.

- The kinetic equation satisfied by the Wigner function is:

$$
\left[\left(k^{\mu}+\frac{i \hbar}{2} \partial^{\mu}\right) \gamma_{\mu}+\frac{i \hbar}{2}\left(\partial_{\mu} \sigma\right) \partial_{k}^{\mu}-i \gamma_{5} \pi-\frac{\hbar}{2} \gamma_{5}\left(\partial_{\mu} \pi\right) \partial_{k}^{\mu}\right] \mathscr{W}(x, k)=0
$$

- We can decompose the Wigner function as,

$$
\mathscr{W}=\mathscr{F}+i \gamma_{5} \mathscr{P}+\gamma_{\mu} \mathscr{V}^{\mu}+\gamma^{\mu} \gamma_{5} \mathscr{A}_{\mu}+\frac{1}{2} \sigma^{\mu \nu} \delta_{\mu \nu}
$$

where, $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

Wigner Function :

- The Wigner function is defined as:

$$
\mathscr{W}_{\alpha \beta}(x, k) \equiv \int d^{4} y e^{i k \cdot y} G_{\alpha \beta}\left(x+\frac{y}{2}, x-\frac{y}{2}\right)
$$

where, $G_{\alpha \beta}(x, y)=\left\langle\bar{\psi}_{\beta}(y) \psi_{\alpha}(x)\right\rangle$.

- The kinetic equation satisfied by the Wigner function is:

$$
\left[\left(k^{\mu}+\frac{i \hbar}{2} \partial^{\mu}\right) \gamma_{\mu}+\frac{i \hbar}{2}\left(\partial_{\mu} \sigma\right) \partial_{k}^{\mu}-i \gamma_{5} \pi-\frac{\hbar}{2} \gamma_{5}\left(\partial_{\mu} \pi\right) \partial_{k}^{\mu}\right] \mathscr{W}(x, k)=0
$$

- We can decompose the Wigner function as,

$$
\mathscr{W}=\mathscr{F}+i \gamma_{5} \mathscr{P}+\gamma_{\mu} \mathscr{V}^{\mu}+\gamma^{\mu} \gamma_{5} \mathscr{A}_{\mu}+\frac{1}{2} \sigma^{\mu \nu} \mathcal{S}_{\mu \nu}
$$

where, $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$.

- The components are obtained to be:

$$
\begin{gathered}
\mathscr{F}=\operatorname{Tr}[\mathscr{W}], \quad \mathscr{P}=-i \operatorname{Tr}\left[\gamma_{5} \mathscr{W}\right], \quad \mathscr{V}^{\mu}=\operatorname{Tr}\left[\gamma^{\mu} \mathscr{W}\right], \\
\mathscr{A}^{\mu}=\operatorname{Tr}\left[\gamma_{5} \gamma^{\mu} \mathscr{W}\right], \quad \delta^{\mu \nu}=\operatorname{Tr}\left[\sigma^{\mu \nu} \mathscr{W}\right],
\end{gathered}
$$

Semi-classical Expansion :

- The kinetic equations of the components are:

$$
\begin{aligned}
& K^{\mu} \mathscr{V}_{\mu}-\sigma \mathscr{F}+\pi \mathscr{P}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu \mathscr{F}}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu \mathscr{P}}\right)\right] \\
&-i K^{\mu} \mathscr{A}_{\mu}-\sigma \mathscr{P}-\pi \mathscr{F}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{P}\right)+\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu \mathscr{F})]}\right.\right. \\
& K_{\mu} \mathscr{F}+i K^{\nu} \mathcal{S}_{\nu \mu}-\sigma \mathscr{V}_{\mu}+i \pi \mathscr{A}_{\mu}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{V}_{\mu}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu} \mathscr{A}_{\mu}\right)\right] \\
& i K^{\mu} \mathscr{P}-K_{\nu} \tilde{\delta}^{\nu \mu}-\sigma \mathscr{A}^{\mu}+i \pi \mathscr{V}^{\mu}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{A}^{\mu}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu} \mathscr{V}^{\mu}\right)\right] \\
& 2 i K^{\left[\mu \mathscr{V}^{\nu]}-\varepsilon^{\mu \nu \alpha \beta} K_{\alpha} \mathscr{A}_{\beta}-\pi \tilde{\delta}^{\mu \nu}+\sigma \mathcal{S}^{\mu \nu}\right.}=\frac{i \hbar}{2}\left[\left(\partial_{\gamma} \sigma\right)\left(\partial_{k}^{\gamma} \mathcal{S}^{\mu \nu}\right)-\left(\partial_{\gamma} \pi\right)\left(\partial_{k}^{\gamma} \tilde{\delta}^{\mu \nu}\right)\right]
\end{aligned}
$$

where, $K^{\mu}=k^{\mu}+\frac{i \hbar}{2} \partial^{\mu}$ and $\tilde{S}^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \nu \alpha \beta} \delta_{\alpha \beta}$.
[W. Florkowski et. al., Annals Phys. 245 445-463 (1996)]

Semi-classical Expansion :

- The kinetic equations of the components are:

$$
\begin{aligned}
& K^{\mu} \mathscr{V}_{\mu}-\sigma \mathscr{F}+\pi \mathscr{P}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu \mathscr{F}}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu \mathscr{P}}\right)\right] \\
&-i K^{\mu} \mathscr{A}_{\mu}-\sigma \mathscr{P}-\pi \mathscr{F}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{P}\right)+\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu \mathscr{F})]}\right.\right. \\
& K_{\mu} \mathscr{F}+i K^{\nu} \mathcal{S}_{\nu \mu}-\sigma \mathscr{V}_{\mu}+i \pi \mathscr{A}_{\mu}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{V}_{\mu}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu} \mathscr{A}_{\mu}\right)\right] \\
& i K^{\mu} \mathscr{P}-K_{\nu} \tilde{\delta}^{\nu \mu}-\sigma \mathscr{A}^{\mu}+i \pi \mathscr{V}^{\mu}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{A}^{\mu}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu} \mathscr{V}^{\mu}\right)\right] \\
& 2 i K^{\left[\mu \mathscr{V}^{\nu]}-\varepsilon^{\mu \nu \alpha \beta} K_{\alpha} \mathscr{A}_{\beta}-\pi \tilde{\delta}^{\mu \nu}+\sigma \mathcal{S}^{\mu \nu}\right.}=\frac{i \hbar}{2}\left[\left(\partial_{\gamma} \sigma\right)\left(\partial_{k}^{\gamma} \mathcal{S}^{\mu \nu}\right)-\left(\partial_{\gamma} \pi\right)\left(\partial_{k}^{\gamma} \tilde{\delta}^{\mu \nu}\right)\right]
\end{aligned}
$$

where, $K^{\mu}=k^{\mu}+\frac{i \hbar}{2} \partial^{\mu}$ and $\tilde{S}^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \nu \alpha \beta} \delta_{\alpha \beta}$.
[w. Florkowski et. al, Annals Phys. 245 445-463 (1996)]

- The semi-classical expansion is defined as:

$$
X=X_{(\mathrm{o})}+\hbar X_{(1)}+\hbar^{2} X_{(2)}+\cdots
$$

Semi-classical Expansion :

- The kinetic equations of the components are:

$$
\begin{aligned}
& K^{\mu} \mathscr{V}_{\mu}-\sigma \mathscr{F}+\pi \mathscr{P}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu \mathscr{F}}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu \mathscr{P}}\right)\right] \\
&-i K^{\mu} \mathscr{A}_{\mu}-\sigma \mathscr{P}-\pi \mathscr{F}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{P}\right)+\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu \mathscr{F})]}\right.\right. \\
& K_{\mu} \mathscr{F}+i K^{\nu} \mathcal{S}_{\nu \mu}-\sigma \mathscr{V}_{\mu}+i \pi \mathscr{A}_{\mu}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{V}_{\mu}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu} \mathscr{A}_{\mu}\right)\right] \\
& i K^{\mu} \mathscr{P}-K_{\nu} \tilde{\delta}^{\nu \mu}-\sigma \mathscr{A}^{\mu}+i \pi \mathscr{V}^{\mu}=-\frac{i \hbar}{2}\left[\left(\partial_{\nu} \sigma\right)\left(\partial_{k}^{\nu} \mathscr{A}^{\mu}\right)-\left(\partial_{\nu} \pi\right)\left(\partial_{k}^{\nu} \mathscr{V}^{\mu}\right)\right] \\
& 2 i K^{\left[\mu \mathscr{V}^{\nu]}-\varepsilon^{\mu \nu \alpha \beta} K_{\alpha} \mathscr{A}_{\beta}-\pi \tilde{\delta}^{\mu \nu}+\sigma \mathcal{S}^{\mu \nu}\right.}=\frac{i \hbar}{2}\left[\left(\partial_{\gamma} \sigma\right)\left(\partial_{k}^{\gamma} \mathcal{S}^{\mu \nu}\right)-\left(\partial_{\gamma} \pi\right)\left(\partial_{k}^{\gamma} \tilde{\delta}^{\mu \nu}\right)\right]
\end{aligned}
$$

where, $K^{\mu}=k^{\mu}+\frac{i \hbar}{2} \partial^{\mu}$ and $\tilde{\delta}^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \nu \alpha \beta} S_{\alpha \beta}$.
[w. Florkowski et. al, Annals Phys. 245 445-463 (1996)]

- The semi-classical expansion is defined as:

$$
X=X_{(\mathrm{o})}+\hbar X_{(1)}+\hbar^{2} X_{(2)}+\cdots
$$

- In the following we will set, $\pi=0$ and $M(x)=\sigma_{(\mathrm{o})}(x)$.

Kinetic Equations :

- We can obtain the Kinetic equation for Axial current as:

$$
k^{\alpha}\left(\partial_{\alpha} \mathscr{A}^{\mu}\right)+M\left(\partial_{\alpha} M\right)\left(\partial_{(k)^{\alpha}}^{\alpha} \mathscr{A}^{\mu}\right)+\left(\partial_{\alpha} \ln M\right)\left(k^{\mu} \mathscr{A}^{\alpha}-k^{\alpha} \mathscr{A}^{\mu}\right)=0
$$

[w. Florkowski et. al., Annals Phys. 245 445-463 (1996)]

Kinetic Equations :

- We can obtain the Kinetic equation for Axial current as:

$$
k^{\alpha}\left(\partial_{\alpha} \mathscr{A}^{\mu}\right)+M\left(\partial_{\alpha} M\right)\left(\partial_{(k)}^{\alpha} \mathscr{A}^{\mu}\right)+\left(\partial_{\alpha} \ln M\right)\left(k^{\mu} \mathscr{A}^{\alpha}-k^{\alpha} \mathscr{A}^{\mu}\right)=0
$$

[W. Florkowski et. al., Annals Phys. 245 445-463 (1996)]

- Leading order ansatz:

$$
\begin{aligned}
& \mathscr{A}^{\mu}(x, k)=2 M \int d P d S s^{\mu}\left[f^{+}(x, p, s) \delta^{(4)}(k-p)+f^{-}(x, p, s) \delta^{(4)}(k+p)\right] \\
& \quad \longrightarrow s^{\mu}=\left(s^{\mathrm{o}}, \mathbf{s}\right) \Longrightarrow \text { Spin 4-vector, } \\
& \quad \longrightarrow p^{\mu}=\left(p^{\circ}, \mathbf{p}\right) \Longrightarrow \text { On-shell momentum 4-vector i.e. } p^{2}=M^{2}(x) \\
& \quad \longrightarrow f^{ \pm}(x, p, s) \Longrightarrow \text { Phase-space distribution functions. }
\end{aligned}
$$

- This ansatz satisfies, $k \cdot \mathscr{A}(x, k)=0$.

Spin Tensors :

- The hydrodynamic variable describing the dynamics of spin is $\rightarrow S^{\lambda \mu \nu}$.

Spin Tensors:

- The hydrodynamic variable describing the dynamics of spin is $\rightarrow S^{\lambda \mu \nu}$.
- The canonical spin tensor is defined as:

$$
S_{\mathrm{can}}^{\lambda \mu \nu}(x)=\frac{1}{2} \varepsilon^{\lambda \mu \nu \alpha} \int d^{4} k \mathscr{A}_{\alpha}(x, k)
$$

Spin Tensors :

- The hydrodynamic variable describing the dynamics of spin is $\rightarrow S^{\lambda \mu \nu}$.
- The canonical spin tensor is defined as:

$$
S_{\mathrm{can}}^{\lambda \mu \nu}(x)=\frac{1}{2} \varepsilon^{\lambda \mu \nu \alpha} \int d^{4} k \mathscr{A}_{\alpha}(x, k) .
$$

- The GLW (Groot, Leeuwen, Weert) spin tensor is defined as:

$$
S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} f(x, p, s)
$$

where, $s^{\alpha \beta}=\frac{1}{M} \varepsilon^{\alpha \beta \mu \nu} p_{\mu} s_{\nu}, \quad d P=\frac{d^{3} p}{E_{\mathrm{p}}}, \quad d S=\left(\frac{M}{\pi \mathfrak{s}}\right) d^{4} s \delta\left(s \cdot s+\mathfrak{s}^{2}\right) \delta(p \cdot s)$.

- These are related by:

$$
S_{\mathrm{can}}^{\lambda \mu \nu}=S^{\lambda, \mu \nu}+S^{\mu, \nu \lambda}+S^{\nu, \lambda \mu} .
$$

[W. Florkowski et. al., Prog. Part. Nucl. Phys. 108103709 (2019)]

Evolution of Spin Tensor :

- Recall the kinetic equation for the Axial current,

$$
k^{\alpha}\left(\partial_{\alpha} \mathscr{A}^{\mu}\right)+M\left(\partial_{\alpha} M\right)\left(\partial_{(k)}^{\alpha} \mathscr{A}^{\mu}\right)+\left(\partial_{\alpha} \ln M\right)\left(k^{\mu} \mathscr{A}^{\alpha}-k^{\alpha} \mathscr{A}^{\mu}\right)=0
$$

- Multiplying this by $k_{\beta} \varepsilon_{\mu}^{\beta \gamma \delta}$ and integrating over k-momenta we get:

$$
\partial_{\alpha} S^{\alpha, \gamma \delta}=\left(\partial_{\alpha} \ln M\right)\left(S^{\gamma, \delta \alpha}-S^{\delta, \gamma \alpha}\right) \neq 0
$$

for $M=M(x)$.
[SB et. al. PLB 849 (2024) 138464]

- As expected, the spin tensor is conserved when M is constant.

Conservation of Angular Momentum :

- Conservation of total angular momentum implies:

$$
\partial_{\lambda} J^{\lambda, \mu \nu}=0 .
$$

Conservation of Angular Momentum :

- Conservation of total angular momentum implies:

$$
\partial_{\lambda} J^{\lambda, \mu \nu}=0 .
$$

- Noting $J=L+S$, and $L^{\lambda, \mu \nu}=x^{\mu} T^{\lambda \nu}-x^{\nu} T^{\lambda \mu}$ we can write:

$$
\partial_{\lambda} S_{\mathrm{can}}^{\lambda, \mu \nu}=T_{(\mathrm{a})}^{\nu \mu}-T_{(\mathrm{a})}^{\mu \nu}
$$

Conservation of Angular Momentum :

- Conservation of total angular momentum implies:

$$
\partial_{\lambda} J^{\lambda, \mu \nu}=0 .
$$

- Noting $J=L+S$, and $L^{\lambda, \mu \nu}=x^{\mu} T^{\lambda \nu}-x^{\nu} T^{\lambda \mu}$ we can write:

$$
\partial_{\lambda} S_{\mathrm{can}}^{\lambda, \mu \nu}=T_{(\mathrm{a})}^{\nu \mu}-T_{(\mathrm{a})}^{\mu \nu}
$$

- Then we can find:

$$
M \partial_{\lambda} S_{\mathrm{can}}^{\lambda, \mu \nu}=\partial_{\lambda}\left(M S^{\nu, \lambda \mu}\right)-\partial_{\lambda}\left(M S^{\mu, \lambda \nu}\right)
$$

- Thus our approach is consistent with "conservation of angular momentum."

Analytical Solutions

Analytical Solutions:

Figure 4: Transverse view of non-central collisions. [SB et. al. PLB 849 (2024) 138464]

Analytical Solutions:

Figure 4: Transverse view of non-central collisions. [SB et. al. PLB 849 (2024) 138464]

- Consider a system expanding boost-invariantly along the z-axis:

$$
\begin{aligned}
& f(x, p, s)=g(x, p, s) \delta\left(p_{x}\right) \delta\left(p_{y}\right) \\
& \Longrightarrow S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} g(x, p, s) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
\end{aligned}
$$

Analytical Solutions:

Figure 4: Transverse view of non-central collisions. [SB et. al. PLB 849 (2024) 138464]

- Consider a system expanding boost-invariantly along the z-axis:

$$
\begin{aligned}
& f(x, p, s)=g(x, p, s) \delta\left(p_{x}\right) \delta\left(p_{y}\right) \\
& \Longrightarrow S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} g(x, p, s) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
\end{aligned}
$$

- So, we have: $S^{1, \mu \nu}=S^{2, \mu \nu}=0$.

Analytical Solutions - I (Transverse Polarization):

- Transverse polarization implies:

$$
g(x, p, s)=h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{z}\right)
$$

Analytical Solutions - I (Transverse Polarization):

- Transverse polarization implies:

$$
g(x, p, s)=h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{z}\right)
$$

Figure 5: Transverse polarization schematic diagram. [SB et. al. PLB 849 (2024) 138464]

Analytical Solutions - I (Transverse Polarization):

- The spin tensor under transverse polarization becomes :

$$
S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{z}\right) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
$$

Analytical Solutions - I (Transverse Polarization):

- The spin tensor under transverse polarization becomes :

$$
S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{z}\right) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
$$

- Furthermore, if $M=M(t, z)$, then the only non-zero components of spin-tensor are $S^{0,01}, S^{3,01}, S^{0,3^{1}}, S^{3,3^{1}}$.

Analytical Solutions - I (Transverse Polarization):

- The spin tensor under transverse polarization becomes :

$$
S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{z}\right) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
$$

- Furthermore, if $M=M(t, z)$, then the only non-zero components of spin-tensor are $S^{\mathrm{o}, 01}, S^{3,01}, S^{\mathrm{o}, 3^{1}}, S^{3,3^{1}}$.
- The dynamics of spin is described by:

$$
\begin{aligned}
& \partial_{\mathrm{o}} S^{\mathrm{o}, \mathrm{o1}}+\partial_{3} S^{3, \mathrm{o1}}=\frac{\partial_{\mathrm{o}} M}{M} S^{\mathrm{o}, 1 \mathrm{o}}+\frac{\partial_{3} M}{M} S^{\mathrm{o}, 13} \\
& \partial_{\mathrm{o}} S^{\mathrm{o}, 31}+\partial_{3} S^{3,31}=\frac{\partial_{\mathrm{o}} M}{M} S^{3,1 \mathrm{o}}+\frac{\partial_{3} M}{M} S^{3,13}
\end{aligned}
$$

Analytical Solutions - I (Transverse Polarization):

- Let us consider the following basis vector :

$$
u^{\mu}=\left(\begin{array}{c}
\frac{t}{\tau} \\
0 \\
0 \\
\frac{z}{\tau}
\end{array}\right), \quad S_{x}^{\mu}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad S_{y}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad S_{z}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

where $\tau=\sqrt{t^{2}+z^{2}}$.

Analytical Solutions - I (Transverse Polarization):

- Let us consider the following basis vector :

$$
u^{\mu}=\left(\begin{array}{c}
\frac{t}{\tau} \\
0 \\
0 \\
\frac{z}{\tau}
\end{array}\right), \quad S_{x}^{\mu}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad S_{y}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad S_{z}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

where $\tau=\sqrt{t^{2}+z^{2}}$.

- This allows us to express the spin tensor parametrically as :

$$
S^{\lambda, \mu \nu}=\sigma(\tau) u^{\lambda} \varepsilon^{\mu \nu \alpha \beta} u_{\alpha} S_{y, \beta}
$$

Analytical Solutions - I (Transverse Polarization):

- Let us consider the following basis vector :

$$
u^{\mu}=\left(\begin{array}{c}
\frac{t}{\tau} \\
0 \\
0 \\
\frac{z}{\tau}
\end{array}\right), \quad S_{x}^{\mu}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad S_{y}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad S_{z}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

where $\tau=\sqrt{t^{2}+z^{2}}$.

- This allows us to express the spin tensor parametrically as :

$$
S^{\lambda, \mu \nu}=\sigma(\tau) u^{\lambda} \varepsilon^{\mu \nu \alpha \beta} u_{\alpha} S_{y, \beta}
$$

- Then we have:

$$
\begin{array}{r}
\frac{d \sigma}{d \tau}+\frac{\sigma}{\tau}=0 . \\
\Longrightarrow \sigma(\tau)=\sigma\left(\tau_{0}\right) \frac{\tau_{0}}{\tau} .
\end{array}
$$

i.e. the spin decouples from the change in M.

Analytical Solutions - I (Transverse Polarization):

- Let us consider the following basis vector :

$$
u^{\mu}=\left(\begin{array}{c}
\frac{t}{\tau} \\
0 \\
0 \\
\frac{z}{\tau}
\end{array}\right), \quad S_{x}^{\mu}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad S_{y}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad S_{z}^{\mu}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

where $\tau=\sqrt{t^{2}+z^{2}}$.

- This allows us to express the spin tensor parametrically as :

$$
S^{\lambda, \mu \nu}=\sigma(\tau) u^{\lambda} \varepsilon^{\mu \nu \alpha \beta} u_{\alpha} S_{y, \beta}
$$

- Then we have:

$$
\begin{array}{r}
\frac{d \sigma}{d \tau}+\frac{\sigma}{\tau}=0 . \\
\Longrightarrow \sigma(\tau)=\sigma\left(\tau_{0}\right) \frac{\tau_{0}}{\tau} .
\end{array}
$$

i.e. the spin decouples from the change in M.

- The solution is equivalent to conservation law in Bjorken model.

Analytical Solutions - II (Longitudinal Polarization):

- Longitudinal polarization implies:

$$
g(x, p, s)=h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{y}\right)
$$

Analytical Solutions - II (Longitudinal Polarization):

- Longitudinal polarization implies:

$$
g(x, p, s)=h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{y}\right)
$$

Figure 6: Longitudinal polarization schematic diagram. [SB et. al. PLB 849 (2024) 138464]

Analytical Solutions - II (Longitudinal Polarization):

- The spin tensor under longitudinal polarization becomes :

$$
S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{y}\right) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
$$

Analytical Solutions - II (Longitudinal Polarization):

- The spin tensor under longitudinal polarization becomes :

$$
S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{y}\right) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
$$

- Parametrically, we can write the spin tensor as:

$$
S^{\lambda, \mu \nu}=\sigma(\tau) u^{\lambda} \varepsilon^{\mu \nu \alpha \beta} u_{\alpha} S_{z \beta} .
$$

Analytical Solutions - II (Longitudinal Polarization):

- The spin tensor under longitudinal polarization becomes :

$$
S^{\lambda, \mu \nu}(x)=\int d P d S p^{\lambda} s^{\mu \nu} h(x, p, s) \delta\left(s_{x}\right) \delta\left(s_{y}\right) \delta\left(p_{x}\right) \delta\left(p_{y}\right)
$$

- Parametrically, we can write the spin tensor as:

$$
S^{\lambda, \mu \nu}=\sigma(\tau) u^{\lambda} \varepsilon^{\mu \nu \alpha \beta} u_{\alpha} S_{z \beta}
$$

- Similar to transverse case, the spin decouples from the gradient of $M(x)$ and we have a similar solution.

Analytical Solutions - III (Beoynd Boost Invariance):

- The symmetry of boost-invariance leads to trivial solutions.

Analytical Solutions - III (Beoynd Boost Invariance):

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.

Analytical Solutions - III (Beoynd Boost Invariance):

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$
M=M(t), \quad S^{3,01}(t, z)=\nu S^{\mathrm{o}, 01}(t, z)=\nu \sigma(t, z)
$$

where, ν is constant.

Analytical Solutions - III (Beoynd Boost Invariance):

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$
M=M(t), \quad S^{3,01}(t, z)=\nu S^{0,01}(t, z)=\nu \sigma(t, z)
$$

where, ν is constant.

- Then this leads to:

$$
\left(\frac{\partial}{\partial t}+\nu \frac{\partial}{\partial z}\right) \sigma(t, z)=-\left(\frac{\partial \ln M(t)}{\partial t}\right) \sigma(t, z) .
$$

Analytical Solutions - III (Beoynd Boost Invariance):

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$
M=M(t), \quad S^{3,01}(t, z)=\nu S^{\mathrm{o}, \mathrm{0} 1}(t, z)=\nu \sigma(t, z)
$$

where, ν is constant.

- Then this leads to:

$$
\left(\frac{\partial}{\partial t}+\nu \frac{\partial}{\partial z}\right) \sigma(t, z)=-\left(\frac{\partial \ln M(t)}{\partial t}\right) \sigma(t, z) .
$$

- The solution is:

$$
\sigma(t, z)=\frac{M_{\mathrm{O}}}{M(t)} \sigma_{\mathrm{o}}\left(z-\nu\left(t-t_{\mathrm{o}}\right)\right)
$$

Analytical Solutions - III (Beoynd Boost Invariance):

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$
M=M(t), \quad S^{3,01}(t, z)=\nu S^{\mathrm{o}, 01}(t, z)=\nu \sigma(t, z)
$$

where, ν is constant.

- Then this leads to:

$$
\left(\frac{\partial}{\partial t}+\nu \frac{\partial}{\partial z}\right) \sigma(t, z)=-\left(\frac{\partial \ln M(t)}{\partial t}\right) \sigma(t, z) .
$$

- The solution is:

$$
\sigma(t, z)=\frac{M_{\mathrm{o}}}{M(t)} \sigma_{\mathrm{o}}\left(z-\nu\left(t-t_{\mathrm{o}}\right)\right)
$$

- This solution implies the increase of spin density with decreasing mass, indicating a connection between chiral restoration and spin polarization.

Other Aspects

Chiral Spiral:

- Let us recall the equation of motion,

$$
\left[i \not \partial-\sigma(x)-i \gamma_{5} \pi(x)\right] \psi=0
$$

Chiral Spiral:

- Let us recall the equation of motion,

$$
\left[i \not \partial-\sigma(x)-i \gamma_{5} \pi(x)\right] \psi=0
$$

- We may examine the case with $\sigma \neq 0$ and, $\pi \neq 0$.

Chiral Spiral:

- Let us recall the equation of motion,

$$
\left[i \not \partial-\sigma(x)-i \gamma_{5} \pi(x)\right] \psi=0 .
$$

- We may examine the case with $\sigma \neq 0$ and, $\pi \neq 0$.
- A particularly interesting case of $\sigma=\phi \cos (\mathbf{q} \cdot \mathbf{r})$ and, $\pi=\phi \sin (\mathbf{q} \cdot \mathbf{r})$, known as "chiral spiral", can be investigated.

Rotating System:

- If we consider a rotating system, we may use the gap equation to find a connection between mass and angular velocity.

Rotating System:

- If we consider a rotating system, we may use the gap equation to find a connection between mass and angular velocity.

Figure 7: Variation of mass with angular velocity [Zheng Zhang et. al. PRD 101, 074036 (2020)]

Summary and Outlook :

- Gradients of effective mass can act like a source of spin polarization.
- Spin evolution decouples from the source term in a highly symmetric system.
- By giving up boost-invariance, we find a connection between spin polarization and chiral restoration.

Summary and Outlook:

- Gradients of effective mass can act like a source of spin polarization.
- Spin evolution decouples from the source term in a highly symmetric system.
- By giving up boost-invariance, we find a connection between spin polarization and chiral restoration.
- A self-consistently determined $M(x)$ should be used to study the evolution.
- Consideration of a rotating system, may establish the connection of spin polarization and the angular momentum of the system.
- Consequence of non-zero π should be explored.
- Evolving the system in a background magnetic field may lead to some interesting phenomenon.

Thank you.

[^0]: ${ }^{\mathbf{1}}$ We have assumed $m_{\mathrm{O}}=0$.

[^1]: ${ }^{\mathbf{1}}$ We have assumed $m_{\mathrm{O}}=0$.

[^2]: ${ }^{1}$ We have assumed $m_{\mathrm{O}}=0$.

