

Femtoscopy in heavy-ion collision experiments at various μ_B

Hanna Zbroszczyk

Introduction Scanning QCD phase diagram: • neutron stars • neutron star mergers • phase transitions Summary

Various faces of QCD, April 26-28 2024, Wrocław

... the method to probe **geometric** and **dynamic** properties of the source (emission region, range of correlations-interactions, phase-space cloud, ...) **Femtoscopy does not measure the whole source, but homogeneity length.**

Classic femtoscopy

2R

Femtoscopy (originating from HBT):

the method to probe **geometric** and **dynamic** properties of the source

Space-time properties (10⁻¹⁵m, 10⁻²³s) determined thanks to two-particle correlations:
Quantum Statistics (Fermi-Dirac, Bose-Einstein);
Final State Interactions (Coulomb, strong)

determined assumed measured $C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r = \frac{Sgnl(k^*)}{Bckg(k^*)}$

 $S(r^*)$ – source function

 k^* - momentum of the first particle in the Pair Rest Frame reference

 $\Psi(k^*, r^*)$ – two-particle wave function (includes e.g. FSI interactions)

 $\frac{Sgnl(k^*)}{Bckg(k^*)}$ – correlation function

Gateway to study interactions

p2

2**R**

If we assume we know the **source function**, measured **correlations** are used to determine **interactions in the final state**.

Space-time properties $(10^{-15}m, 10^{-23}s)$ determined thanks to two-particle correlations: **Quantum Statistics** (Fermi-Dirac, Bose-Einstein); **Final State Interactions** (Coulomb, strong)

assumed determined measured $C(k^*, r^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3 r^* = \frac{Sgnl(k^*)}{Bckg(k^*)}$ $S(r^*) - \text{source function}$

*k** - momentum of the first particle in the Pair Rest Frame reference

 $\Psi(k^*, r^*)$ - two-particle wave function (includes e.g. FSI interactions) $\frac{Sgnl(k^*)}{Bckg(k^*)}$ - correlation function

https://www.researchgate.net

Scanning various μ_B

.. to study strongly interacting matter

.. to explore unknown QCD territory

Neutron stars

Exploration of unknown QCD territory: high μ_B

Temperature T<10 MeV

Density $n < 10n_0$

Lifetime $t \sim long$

Neutron stars

Exploration of unknown QCD territory: high μ_B

Temperature T<10 MeV

Density $n < 3n_0$

Lifetime $t \sim long$

Neutron star puzzle

- Hyperons: expected in the core of neutron stars; conversion of N into Y energetically favorable.
- Appearance of Y: The relieve of Fermi pressure → softer
 EoS → mass reduction (incompatible with observation).

The solution requires a mechanism that could provide the **additional pressure** at high densities needed to make the EoS stiffer.

A few possible mechanisms, one of them: **Two-body YN & YY interactions**

The existence of **hypernuclei** (confirmed by attractive YN interaction) \rightarrow indicates the possibility to bind Y to N.

The measurement of the YN and YY interactions leads to important implications for the possible formation of **YN** or **YY bound states**.

```
\begin{split} M_{\rm NS} &\approx 1 \div 2 \ M_{\odot} \\ R &\approx 10\text{-}12 \ \text{km} \\ \rho &\approx 3 \div 5 \ \rho_0 \end{split}
```


Lednicky-Lyuboshitz model (p Λ example)

The normalized pair separation distribution (source function) $S(r^*)$ is assumed to be Gaussian,

$$S(r^*) = (2\sqrt{\pi}r_0)^{-3}e^{-rac{r^{*2}}{4r_0^2}},$$

Ref : Lednicky, Richard & Lyuboshits, V.L.. (1982). Sov. J. Nucl. Phys. (Engl. Transl.); (United States). 35:5.

The correlated function can be calculated analytically by averaging Ψ^s over the total spin S and the distribution of the relative distances $S(r^*)$

$$egin{aligned} C(k^*) &= 1 + \sum_{S}
ho_s [rac{1}{2} |rac{f^S(k^*)}{r_0}|^2 ig(1 - rac{d_0^S}{2\sqrt{\pi}r_0}ig) + rac{2\mathbb{R}f^S(k^*)}{\sqrt{\pi}r_0}F_1(Qr_0) - rac{\Im f^S(k^*)}{r_0}F_2(Qr_0)] \ with \ F_1(z) &= \int_0^z dx e^{x^2 - z^2}/z \ and \ F_2(z) &= (1 - e^{-z^2})/z \ \end{aligned}$$

 f_0 and d_0 - parameters of strong interaction.

Theoretical correlation function (k^*) depends on: R, f_0 and d_0 .

f₀ - the scattering length, determines low-energy scattering. The elastic cross section, σ_e , (at low energies) determined by the scattering length, $\lim_{k\to 0} \sigma_e = 4\pi f_0^2$

 d_0 - the effective range, corresponds to the range of the potential (simplified scenario - the square well potential.

YN ($p\Lambda$) correlations at HADES

YN correlations at STAR ($\sqrt{s_{NN}} = 3 \text{ GeV}$)

Singlet State	${}^{1}S_{0}$	(S)
Triplet State	${}^{3}S_{1}$	(T)
Doublet State	${}^{2}S_{1/2}$	(D)
Quartet State	${}^{4}S_{3/2}$	(Q)

p-A: $|\psi(r,k)|^2 \rightarrow \frac{1}{4} |\psi_0(r,k)|^2 + \frac{3}{4} |\psi_1(r,k)|^2$ **d-A:** $|\psi(r,k)|^2 \rightarrow \frac{1}{3} |\psi_{1/2}(r,k)|^2 + \frac{2}{3} |\psi_{3/2}(r,k)|^2$

• Different spin states with different f_0 and d_0 parameters • p- Λ correlation: current statistics is not enough to

separate two spin states → spin-averaged fit

♦ d- Λ correlation: very different f_0 for (D) and (Q) are predicted → Spin-separated fit

Different spin states with different FSI

parameters

p-\Lambda correlation: currently spin-averaged fit

d- Λ correlation: spin-separated fit

YN ($p\Lambda$) correlations at STAR

- Simultaneous fit to data in different centralities and rapidities;
- Source size R and parameters of SI: *f*₀ and *d*₀ with Lednicky-Lyuboshitz approach;
- Spin-averaged scattering length and effective range: $f_0 = 2.32^{+0.12}_{-0.11} fm$ $d_0 = 3.5^{+2.7}_{-1.3} fm.$

Source size extracted from the source assuming Gaussian shape;

Separation of emission source from the parameters of the final state interaction;

YN ($d\Lambda$) correlations at STAR

- Simultaneous fit to data in different centralities and rapidities;
- Source size R and parameters of SI: *f*₀ and *d*₀ with Lednicky-Lyuboshitz approach;
- Spin-separated scattering length and effective range: $f_0(D) = 20^{+3}_{-3} fm; d_0(D) = 3^{+2}_{-1} fm;$ $f_0(Q) = 16^{+2}_{-1} fm; d_0(Q) = 2^{+1}_{-1} fm.$

H. W. Hammer, Nucl. Phys. A 705 (2002) 173
A. Cobis, et al. J. Phys. G 23 (1997) 401
J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001
M. Schäfer, et al. Phys.Lett.B 808 (2020) 135614
G. Alexander, et al. Phys. Rev. 173 (1968) 1452
J. Haidenbauer, et al. Nucl. Phys. A 915 (2013) 24
F. Wang, et al. Phys.Rev.Lett. 83 (1999) 3138

YN ($d\Lambda$) correlations at STAR, binding energy

Bethe formula from Effective Range Expansion (ERE) parameters $f_0(D)$ and $d_0(D)$.

$$\frac{1}{-f_0} = \gamma - \frac{1}{2} d_0 \gamma^2 \quad \Leftrightarrow B_\Lambda = \frac{\gamma^2}{2\mu_{d\Lambda}}$$
$$\Leftrightarrow \mu_{d\Lambda}: \text{ reduced mass}$$
$$\Leftrightarrow \gamma: \text{ binding momentum}$$

 ³_ΛH B_Λ = [0.04,0.33] (MeV) @ 95% CL Consistent with the world average
 A new way to constrain the ³_ΛH structure

Light nuclei production at STAR

•First measurement of protondeuteron and deuterondeuteron correlation functions from STAR

• Proton-deuteron and deuterondeuteron correlations qualitatively described by theory;

•Deuteron-deuteron correlations described better by the model including **coalescence**. Light nuclei are likely to be formed via coalescence.

E-M probes at HADES

Neutron star mergers

Exploration of unknown QCD territory: still high μ_B

Temperature T<50 MeV

Density $n < 2 - 6n_0$

Reaction time $t \sim 10 \text{ ms}$ (GW170817)

Neutron star mergers CBM and HADES future

Temperature T<50 MeV

Density $n < 2 - 6n_0$

Reaction time $t \sim 10 \text{ ms}$ (GW170817)

Temperature T<10 MeV

Density $n < 10n_0$

Lifetime t ~ infinity

CBM and HADES future

Phase transitions

Exploration of unknown QCD territory: moderate μ_B

https://www.researchgate.net

Beam Energy Scan at STAR

RHIC energies, species combinations and luminosities (Run-1 to 22)

Beam Energy Scan: Au+Au 3-62.4 GeV
1. Search for turn-off of QGP signatures
2. Search for signals of the first-order phase transition

3. Search for QCD critical point

Fixed-Target Program: Au+Au: 3.0-13.7 GeV

Looking for phase transition

- \Rightarrow R_{side} spatial source evolution in the transverse direction
- \Rightarrow R_{out} related to spatial and time components
- R_{out}/R_{side} signature of phase transition
- → R_{out}^2 R_{side}^2 = $\Delta \tau^2 \beta_t^2$; $\Delta \tau$ emission time
- \Rightarrow R_{long} temperature of kinetic freeze-out and source lifetime

System evolves faster in the reaction plane

How to measure phase transition?

vHLLE (3+1)-D viscous hydrodynamics: Iu. Karpenko, P. Huovinen, H. Petersen, M. Bleicher; Phys.Rev. C 91, 064901 (2015), arXiv:1502.01978, 1509.3751

HadronGas + Bag Model \rightarrow 1st order PT ; P.F. Kolb, et al, PR C 62, 054909 (2000)

Chiral EoS → crossover PT
(XPT); J. Steinheimer, et al,
J. Phys. G 38, 035001
(2011)

Phys. Rev. C 96 (2017) no.2, 024911

How to measure a phase transition? CP?

Levy-stability index Far away from the CP

Early Universe

Exploration of $\mu h known$ from lattice QCD: vanishing μ_B

Studies of Early Universe

https://www.researchgate.net

Early Universe

Exploration of $\mu h known$ from lattice QCD: vanishing μ_B

Studies of Early Universe

https://www.researchgate.net

Early Universe, vanishing μ_B

- Probe the condition ~Early Universe,
- Very high abundances of particles produced,
- Statistical heaven to study exotic particles,
- Studies of heavy-flavor,
- Incredible laboratory of anti-matter.

https://insidetheperimeter.ca/the-universe-before-atoms/

CATS: EPJA 78 (2018) Projector: EPJC 82 (2022) Review 1: Prog.Part.Nucl.Phys. 112 (2020) Review 2: Ann. Rev. Nucl. Part. Sci. 71 (2021) p-φ bound state: arXiv:2212.12690 p-K: PRL 124 (2020) 092301 p-K: PLB 822 (2021), EPJC (2022) p-p, p-Λ, Λ-Λ: PRC 99 (2019) 024001 Λ-Λ: PLB 797 (2019) 134822 p-E-: PRL. 123 (2019) p-Ξ-, p-Ω: Nature 588 (2020) 232–238 p-Σ⁰: PLB 805 (2020) 135419 p-φ: PRL 127 (2021) $p - \bar{p}, \Lambda - \bar{\Lambda}, p - \bar{\Lambda}$: PLB 829 (2022) р-Л: PLB 832 (2022) 137272 Λ – Ξ: PLB 137223 (2022) D-p: PRD 106, 052010 (2022) ppp, ppΛ: arXiv:2206.03344

Summary

Collisions of (heavy) ions give us access to:

High T, low µB

- Cross-over to QGP \rightarrow Investigations of properties of QGP
- LQCD: no CP indication for $\mu_B/T < 3$

Lower T, high µB

- Phase structure?
 - first-order phase transition?
 - CP?
 - New phases of QCD?
- Characterization of dense matter,
- EOS?
- Properties of hadrons?

Collisions of (heavy) ions give us access to: High T, low µB

- Cross-over to QGP \rightarrow Investigations of properties of QGP
- LQCD: no CP indication for $\mu_B/T < 3$

Lower T, high µB

- Phase structure?
 - first-order phase transition?
 - CP?
 - New phases
- Characterizatio
- EOS?
- Properties of ha

NSM and HIC

Top row: simulation of **neutron stars mergers** 2 neutron stars of 1.35 M \odot each, merging into a single object (2R ~ 10 km, $n \simeq 5n_0$, $T \le 20$ MeV). Overlap region: $t \simeq 20$ ms, $n \simeq 2n_0$, $T \simeq 75$ MeV \frown max. temperature

- max. density

Bottom row: non-central-collision Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

 $n \simeq 3n_0$, $T \simeq 80 \text{ MeV}$

Similar **densities** and **temperatures** are achieved.

Space and time scales are vastly different (km - NS, fm - HIC).
The collision events differ in duration by 20 orders of magnitude.

Lednicky-Lyuboshitz model

Model		$f_0^{S=0}$ (fm)	$f_0^{S=1}$ (fm)	$d_0^{S=0}$ (fm)	$d_0^{S=1}$ (fm)	n _σ
ND [77]		1.77	2.06	3.78	3.18	1.1
NF [78]		2.18	1.93	3.19	3.358	1.1
NSC89 [79]		2.73	1.48	2.87	3.04	0.9
NSC97 [80]	а	0.71	2.18	5.86	2.76	1.0
	b	0.9	2.13	4.92	2.84	1.0
	с	1.2	2.08	4.11	2.92	1.0
	d	1.71	1.95	3.46	3.08	1.0
	e	2.1	1.86	3.19	3.19	1.1
	f	2.51	1.75	3.03	3.32	1.0
ESC08 [81]		2.7	1.65	2.97	3.63	0.9
χEFT	LO [25]	1.91	1.23	1.4	2.13	1.8
	NLO [26]	2.91	1.54	2.78	2.72	1.5
Jülich	A [82]	1.56	1.59	1.43	3.16	1.0
	J04 [83]	2.56	1.66	2.75	2.93	1.4
	J04c [83]	2.66	1.57	2.67	3.08	1.1

parameter scan boundaries : f_0 [0.01, 5.0], d_{0s} [0.01, 2.0] and d_{0t} [0.01, 5.0]

Discover the world at Leiden University

Results: centrality dependence

Centrality	Systematic Uncertainty		
0 - 10 %	15.30 %		
10 - 20 %	15.49 %		
20 - 30 %	19.00 %		

Results: k_T dependence

YN ($d - \Lambda$) correlations at STAR

Simulation based on STAR ${}^{3}_{\Lambda}H$ yield measurement: 4 - 8% of $d - \Lambda$ entries come from ${}^{3}_{\Lambda}H$ decay for low k*; Contamination subtracted from inclusive $d - \Lambda$ correlations;

Correlations of ${}^{3}_{\Lambda}H$ from $d - \Lambda$ and $d - (p - \pi^{-})$ are **not** experimentally **distinguishable**.

Various nuclear densities

A. Sorensen, HZ et al. arXiv:2301.13253 [nucl-th]

 $\epsilon(n_n, n_p) = \epsilon_{SNM}(n) + S(n)\delta^2$ $\epsilon_{SNM}(n)$ - energy per nucleon of symmetric nuclear matter $\delta > 0.8$ - neutron stars **HIC (asym):** < 600 AMeV **HIC (sym):** broad range of energy, including high-energies