Studies of baryonic matter properties @ FAIR

QCD various phases 26-28.04.2024

P. Salabura

Uniwersytet Jagielloński, Kraków

- ✓ FAIR project: status and polish contributions
- ✓ Compressed Baryonic Matter : Hades & CBM
- ✓ Summary

FAIR : Facility for Antiproton and Ion Research

- FAIR founding convention signed
 in 2010 by 9 countries
- Construction started in 2016
- Jagiellonian University is a shareholder representing Poland (12 particpating Institutions)
 and managing in-kind contributions

FAIR: scientific pillars

Atomic Physics, Plasma physics and applications

Compressed Baryonic Matter

CBM

Nuclear STructure Astrophysics and Reactions

hadron structure with Antiproton ANihilation (at DArmstadt)

FAIR: layout of facility & status

- SIS18 SIS100 \rightarrow protons 29 GeV, U⁹²⁺ up to 11 GeV/u (14 GeV C,Ca)
- \checkmark High Intensity beams: 10⁹/s (U⁹²⁺), 10¹² p/s
- storage rings : ions, antiprotons (HESR)
- High intenisty radioactive beams (Super-FRS)

Project status

95% of civil construction completed
2025 - start of Installation of SIS100
and SFRS components
2028 completion of Instalation
2029 First Science : R3B@SFRS

& CBM (not yet fully funded)

Polish in-kind contribution to SIS100

and installation

Key for First Science operation !

Production of ByPass lines for SIS100 in Kriosystem sp. z o.o., Wrocław

Politechnika Wrocławska

✓ Production completed..

Compressed Baryonic Matter @ FAIR

QCD phase diagramme NuPECC LRP'2024

- ✓ Fluctuations –higher order cummulants (Critial Point)
- ✓ Hyperons (Ξ, Ω) production close to threshold (EOS), Y-N interactions
- ✓ hipernuclei
- ✓ Hyperon polarization in HIC
- ✓ Multi-differantial flow measurements ; EOS, symmetry energy,
- EM radiation (chrial symmetry restoration, diagnostic of early phase (T, ρ), caloric curve)
- ✓ Charm production..

Key observables at FAIR

CBM & HADES at SIS100

In kind polish contribution (hardware) to CBM

✓ Silicon Tracking Station : sensors, development and production of ASIC, read-out, tests and integration

STS: 1.8 mln channels : 25μ m –resolution, 0.3-1% X₀/plane

Readout board (FPGA)

Politechnika Warszawska

Integration

ASIC"STS-XYTER", radiation hard , 5ns resolution, 5 bit ADC

Particle production at SIS18-SIS100

(deviations observed for Ξ , ϕ by HADES) •

- Production mechanism ? particularly for charm, multistrangeness : hadronic (heavy N* resonances), string fragmentation? in HIC role of EOS (production close to threshold)
- Spectrum of hyperons , only few states known (6 Ξ^* , 2 Ω^*)!
- pp measurements @ SIS100 are mandatory ! on going discussion on physics programme

Strangeness Production at FAIR

SIS18: subt-hreshold production

Universal law for centr. dependence suggests accumulation of energy during collsion till freeze-out to overcome threshold

IQMD,HSD with K-N, Λ -N potential improves agreement but shapes of pt and y are better described by UrQMD with <u>no potential</u> but assuming prodcution via heavy N* resonances. This model explains also ϕ/K -

> Lesson for studies of heavy hyperons production @ SIS100: production of Ξ/Ω states below threshold is suggested as probe for EOS \rightarrow Reference measurements with pp are mandatory for the understanding of production mechanism (intermediate heavy resonances, partonic d.o.f)

Polarization of Hyperons in HIC

 Λ polarizion

- HADES results show significant Λ polarization decreasing as function of centrality
- extension to $\overline{\Lambda}$, Ξ , Ω with CBM

Fluctuations and location of Critical Point

- Susceptibilities diverge at CP
- Ratios of moments of(net) proton multiplicty non monotonic excitation function?
- CBM aims in measurements up to k₆

• fRG, DSE calculations predict CP location in SIS100 range...

Emissivity of QCD matter with dileptons

$$\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2} f^{BE}(q_0, T) \text{Im}\Pi_{em}(M, q, T, \mu_B)$$

- Not disturbed by finite state interactions ! But needs integration over volume and time !
- Π_{em} em. current-current correlator $q^2 < 1$ GeV : $q^2 > 1.5$ GeV qq radiation pQCD (flat) Vector Meson Dominance

$$\operatorname{Im} \Pi_{em}^{\text{had.}} = \sum_{V=\rho,\omega,\phi} \left(\frac{m_V^2}{g_V}\right)^2 \operatorname{Im} D_V(M) \,.$$

✓ $q^2 < 1$ GeV Low Mas Π_{em} dominated by ρ in-medium propagator D_{ρ}

✓ $3 > q^2 > 1.5 \text{ GeV}$ Intermadiate Mas Range $f^{BE}(T) - thermometer$

 $1.0 < q^2 < 1.5 GeV \rho/a_1$ mixing?

 ρ_o, T_o, V

Dielepton thermal rates from HIC from SIS18 to SPS

- Successful description of dilepton excess yield over large energy region by thermal radiation from in-medium ρ with significant broadening – crucial input spectral function from many-body hadronic interactions (R. Rapp et. al)
- M_{ee} slope (not affected by blue shift) NA60: <T> ~ 200 MeV , HADES@SIS18 <T>~ 70-77 MeV
- next challenge : search for ρ/a_1 mixing: central point in ALICE3, NA60+, CBM

In medium p-B interactions-connection to Baryon Dalitz Decay

HADES Coll., arXiv:2205.15914

Projections for future dilepton measurements

Slope (T) extraction

Caloric Curve & dilepton rates

Flattening of caloric curve & Yield of thermal dileptons in LMR sensitive to phase transition

• Search for for ρ/a_1 mixing

pp reference is mandatory

Charm production at SIS100

Exciting subject !

• pp , pA , and HI collisions- charm production and propagation Measurements for all 3 collision systems is mandatory (H.Satz CBM charm workshop 2024)

no data at SIS100 energy – all 3 systems must be studied (open and hiden charm) !

pp collisions:

- charm content of nucleon enhanced production close to threshold? (as discussed for ϕ in pp)
- trace anomaly and origin of proton, mass (Ji PRL74, PRD52, 1995 PRD104 Karzeev PRD104, 2021)
 via J/Ψ- N FSI ?

 $F_{J/\Psi N} - J/\Psi$ - N scattering amplitude

$$F_{J/\Psi N} \simeq r_0^3 d_2 \frac{2\pi^2}{27} \left(2M_N^2 - \left\langle N \right| \sum_{i=u,d,s} m_i \bar{q}_i q_i \left| N \right\rangle \right)$$
$$\simeq r_0^3 d_2 \frac{2\pi^2}{27} \left(2M_N^2 - 2bM_N^2 \right)$$

 J/Ψ – N bound system (pentaquark, molecular state? Cusp due to Λ_c D chanels? Close to threshold production simplifies description – Partial Wave Analysis (complementary to photo-production studies GlueX,007@JLAB)

CBM projections for dimuon channel : 30 k J/ Ψ in 4 weeks

p+C collisions, 30 GeV

V. Friese CBM charm workshop 20024

Access to charm-N interactions via exclusive channels

- Dalitz plot analysis gives access to information about
 - 3-body final states
 - Final State Interactions (e.g. scattering lengths, get more dynamics from the data)
 - Resonances

Picture Credit: Christoph Hanhart

 $\rightarrow d\sigma \propto |fM|^2$, where $M \simeq const$. and $f = f[\Psi_{ij}]$.

• Similar arguments holds also for studies of Ξ -N, Ω -N FSI and extraction of interaction hyperon- nucleon

CBM has excellent coverage for exclusive charm production !

Summary and outlook

- FAIR enters construction phase aims in completion of SIS100 machine and SFRS in 2028
- Compressed Baryonic Matter pillar with new detector CBM detector (First Science+) is not yet fully financed but is on good path to start operation in 2029.
- Polish in-kind contributions (cryogenic systems, detector components) are of critical importance for the project
 Outlook into Future experiments in Phase-0
- Mini CBM performs integration and tests at SIS18
- HADES will continue his scienitic programme (running almost 20 years..) in 2025-2026
- Beam Energy scan with Au+Au (200-800 AMeV)
- studies of baryonic resonances with pion beam (third resonance region)

https://fair.uj.edu.pl/

Back-up

J/ψ photoproduction

- Structures seen near open-charm thresholds
- More precision required GlueX-II will provide factor ~3 more data
- Polarization observables can provide additional insight

QCD phase diagrame & URHIC

QCD phase diagramme

Key observables at FAIR

- ✓ Fluctuations –higher order cummulants (Critial Point)
- ✓ strangeness (|S|=2,3) production close to threshold (EOS), Y-N interactions
- ✓ hipernuclei

. . .

- ✓ Origin of hyperon polarization in HIC
- ✓ Multi-differantial flow measurements ; EOS, symmetry energy,
- ✓ EM radiation (chrial symmetry restoration, diagnostic of early phase (T, ρ), caloric curve)
- ✓ Charm production..

Baryochemical potential [MeV]

- Corrections for volume fluctuations and conservation laws
- Event-by-event changes of efficiency
- Proper selection of $p_{\tau} y$ bite
- (Net-)baryons vs. protons, neutrons, nuclei

Crucial: centrality determination with independent detector \rightarrow avoids bias on e-b-e fluctuation observables

Net – proton fluctuations

Impact of the effects is being scrutinized

Low $p_{\rm T}$ and midrapidity coverage

Reconstruction efficiency allows for precision measurement of cumulants

derivatives of order > 0(4)

After 3 years of running:

- Completion of the excitation function for κ₄(p)
- First results on κ₆(p)
- Extension into strangeness sector κ₄(Λ)