Glasma properties from a proper time expansion

M.E. Carrington
Brandon University, Manitoba, Canada

Collaborators: Alina Czajka, Stanisław Mrówczyński, Doug Pickering and Bryce Friesen

April 28, 2024

Introduction

goal: describe early time ($\tau \leq 1 \mathrm{fm}$) dynamics of heavy-ion collisions

- evolution of system during this early stage not well understood
- importance: initial conditions for subsequent hydro evolution
more generally:
want to understand transition btwn the early-time dynamics and hydro phase

1. microscropic theory of non-abelian gauge fields (far from equilibrium)
\rightarrow
2. macroscopic effective theory based on universal conservation laws

- valid close to equilibrium
for more details on our work:
MEC, Czajka, Mrówczyński:
2001.05074, 2012.03042, 2105.05327, 2112.06812, 2202.00357

MEC, Cowie, Friesen, Mrówczyński, Pickering: 2304.03241.

method - Colour Glass Condensate (CGC) effective theory

CGC = high energy density largely gluonic matter

- associated with wavefunction of a high energy hadron
- initial state in high energy hadronic collisions
after collision CGC fields are transformed into glasma fields
- initially longitudinal colour electric and magnetic fields
method is based on a separation of scales between

1. valence partons with large nucleon momentum fraction (x)
2. gluon fields with small x and large occupation numbers
basic picture
dynamics of gluon fields determined from classical YM equation
\rightarrow source provided by the valence partons
L. D. McLerran and R. Venugopalan, Phys. Rev. D, 49, 2233 (1994);

Phys. Rev. D, 49, 3352 (1994); Phys. Rev. D, 50, 2225 (1994).

method - notation

light-cone coordinates $x^{ \pm}=(t \pm z) / \sqrt{2}$
Milne coordinates $\tau=\sqrt{2 x^{+} x^{-}}=\sqrt{t^{2}-z^{2}}$ and $\eta=\ln \left(x^{+} / x^{-}\right) / 2=\ln ((t+z) /(t-z))$.

$$
\begin{aligned}
\text { gauge: } & A_{\text {milne }}^{\mu}=\theta(\tau)\left(0, \alpha\left(\tau, \vec{x}_{\perp}\right), \vec{\alpha}_{\perp}\left(\tau, \vec{x}_{\perp}\right)\right) \\
\text { sources: } & J^{\mu}(x)=J_{1}^{\mu}(x)+J_{2}^{\mu}(x) \\
& J_{1}^{\mu}(x)=\delta^{\mu+} g \rho_{1}\left(x^{-}, \vec{x}_{\perp}\right) \text { and } J_{2}^{\mu}(x)=\delta^{\mu-} g \rho_{2}\left(x^{+}, \vec{x}_{\perp}\right)
\end{aligned}
$$

ansatz:

$$
\begin{aligned}
& A^{+}(x)=\Theta\left(x^{+}\right) \Theta\left(x^{-}\right) x^{+} \alpha\left(\tau, \vec{x}_{\perp}\right) \\
& A^{-}(x)=-\Theta\left(x^{+}\right) \Theta\left(x^{-}\right) x^{-} \alpha\left(\tau, \vec{x}_{\perp}\right) \\
& A^{i}(x)=\Theta\left(x^{+}\right) \Theta\left(x^{-}\right) \alpha_{\perp}^{i}\left(\tau, \vec{x}_{\perp}\right)+\Theta\left(-x^{+}\right) \Theta\left(x^{-}\right) \beta_{1}^{i}\left(x^{-}, \vec{x}_{\perp}\right)+\Theta\left(x^{+}\right) \Theta\left(-x^{-}\right) \beta_{2}^{i}\left(x^{+}, \vec{x}_{\perp}\right)
\end{aligned}
$$

Carrington, April 28, 2024 (slide 4 of 24)

description of method:

parton sources \rightarrow solve YM equation in the pre-collision region apply boundary conditions \rightarrow initial glasma potentials use a proper time expansion (dimensionless small parameter is $\tilde{\tau}=\tau Q_{s}$)

$$
\alpha\left(\tau, \vec{x}_{\perp}\right)=\alpha\left(0, \vec{x}_{\perp}\right)+\tau \alpha^{(1)}\left(\vec{x}_{\perp}\right)+\tau^{2} \alpha^{(2)}\left(\vec{x}_{\perp}\right)+\cdots
$$

\rightarrow find gluon potentials at finite τ
\rightarrow colour electric and magnetic fields
\Rightarrow calculate observables
next: colour charge distributions are not known
CGC: use Gaussian distributed random variables and average \rightarrow use Wick's theorem and the glasma graph approximation
result for correlator of 2 potentials: $\left(\vec{R}=\frac{1}{2}\left(\vec{x}_{\perp}+\vec{y}_{\perp}\right), \vec{r}=\vec{x}_{\perp}-\vec{y}_{\perp}\right)$

$$
\begin{aligned}
& \delta_{a b} B^{i j}\left(\vec{x}_{\perp}, \vec{y}_{\perp}\right) \equiv \lim _{w \rightarrow 0}\left\langle\beta_{a}^{i}\left(x^{-}, \vec{x}_{\perp}\right) \beta_{b}^{j}\left(y^{-}, \vec{y}_{\perp}\right)\right\rangle \\
& \lim _{r \rightarrow 0} B^{i j}\left(\vec{x}_{\perp}, \vec{y}_{\perp}\right)=\delta^{i j} g^{2} \frac{\mu(\vec{R})}{8 \pi}\left(\ln \left(\frac{Q_{s}^{2}}{m^{2}}+1\right)-\frac{Q_{s}^{2}}{Q_{s}^{2}+m^{2}}\right)+\cdots
\end{aligned}
$$

infra-red regulator $m \sim \Lambda_{\mathrm{QCD}} \sim 0.2 \mathrm{GeV}$
ultra-violet regulator $=$ saturation scale $=Q_{s}=2 \mathrm{GeV}$
$\mu(\vec{R})$ is a surface colour charge density
dots indicate kept terms to 2 nd order in grad expansion of $\mu(\vec{R})$
collisions with non-zero impact parameter (non-central collisions)
\Rightarrow expand $\mu_{1 / 2}\left(\vec{z}_{\perp}\right)$ around ave coord $\vec{R} \mp \vec{b} / 2$

surface charge density μ

must specify the form of the surface colour charge density $\mu\left(\vec{x}_{\perp}\right)$

- 2-dimensional projection of a Woods-Saxon potential
$\mu\left(\vec{x}_{\perp}\right)=\left(\frac{A}{207}\right)^{1 / 3} \frac{\bar{\mu}}{2 a \log \left(1+e^{R_{A} / a}\right)} \int_{-\infty}^{\infty} d z \frac{1}{1+\exp \left[\left(\sqrt{\left(\vec{x}_{\perp}\right)^{2}+z^{2}}-R_{A}\right) / a\right]}$
R_{A} and $a=$ radius and skin thickness of nucleus mass number A $r_{0}=1.25 \mathrm{fm}, a=0.5 \mathrm{fm} \rightarrow$ when $A=207$ gives
$R_{A}=r_{0} A^{1 / 3}=7.4 \mathrm{fm}$
normalization: $\mu(\overrightarrow{0})=\bar{\mu}=Q_{s}^{2} / g^{4}$ lead nucleus
$g^{2} \sqrt{\bar{\mu}}=$ McLerran-Venugopalan (MV) scale
proportional to Q_{s} - exact value not determined with CGC approach
** numerical results for $\mathcal{E} \ldots$ are order of magnitude estimates ratios of different elements of the energy momentum tensor
\rightarrow will have much weaker dependence on the MV scale.

gradient expansion

the parameter that we assume small is $\delta=\frac{\left|\nabla^{j} \mu(\vec{R})\right|}{m \mu(\vec{R})}$

derivatives are appreciable only in a very small region at the edges

summary of method:

YM eqn with average over gaussian distributed valence sources
\rightarrow correlators of pre-collision fields
\rightarrow glasma field correlators (b. conds, sourceless YM eqn, $\tau \exp$)
\rightarrow correlators of glasma chromodynamic \vec{E} and \vec{B} fields
\Rightarrow observables
we work to order τ^{8} and study

1. isotropization of transverse/longitudinal pressures
2. azimuthal momentum distribution and spatial eccentricity
3. angular momentum
4. momentum broadening of hard probes - talk by Stanisław Mrówczyński comment: many numerical approaches to study initial dynamics our method is fully analytic

- allows control over different approximations and sources of errors
- can be systematically extended
- it has limitations (classical / no fluctuations of positions of nucleons)

isotropization

at $\tau=0^{+}$the energy-momentum tensor has the diagonal form

$$
T(\tau=0)=\left(\begin{array}{cccc}
\mathcal{E}_{0} & 0 & 0 & 0 \\
0 & -\mathcal{E}_{0} & 0 & 0 \\
0 & 0 & \mathcal{E}_{0} & 0 \\
0 & 0 & 0 & \mathcal{E}_{0}
\end{array}\right)
$$

\rightarrow the longitudinal pressure is large and negative

- system is far from equilibrium
if the system approaches equilibrium as it evolves
- the longitudinal pressure must grow
- transverse pressure must decrease ($T_{\mu \nu}$ is traceless)
to study pressure isotropization

$$
A_{T L} \equiv \frac{3\left(p_{T}-p_{L}\right)}{2 p_{T}+p_{L}}
$$

J. Jankowski, S. Kamata, M. Martinez and M. Spaliński, Phys. Rev. D 104, 074012 (2021).
in equilibrium $\left(p_{L}=p_{T}=\mathcal{E} / 3\right) \longrightarrow A_{T L}=0$

$R=5 \mathrm{fm}, \eta=0$ and $b=0$

Figure: $A_{T L}$ at fourth, sixth and eighth order. The vertical/horizontal axes are R and τ in fm .

dependence on confinement and saturation scales

the correlator $\left\langle\beta_{a}^{i}\left(x^{-}, \vec{x}_{\perp}\right) \beta_{b}^{j}\left(y^{-}, \vec{y}_{\perp}\right)\right\rangle$
depends on two regulators: m (infra-red) and Q_{s} (ultra-violet)

- physically related to confinement / saturation scales
\rightarrow constraints on how to choose them
we used: $m=0.2 \mathrm{GeV}$ and $Q_{s}=2.0 \mathrm{Gev}$ - standard choices
- want results \approx independent of these numbers
- especially since the two scales are pretty close together
$A_{T L}$ at order τ^{6} as a function of time
3 different values of Q_{s} with $m=0.2 \mathrm{GeV}$ (left)
3 different values of m with $Q_{s}=2.0 \mathrm{GeV}$ (right)
$R=5 \mathrm{fm}, b=0$ and $\eta=0$ at order τ^{6}
\Rightarrow dependence on these scales is weak

Radial Flow

transverse momentum flow vector $=T_{i 0}$ (trans. Poynting vector) radial flow of the expanding glasma $=$ radial projection $P \equiv \hat{R}_{i} T_{i 0}$ $R=3 \mathrm{fm}, b=1 \mathrm{fm}, \phi=\pi / 2$ (perpendicular to the reaction plane)

- P slows as system expands
- limit of validity of the expansion $\tau \sim 0.06 \mathrm{fm}$
reaction plane defined by collision axis and impact parameter $\vec{b}=b \hat{i} \rightarrow$ reaction plane is $x-z$
$\phi=0$ is in reaction plane
$\phi=\pi / 2$ is perpendicular to reaction plane expect radial flow greater at $\phi=0$

left panel $b=6 \mathrm{fm} \rightarrow R \lesssim 5 \mathrm{fm}$
right panel $b=2 \mathrm{fm} \rightarrow R \lesssim 7 \mathrm{fm}$

azimuthal asymmetry

in a non-central collision

- initial spatial asymmetry - moments of the energy density
\rightarrow final state momentum asymmetry
physically: momentum anisotropy is generated by pressure gradients asymmetry in momentum from Fourier coefficients of the flow
\cdots write in terms of components $T^{00}, T^{0 x}$ and $T^{0 y}$
$\varepsilon=-\frac{\int d^{2} R \frac{R_{x}^{2}-R_{y}^{2}}{\sqrt{R_{x}^{2}+R_{y}^{2}}} T^{00}}{\int d^{2} R \sqrt{R_{x}^{2}+R_{y}^{2}} T^{00}} \quad$ and $\quad v_{2}=\frac{\int d^{2} R \frac{T_{0 x}^{2}-T_{0 y}^{2}}{\sqrt{T_{0 x}^{2}+T_{0 y}^{2}}}}{\int d^{2} R \sqrt{T_{0 x}^{2}+T_{0 y}^{2}}}$
in a relativistic collision spatial asymmetries rapidly decrease
\rightarrow anisotropic momentum flow can develop only in the first fm / c
- sensitive to system properties very early in its evolution
- provides direct information about the early stages of the system

relative change in v_{2} as $b: 1 \rightarrow 6 \mathrm{fm} \gg$ relative change in $v_{2} / \varepsilon(0)$
\rightarrow correlation btwn spatial asymmetry from initial geometry and anisotropy of azimuthal momentum distribution
- mimics behaviour of hydrodynamics

angular momentum

define tensor $M^{\mu \nu \lambda}=T^{\mu \nu} R^{\lambda}-T^{\mu \lambda} R^{\nu}$
$\nabla_{\mu} M^{\mu \nu \lambda}=0 \rightarrow$ conserved charges $J^{\nu \lambda}=\int_{\Sigma} d^{3} y \sqrt{|\gamma|} n_{\mu} M^{\mu \nu \lambda}$

- n^{μ} is a unit vector perpendicular to the hypersurface Σ
- γ is the induced metric on this hypersurface
- $d^{3} y$ is the corresponding volume element
$n^{\mu}=(1,0,0,0)$ in Milne coordinates
$\rightarrow J^{\nu \lambda}$ defined on a hypersurface of constant τ
Pauli-Lubanski vector: $L_{\mu}=-\frac{1}{2} \epsilon_{\mu \alpha \beta \gamma} J^{\alpha \beta} u^{\gamma}$
result: angular momentum per unit rapidity (symmetric collision)

$$
\frac{d L^{y}}{d \eta}=-\tau^{2} \int d^{2} \vec{R} R^{\times} T^{0 z}
$$

result:
dotted/dashed/solid lines show orders 4/6/8

ions moving in $+/-z$ dirns displaced in $+/-x$ dirns $\rightarrow L_{y}$ is negative

comparison:

$L_{y} \sim 10^{5}$ at RHIC energies for initial system of colliding ions
J. H. Gao, S. W. Chen, W. t. Deng, Z. T. Liang, Q. Wang and X. N. Wang, Phys. Rev. C 77, 024906 (2008).

- even larger at LHC energies
F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77, 024906 (2008).
idea: initial rapid rotation of glasma
\rightarrow could be observed via polarization of final state hadrons
- large $\vec{L} \&$ spin-orbit coupling \rightarrow alignment of spins with \vec{L}
many experimental searches for this polarization
- effect of a few percent observed at RHIC
- at LHC result consistent with zero
- difficult to measure . . .
F. Becattini, M.A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020).
these results support our calculation:
glasma carries only tiny imprint of the \vec{L} of the intial state \rightarrow majority of the angular momentum is carried by valence quarks

conclusions

1. 8th order τ expansion can be trusted to $\tau \approx 0.07 \mathrm{fm}$
2. glasma moves towards equilibrium
3. correlation btwn elliptic flow coef $v_{2} /$ spatial eccentricity

- spatial asymmetry introduced by initial geometry is effectively transmitted to azimuthal distribution of gluon momentum field
\rightsquigarrow this behaviour mimics hydrodynamics

4. most of the angular momentum of the intial system not transmitted to glasma

- contradicts picture of a rapidly rotating initial glasma state

