Glasma properties from a proper time expansion

M.E. Carrington Brandon University, Manitoba, Canada

Collaborators: Alina Czajka, Stanisław Mrówczyński, Doug Pickering and Bryce Friesen

April 28, 2024

Carrington, April 28, 2024 (slide 1 of 24)

向 ト イヨ ト イヨト

goal: describe early time ($au \leq 1$ fm) dynamics of heavy-ion collisions

- evolution of system during this early stage not well understood
- importance: initial conditions for subsequent hydro evolution

more generally:

want to understand transition btwn the early-time dynamics and hydro phase 1. microscropic theory of non-abelian gauge fields (far from equilibrium) \rightarrow

- 2. macroscopic effective theory based on universal conservation laws
- valid close to equilibrium

for more details on our work: MEC, Czajka, Mrówczyński: 2001.05074, 2012.03042, 2105.05327, 2112.06812, 2202.00357 MEC, Cowie, Friesen, Mrówczyński, Pickering: 2304.03241.

イロト イポト イヨト イヨト

method - Colour Glass Condensate (CGC) effective theory

 $\mathsf{CGC} = \mathsf{high} \ \mathsf{energy} \ \mathsf{density} \ \mathsf{largely} \ \mathsf{gluonic} \ \mathsf{matter}$

- associated with wavefunction of a high energy hadron
- initial state in high energy hadronic collisions

after collision CGC fields are transformed into glasma fields

- initially longitudinal colour electric and magnetic fields

method is based on a separation of scales between

- 1. valence partons with large nucleon momentum fraction (x)
- 2. gluon fields with small x and large occupation numbers

basic picture

dynamics of gluon fields determined from classical YM equation \rightarrow source provided by the valence partons

L. D. McLerran and R. Venugopalan, Phys. Rev. D, **49**, 2233 (1994); Phys. Rev. D, **49**, 3352 (1994); Phys. Rev. D, **50**, 2225 (1994).

・ 同 ト ・ ヨ ト ・ ヨ ト

method - notation

light-cone coordinates $x^{\pm} = (t \pm z)/\sqrt{2}$ Milne coordinates $\tau = \sqrt{2x^+x^-} = \sqrt{t^2 - z^2}$ and $\eta = \ln(x^+/x^-)/2 = \ln((t+z)/(t-z))$.

> gauge: sources:

$$\begin{split} A^{\mu}_{\min ne} &= \theta(\tau) \big(0, \, \alpha(\tau, \vec{x}_{\perp}), \vec{\alpha}_{\perp}(\tau, \vec{x}_{\perp}) \big) \\ J^{\mu}(x) &= J^{\mu}_{1}(x) + J^{\mu}_{2}(x) \\ J^{\mu}_{1}(x) &= \delta^{\mu+} g \rho_{1}(x^{-}, \vec{x}_{\perp}) \text{ and } J^{\mu}_{2}(x) = \delta^{\mu-} g \rho_{2}(x^{+}, \vec{x}_{\perp}) \end{split}$$

ansatz:

$$\begin{aligned} A^{+}(x) &= \Theta(x^{-})\Theta(x^{-})x^{+}\alpha(\tau, x_{\perp}) \\ A^{-}(x) &= -\Theta(x^{+})\Theta(x^{-})x^{-}\alpha(\tau, \vec{x}_{\perp}) \\ A^{i}(x) &= \Theta(x^{+})\Theta(x^{-})\alpha_{\perp}^{i}(\tau, \vec{x}_{\perp}) + \Theta(-x^{+})\Theta(x^{-})\beta_{1}^{i}(x^{-}, \vec{x}_{\perp}) + \Theta(x^{+})\Theta(-x^{-})\beta_{2}^{i}(x^{+}, \vec{x}_{\perp}) \end{aligned}$$

Carrington, April 28, 2024 (slide 4 of 24)

э

description of method:

$$\alpha(\tau, \vec{x}_{\perp}) = \alpha(0, \vec{x}_{\perp}) + \tau \alpha^{(1)}(\vec{x}_{\perp}) + \tau^2 \alpha^{(2)}(\vec{x}_{\perp}) + \cdots$$

- \rightarrow find gluon potentials at finite τ
- \rightarrow colour electric and magnetic fields
- $\Rightarrow \mathsf{calculate} \ \mathsf{observables}$

・ 同 ト ・ ヨ ト ・ ヨ ト

next: colour charge distributions are not known CGC: use Gaussian distributed random variables and average \rightarrow use Wick's theorem and the glasma graph approximation \cdots result for correlator of 2 potentials: $(\vec{R} = \frac{1}{2}(\vec{x}_{\perp} + \vec{y}_{\perp}), \vec{r} = \vec{x}_{\perp} - \vec{y}_{\perp})$

$$\begin{split} \delta_{ab} B^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) &\equiv \lim_{\mathbf{w} \to 0} \langle \beta^{i}_{a}(\mathbf{x}^{-}, \vec{x}_{\perp}) \beta^{j}_{b}(\mathbf{y}^{-}, \vec{y}_{\perp}) \rangle \\ \lim_{r \to 0} B^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) &= \delta^{ij} g^{2} \frac{\mu(\vec{R})}{8\pi} \left(\ln \left(\frac{Q_{s}^{2}}{m^{2}} + 1 \right) - \frac{Q_{s}^{2}}{Q_{s}^{2} + m^{2}} \right) + \cdots \end{split}$$

infra-red regulator $m \sim \Lambda_{\rm QCD} \sim 0.2 \text{ GeV}$ ultra-violet regulator = saturation scale = $Q_s = 2 \text{ GeV}$

 $\mu(\vec{R})$ is a surface colour charge density

dots indicate kept terms to 2nd order in grad expansion of $\mu(\vec{R})$ collisions with non-zero impact parameter (non-central collisions) \Rightarrow expand $\mu_{1/2}(\vec{z}_{\perp})$ around ave coord $\vec{R} \mp \vec{b}/2$

• (1) • (

surface charge density μ

must specify the form of the surface colour charge density $\mu(\vec{x}_{\perp})$ - 2-dimensional projection of a Woods-Saxon potential

$$\mu(\vec{x}_{\perp}) = \left(\frac{A}{207}\right)^{1/3} \frac{\bar{\mu}}{2a \log(1 + e^{R_A/a})} \int_{-\infty}^{\infty} dz \frac{1}{1 + \exp\left[(\sqrt{(\vec{x}_{\perp})^2 + z^2} - R_A)/a\right]}$$

 R_A and a = radius and skin thickness of nucleus mass number A $r_0 = 1.25$ fm, a = 0.5 fm \rightarrow when A = 207 gives $R_A = r_0 A^{1/3} = 7.4$ fm

normalization: $\mu(\vec{0}) = \bar{\mu} = Q_s^2/g^4$ lead nucleus $g^2 \sqrt{\bar{\mu}} =$ McLerran-Venugopalan (MV) scale proportional to Q_s - exact value not determined with CGC approach

- ** numerical results for \mathcal{E} ... are order of magnitude estimates ratios of different elements of the energy momentum tensor
- \rightarrow will have much weaker dependence on the MV scale.

伺下 イヨト イヨト

gradient expansion

the parameter that we assume small is $\delta = \frac{|\nabla^i \mu(\vec{R})|}{m\mu(\vec{R})}$

derivatives are appreciable only in a very small region at the edges

Carrington, April 28, 2024 (slide 8 of 24)

• 3 >

summary of method:

 $\mathsf{Y}\mathsf{M}$ eqn with average over gaussian distributed valence sources

- \rightarrow correlators of pre-collision fields
- \rightarrow glasma field correlators (b. conds, sourceless YM eqn, τ exp)
- ightarrow correlators of glasma chromodynamic $ec{E}$ and $ec{B}$ fields
- $\Rightarrow \mathsf{observables}$
- we work to order $\tau^{\rm 8}$ and study
 - 1. isotropization of transverse/longitudinal pressures
 - 2. azimuthal momentum distribution and spatial eccentricity
 - 3. angular momentum
 - $4. \ momentum \ broadening \ of \ hard \ probes \ \ talk \ by \ Stanisław \ Mrówczyński$

comment: many numerical approaches to study initial dynamics our method is fully analytic

- allows control over different approximations and sources of errors
- can be systematically extended
- it has limitations (classical / no fluctuations of positions of nucleons)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

at $au=0^+$ the energy-momentum tensor has the diagonal form

$$T(au=0)=\left(egin{array}{cccc} \mathcal{E}_0 & 0 & 0 & 0 \ 0 & -\mathcal{E}_0 & 0 & 0 \ 0 & 0 & \mathcal{E}_0 & 0 \ 0 & 0 & 0 & \mathcal{E}_0 \end{array}
ight)$$

- \rightarrow the longitudinal pressure is large and negative
- system is far from equilibrium
- if the system approaches equilibrium as it evolves
- the longitudinal pressure must grow
- transverse pressure must decrease ($T_{\mu\nu}$ is traceless)

・ 同 ト ・ ヨ ト ・ ヨ ト

to study pressure isotropization

$$A_{TL} \equiv \frac{3(p_T - p_L)}{2p_T + p_L}$$

J. Jankowski, S. Kamata, M. Martinez and M. Spaliński, Phys. Rev. D 104, 074012 (2021). in equilibrium $(p_L = p_T = \mathcal{E}/3) \longrightarrow A_{TL} = 0$

$$R = 5$$
 fm, $\eta = 0$ and $b = 0$

Carrington, April 28, 2024 (slide 11 of 24)

< A > < B > <

Figure: A_{TL} at fourth, sixth and eighth order. The vertical/horizontal axes are R and τ in fm.

(日) (四) (三) (三) (三)

- the correlator $\langle \beta_a^i(x^-, \vec{x}_\perp) \beta_b^j(y^-, \vec{y}_\perp) \rangle$
- depends on two regulators: m (infra-red) and Q_s (ultra-violet)
- physically related to confinement / saturation scales
- \rightarrow constraints on how to choose them

we used: m = 0.2 GeV and $Q_s = 2.0$ Gev - standard choices

- want results \approx independent of these numbers
- especially since the two scales are pretty close together

向下 イヨト イヨト

 A_{TL} at order τ^6 as a function of time 3 different values of Q_s with m = 0.2 GeV (left) 3 different values of m with $Q_s = 2.0$ GeV (right) R = 5 fm, b = 0 and $\eta = 0$ at order τ^6 \Rightarrow dependence on these scales is weak

Carrington, April 28, 2024 (slide 14 of 24)

Radial Flow

transverse momentum flow vector = T_{i0} (trans. Poynting vector) radial flow of the expanding glasma = radial projection $P \equiv \hat{R}_i T_{i0}$ R = 3 fm, b = 1 fm, $\phi = \pi/2$ (perpendicular to the reaction plane)

- P slows as system expands
- limit of validity of the expansion $au \sim$ 0.06 fm

Carrington, April 28, 2024 (slide 15 of 24)

reaction plane defined by collision axis and impact parameter $\vec{b} = b\hat{i} \rightarrow$ reaction plane is x-z $\phi = 0$ is in reaction plane $\phi = \pi/2$ is perpendicular to reaction plane expect radial flow greater at $\phi = 0$

left panel $b = 6 \text{ fm} \rightarrow R \lesssim 5 \text{ fm}$ right panel $b = 2 \text{ fm} \rightarrow R \lesssim 7 \text{ fm}$ in a non-central collision

- initial spatial asymmetry - moments of the energy density

 \rightarrow final state momentum asymmetry

physically: momentum anisotropy is generated by pressure gradients asymmetry in momentum from Fourier coefficients of the flow

 \cdots write in terms of components T^{00} , T^{0x} and T^{0y}

$$\varepsilon = -\frac{\int d^2 R \, \frac{R_x^2 - R_y^2}{\sqrt{R_x^2 + R_y^2}} \, T^{00}}{\int d^2 R \, \sqrt{R_x^2 + R_y^2} \, T^{00}} \quad \text{and} \quad v_2 = \frac{\int d^2 R \, \frac{T_{0x}^2 - T_{0y}^2}{\sqrt{T_{0x}^2 + T_{0y}^2}}}{\int d^2 R \, \sqrt{T_{0x}^2 + T_{0y}^2}}$$

in a relativistic collision spatial asymmetries rapidly decrease \to anisotropic momentum flow can develop only in the first fm/c

- sensitive to system properties very early in its evolution
- provides direct information about the early stages of the system

・ロト ・回ト ・ヨト ・ヨト … ヨ

Carrington, April 28, 2024 (slide 18 of 24)

メロト メタト メヨト メヨト

æ

relative change in v_2 as $b: 1 \to 6$ fm \gg relative change in $v_2/\varepsilon(0) \to correlation$ btwn spatial asymmetry from initial geometry and anisotropy of azimuthal momentum distribution

- mimics behaviour of hydrodynamics

angular momentum

define tensor $M^{\mu\nu\lambda} = T^{\mu\nu}R^{\lambda} - T^{\mu\lambda}R^{\nu}$

 $abla_{\mu} M^{\mu
u \lambda} = 0
ightarrow$ conserved charges $J^{
u \lambda} = \int_{\Sigma} d^3 y \sqrt{|\gamma|} n_{\mu} M^{\mu
u \lambda}$

- n^{μ} is a unit vector perpendicular to the hypersurface Σ
- γ is the induced metric on this hypersurface
- d^3y is the corresponding volume element
- $n^{\mu}=(1,0,0,0)$ in Milne coordinates $ightarrow J^{
 u\lambda}$ defined on a hypersurface of constant au

Pauli-Lubanski vector:
$$L_{\mu}=-rac{1}{2}\epsilon_{\mulphaeta\gamma}J^{lphaeta}u^{\gamma}$$

result: angular momentum per unit rapidity (symmetric collision)

$$\frac{dL^{y}}{d\eta} = -\tau^2 \int d^2 \vec{R} \, R^{\times} T^{0z}$$

Carrington, April 28, 2024 (slide 20 of 24)

(本部) (本語) (本語) (二語

result: dotted/dashed/solid lines show orders 4/6/8

ions moving in +/-z dirns displaced in +/-x dirns $\rightarrow L_y$ is negative

Carrington, April 28, 2024 (slide 21 of 24)

-

comparison:

 $L_y \sim 10^5$ at RHIC energies for initial system of colliding ions J. H. Gao, S. W. Chen, W. t. Deng, Z. T. Liang, Q. Wang and X. N. Wang, Phys. Rev. C **77**, 024906 (2008).

- even larger at LHC energies

F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77, 024906 (2008).

idea: initial rapid rotation of glasma

 \rightarrow could be observed via polarization of final state hadrons

- large \vec{L} & spin-orbit coupling ightarrow alignment of spins with \vec{L}

many experimental searches for this polarization

- effect of a few percent observed at RHIC
- at LHC result consistent with zero
- difficult to measure ...
- F. Becattini, M.A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020).

these results support our calculation:

glasma carries only tiny imprint of the \vec{L} of the intial state

 \rightarrow majority of the angular momentum is carried by valence quarks

- 1. 8th order τ expansion can be trusted to $\tau\approx$ 0.07 fm
- 2. glasma moves towards equilibrium
- 3. correlation btwn elliptic flow coef v_2 / spatial eccentricity
 - spatial asymmetry introduced by initial geometry is effectively transmitted to azimuthal distribution of gluon momentum field
 - \rightsquigarrow this behaviour mimics hydrodynamics
- 4. most of the angular momentum of the intial system not transmitted to glasma
 - contradicts picture of a rapidly rotating initial glasma state