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Introduction

goal: describe early time (τ ≤ 1 fm) dynamics of heavy-ion collisions
- evolution of system during this early stage not well understood
- importance: initial conditions for subsequent hydro evolution

more generally:
want to understand transition btwn the early-time dynamics and hydro phase
1. microscropic theory of non-abelian gauge fields (far from equilibrium)
→
2. macroscopic effective theory based on universal conservation laws
- valid close to equilibrium

for more details on our work:
MEC, Czajka, Mrówczyński:
2001.05074, 2012.03042, 2105.05327, 2112.06812, 2202.00357
MEC, Cowie, Friesen, Mrówczyński, Pickering: 2304.03241.
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method - Colour Glass Condensate (CGC) effective theory

CGC = high energy density largely gluonic matter
- associated with wavefunction of a high energy hadron
- initial state in high energy hadronic collisions

after collision CGC fields are transformed into glasma fields
- initially longitudinal colour electric and magnetic fields

method is based on a separation of scales between
1. valence partons with large nucleon momentum fraction (x)
2. gluon fields with small x and large occupation numbers

basic picture
dynamics of gluon fields determined from classical YM equation
→ source provided by the valence partons

L. D. McLerran and R. Venugopalan, Phys. Rev. D, 49, 2233 (1994);
Phys. Rev. D, 49, 3352 (1994); Phys. Rev. D, 50, 2225 (1994).
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method - notation
light-cone coordinates x± = (t ± z)/

√
2

Milne coordinates τ =
√

2x+x− =
√

t2 − z2 and η = ln(x+/x−)/2 = ln((t + z)/(t − z)).

gauge: A
µ
milne

= θ(τ)
(

0, α(τ, x⃗⊥), α⃗⊥(τ, x⃗⊥)
)

sources: Jµ(x) = J
µ
1 (x) + J

µ
2 (x)

J
µ
1 (x) = δ

µ+gρ1(x−, x⃗⊥) and J
µ
2 (x) = δ

µ−gρ2(x+
, x⃗⊥)

ansatz: A+(x) = Θ(x+)Θ(x−)x+
α(τ, x⃗⊥)

A−(x) = −Θ(x+)Θ(x−)x−α(τ, x⃗⊥)

Ai (x) = Θ(x+)Θ(x−)αi
⊥(τ, x⃗⊥) + Θ(−x+)Θ(x−)βi

1(x−, x⃗⊥) + Θ(x+)Θ(−x−)βi
2(x+

, x⃗⊥)
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description of method:

ρn(x±, x⃗⊥)︸ ︷︷ ︸
static valence parton sources

→ βn(x±, x⃗⊥)︸ ︷︷ ︸
CGC pre-collision fields

→ α(0, x⃗⊥)︸ ︷︷ ︸
initial glasma fields (boost invariant)

→ α(τ, x⃗⊥)︸ ︷︷ ︸
glasma fields

parton sources → solve YM equation in the pre-collision region

apply boundary conditions → initial glasma potentials
use a proper time expansion (dimensionless small parameter is τ̃ = τQs)

α(τ, x⃗⊥) = α(0, x⃗⊥) + τα(1)(x⃗⊥) + τ2α(2)(x⃗⊥) + · · ·

→ find gluon potentials at finite τ

→ colour electric and magnetic fields

⇒ calculate observables
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next: colour charge distributions are not known
CGC: use Gaussian distributed random variables and average
→ use Wick’s theorem and the glasma graph approximation · · ··
result for correlator of 2 potentials: (R⃗ = 1

2
(x⃗⊥ + y⃗⊥), r⃗ = x⃗⊥ − y⃗⊥)

δabB
ij(x⃗⊥, y⃗⊥) ≡ lim

w→0
⟨β i

a(x−, x⃗⊥)βj
b(y−, y⃗⊥)⟩

lim
r→0

B ij(x⃗⊥, y⃗⊥) = δijg 2 µ(R⃗)

8π

(
ln

(
Q2

s

m2
+ 1

)
− Q2

s

Q2
s + m2

)
+ · · ·

infra-red regulator m ∼ ΛQCD ∼ 0.2 GeV
ultra-violet regulator = saturation scale = Qs = 2 GeV

µ(R⃗) is a surface colour charge density

dots indicate kept terms to 2nd order in grad expansion of µ(R⃗)

collisions with non-zero impact parameter (non-central collisions)

⇒ expand µ1/2(z⃗⊥) around ave coord R⃗ ∓ b⃗/2
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surface charge density µ

must specify the form of the surface colour charge density µ(x⃗⊥)
- 2-dimensional projection of a Woods-Saxon potential

µ(x⃗⊥) =

(
A

207

)1/3
µ̄

2a log(1 + eRA/a)

∫ ∞

−∞
dz

1

1 + exp
[
(
√

(x⃗⊥)2 + z2 − RA)/a
]

RA and a = radius and skin thickness of nucleus mass number A
r0 = 1.25 fm, a = 0.5 fm → when A = 207 gives
RA = r0A

1/3 = 7.4 fm

normalization: µ(⃗0) = µ̄ = Q2
s /g

4 lead nucleus
g2√µ̄ = McLerran-Venugopalan (MV) scale
proportional to Qs - exact value not determined with CGC approach

** numerical results for E . . . are order of magnitude estimates
ratios of different elements of the energy momentum tensor

→ will have much weaker dependence on the MV scale.
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gradient expansion

the parameter that we assume small is δ = |∇iµ(R⃗)|
mµ(R⃗)

derivatives are appreciable only in a very small region at the edges
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summary of method:

YM eqn with average over gaussian distributed valence sources
→ correlators of pre-collision fields
→ glasma field correlators (b. conds, sourceless YM eqn, τ exp)
→ correlators of glasma chromodynamic E⃗ and B⃗ fields
⇒ observables
we work to order τ8 and study

1. isotropization of transverse/longitudinal pressures

2. azimuthal momentum distribution and spatial eccentricity

3. angular momentum

4. momentum broadening of hard probes - talk by Stanis law Mrówczyński

comment: many numerical approaches to study initial dynamics
our method is fully analytic
- allows control over different approximations and sources of errors
- can be systematically extended
- it has limitations (classical / no fluctuations of positions of nucleons)
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isotropization

at τ = 0+ the energy-momentum tensor has the diagonal form

T (τ = 0) =


E0 0 0 0
0 −E0 0 0
0 0 E0 0
0 0 0 E0


→ the longitudinal pressure is large and negative
- system is far from equilibrium

if the system approaches equilibrium as it evolves
- the longitudinal pressure must grow
- transverse pressure must decrease (Tµν is traceless)

Carrington, April 28, 2024 (slide 10 of 24)



to study pressure isotropization

ATL ≡ 3(pT − pL)

2pT + pL

J. Jankowski, S. Kamata, M. Martinez and M. Spaliński, Phys. Rev. D 104, 074012 (2021).

in equilibrium (pL = pT = E/3) −→ ATL = 0
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Figure: ATL at fourth, sixth and eighth order. The vertical/horizontal
axes are R and τ in fm.
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dependence on confinement and saturation scales

the correlator ⟨βi
a(x

−, x⃗⊥)β
j
b(y

−, y⃗⊥)⟩

depends on two regulators: m (infra-red) and Qs (ultra-violet)
- physically related to confinement / saturation scales
→ constraints on how to choose them

we used: m = 0.2 GeV and Qs = 2.0 Gev - standard choices

- want results ≈ independent of these numbers

- especially since the two scales are pretty close together
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ATL at order τ6 as a function of time
3 different values of Qs with m = 0.2 GeV (left)
3 different values of m with Qs = 2.0 GeV (right)
R = 5 fm, b = 0 and η = 0 at order τ6

⇒ dependence on these scales is weak
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Radial Flow

transverse momentum flow vector = Ti0 (trans. Poynting vector)

radial flow of the expanding glasma = radial projection P ≡ R̂iTi0

R = 3 fm, b = 1 fm, ϕ = π/2 (perpendicular to the reaction plane)
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- P slows as system expands
- limit of validity of the expansion τ ∼ 0.06 fm
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reaction plane defined by collision axis and impact parameter
b⃗ = bî → reaction plane is x-z
ϕ = 0 is in reaction plane
ϕ = π/2 is perpendicular to reaction plane
expect radial flow greater at ϕ = 0

left panel b = 6 fm → R ≲ 5 fm
right panel b = 2 fm → R ≲ 7 fm
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azimuthal asymmetry

in a non-central collision
- initial spatial asymmetry - moments of the energy density
→ final state momentum asymmetry
physically: momentum anisotropy is generated by pressure gradients

asymmetry in momentum from Fourier coefficients of the flow

· · · write in terms of components T 00, T 0x and T 0y

ε = −

∫
d2R

R2
x−R2

y√
R2
x +R2

y

T 00∫
d2R

√
R2
x + R2

y T
00

and v2 =

∫
d2R

T 2
0x−T 2

0y√
T 2

0x+T 2
0y∫

d2R
√
T 2

0x + T 2
0y

in a relativistic collision spatial asymmetries rapidly decrease
→ anisotropic momentum flow can develop only in the first fm/c
• sensitive to system properties very early in its evolution
• provides direct information about the early stages of the system
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relative change in v2 as b: 1 → 6 fm ≫ relative change in v2/ε(0)
→ correlation btwn spatial asymmetry from initial geometry and

anisotropy of azimuthal momentum distribution

- mimics behaviour of hydrodynamics
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angular momentum

define tensor Mµνλ = TµνRλ − TµλRν

∇µM
µνλ = 0 → conserved charges Jνλ =

∫
Σ d3y

√
|γ|nµMµνλ

- nµ is a unit vector perpendicular to the hypersurface Σ
- γ is the induced metric on this hypersurface
- d3y is the corresponding volume element

nµ = (1, 0, 0, 0) in Milne coordinates
→ Jνλ defined on a hypersurface of constant τ

Pauli-Lubanski vector: Lµ = −1
2ϵµαβγJ

αβuγ

result: angular momentum per unit rapidity (symmetric collision)

dLy

dη
= −τ2

∫
d2R⃗ RxT 0z
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result:
dotted/dashed/solid lines show orders 4/6/8

ions moving in +/-z dirns displaced in +/- x dirns → Ly is negative
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comparison:

Ly ∼ 105 at RHIC energies for initial system of colliding ions
J. H. Gao, S. W. Chen, W. t. Deng, Z. T. Liang, Q. Wang and X. N. Wang, Phys. Rev. C 77, 024906 (2008).

- even larger at LHC energies
F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77, 024906 (2008).
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idea: initial rapid rotation of glasma
→ could be observed via polarization of final state hadrons
- large L⃗ & spin-orbit coupling → alignment of spins with L⃗

many experimental searches for this polarization
- effect of a few percent observed at RHIC
- at LHC result consistent with zero
- difficult to measure . . .
F. Becattini, M.A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020).

these results support our calculation:
glasma carries only tiny imprint of the L⃗ of the intial state
→ majority of the angular momentum is carried by valence quarks
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conclusions

1. 8th order τ expansion can be trusted to τ ≈ 0.07 fm

2. glasma moves towards equilibrium

3. correlation btwn elliptic flow coef v2 / spatial eccentricity
- spatial asymmetry introduced by initial geometry is
effectively transmitted to azimuthal distribution of gluon
momentum field
⇝ this behaviour mimics hydrodynamics

4. most of the angular momentum of the intial system not
transmitted to glasma
- contradicts picture of a rapidly rotating initial glasma state
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