Simulations of massive star explosions driven by a first-order QCD phase transition Neutrino signal and gravitational wave mode analysis

Noshad Khosravi Largani

Various Faces of QCD Symposium,

April 2024, Wroclaw

Global Picture

Energy released: $\triangle E_G \simeq 3 - 6 \times 10^{53} \text{ erg} \longrightarrow (\nu_e, \bar{\nu}_e, \nu_{\mu/\tau}, \bar{\nu}_{\mu/\tau})$

(Proto)neutron star is a hot and isospin asymmetric "heavy nucleus" with large atomic mass

 $\langle A \rangle_{\rm PNS} = 0.5 - 1.5 \,\,{\rm M}_{\odot}$ $(1 \,\,{\rm M}_{\odot} = 1.9891 \times 10^{33} \,\,{\rm g})$

Exception: gravity (!)

charged current reactions $e^- + \langle A, Z \rangle \iff \langle A, Z - 1 \rangle + \nu_e$ $e^- + p \iff n + \nu_e$ $e^+ + n \iff p + \overline{\nu}_e$

elastic scattering $\nu + \langle A, Z \rangle \iff \langle A, Z \rangle + \nu$ $\nu + N \iff \nu' + N$

> inelastic scattering $\nu + e^{\pm} \quad \leftrightarrows \quad \nu' + e^{\pm}$

 $\begin{array}{rcl} \text{pair processes} \\ e^- + e^+ & \leftrightarrows & \nu + \bar{\nu} \\ N + N & \leftrightarrows & N + N + \nu + \bar{\nu} \\ \nu_e + \bar{\nu}_e & \leftrightarrows & \nu_{\mu/\tau} + \bar{\nu}_{\mu/\tau} \end{array}$

Adam Burrows et al 2020 Mon Not R Astron Soc,491,2

Mezzacappa et al. 2014 ASP vol 488, p.102

Jakobus et al., MNRAS, 516, 2554 (2022) Khosravi Largani et al., ApJ 946, 143 (2024)

v – signal @ Super-Kamiokande (d ~ 10 kpc)

Kuroda et al., ApJ 924, 38 (2022) Zha et al., PRL 125, 051102 (2020)

Kuroda et al., ApJ 924, 38 (2022)

Progenitor	EOS	$t_{\rm burst}$	$L_{\bar{\nu}_e,\mathrm{peak}}$	$\langle E_{\bar{\nu}_e} \rangle$	$E_{\rm expl}$
	RDF	$[\mathbf{S}]$	$[10^{53} \text{ erg s}^{-1}]$	[MeV]	$[10^{51} \text{ erg}]$
s25a28	1.9	0.345	6.36	38.59	4.21
s30a28	1.2	1.056	4.80	56.21	1.93
s30a28	1.8	0.833	5.64	42.21	2.66
s30a28	1.9	0.580	8.30	43.49	3.28
s40a28	1.2	0.895	4.15	38.60	1.59
s40a28	1.8	0.717	2.06	35.77	1.23
s40a28	1.9	0.491	4.28	39.94	3.31
s40.0	1.8	0.694	5.61	43.03	2.32
s40.0	1.9	0.443	8.52	48.69	3.79
u50	1.1	1.227	3.90	26.55	2.3
u50	1.2	0.819	5.37	36.19	3.8
s75.0	1.2	1.803	3.06	34.35	1.0

Khosravi Largani et al., ApJ 946, 143 (2024)

