Quarkyonic or Baryquark Matter or....

- Baryquark Matter
 - energetics
 - properties
- Some observations concerning the recent STAR BESII data

Thanks to: V. Vovchenko, A Bzdak

Quarkyonic Matter

Construction (K.S.Jeong, L.McLerran, S.Sen, 1908.04799):

Introduce repulsive interaction among nucleon only

 \Rightarrow At a certain density a configuration with quarks at low momentum is favored

L.McLerran, R.D. Pisarski, 0706.2191

ls it?

Baryquark Matter VK, V. Vovchenko, 2211.14674

Start with Baryons only

Energetics for BaryQuark Matter

Remove Baryons at Fermi surface and add quarks so that $\rho_B = \rho_N + \rho_Q = const$

Energetics for BaryQuark Matter

 $\rho_N + \rho_Q = const$

Remove Baryons at Fermi surface and add quarks so that $\rho_B = \rho_N + \rho_O = const$

$$\to \Delta \rho_N + \Delta \rho_Q = 0$$

$$=\frac{\Delta_Q}{N_c^2}$$

Energetics for BaryQuark Matter

Remove Baryons and add quarks so that $\rho_B = \rho_N + \rho_O = const$

$$\Delta \epsilon_N \simeq -D \int_{k_F-\Delta_N}^{k_F} \left(\frac{k^2}{2m_N} + m_n\right) k^2 dk$$
$$\simeq -\frac{D}{2m_N} k_F^4 \Delta_N - m_n \Delta \rho_N$$

 $\Delta \epsilon_N + \Delta \epsilon_Q = 0 \Rightarrow$ Energy unchanged to leading order in $\delta \rho_N$

Energetics for Quarkyonic Matter

Start with Baryons only

Energetics for Quarkyonic Matter

$$\rho_N + \rho_Q = const \rightarrow \Delta$$

Need to "lift" nucleons from low momentum to top of Fermi energy

$$\Delta E \simeq \frac{D}{3} (N_c^3 - 1) k_F^5 \frac{\Delta \rho_Q}{\rho^B} > 0 \qquad \text{Ene}$$

Remove Baryons at low momentum and add quarks so that $\rho_B = \rho_N + \rho_O = const$

 $\Delta \rho_N + \Delta \rho_Q = 0 \Rightarrow \Delta N > 0$

ergetically disfavored compared to BaryQuark Matter

Energetics

ρ_Q (repulsive) Interaction among nucleons does not help, since nucleon density is the same at given ρ_B

Various properties

End of story?

Consider quark momentum distribution in nucleon with momentum k:

Momentum distribution of quarks inside nucleus:

$$f_Q(q) = \int_{\text{Fermi Sphere}} \phi\left(q - \frac{k}{N_c}\right) d^3k$$

Harmonic Oscillator: $\phi(q) \sim Exp(-\sigma^2 q^2)$ with $\sigma \sim RMS$ of nucleon

Pauli Blocking in the quark sector becomes relevant when $f_O(q = 0) = 1$

For RMS = 1 fm: $f_Q(q = 0) = 1$ for $\rho_{crit} = 1.1\rho_0$, for RMS = 0.8 fm: $\rho_{crit} = 2.2\rho_0$

 $\phi_N(q-\frac{\kappa}{N_c})$

(Fujimoto, Kojo, McLerran 2306.04304)

No "asymptotic" densities out of theory land!!!!

How to add another nucleon?

Baryquark matter vs quarkyonic matter

- Baryquark energetically favored
- Conceptually not very appealing
- May possibly be fixed with momentum dependent interaction

Much more appealing story

(Fujimoto, Kojo, McLerran 2306.04304)

Idyllic Matter

Results (Prediction) for proton cumulants

- Viscous hydro
- EOS tuned to LQCD
- Correct for global charge conservation
- Protons NOT baryons
- Baseline! No critical point or phase transition

See also: Braun-Munzinger et al, NPA 1008 (2021) 122141

Vovchenko, Shen, VK, 2107.00163

New STAR data (BESII)

The "signal" (relative to baseline)

STAR 2209.11940

Liquid Gas?

arXiv:2011.06635

Both global charge conservation and volume fluctuations are long range correlations

Factorial cumulant:

 $C(y_1, \dots, y_n) = const$ within ΔY Long range correlations:

$$\Rightarrow C_n \sim (\Delta Y)^n$$

$$\Rightarrow \frac{C_n}{C_1^n} = const$$

$$dy_n C(y_1, \cdots, y_n)$$

 $C(y_1, \dots, y_n)$: n-particle correlations function

as function of ΔY

Baryon number conservation

Within acceptance:

$$P(n,\bar{n}) = \sum_{N,\bar{N}} B(n,N;\alpha) B(\bar{n},\bar{N},\bar{\alpha}) P(N,\bar{N})$$

Factorial cumulants:

$$C_k(n;\Delta Y) = \alpha^n C_k$$

 $C_k(\bar{n};\Delta Y) = \bar{\alpha}^n C_k(\bar{N},4\pi)$

$$\Rightarrow \frac{C_k}{C_1^k} = const \text{ as function}$$

$$\alpha = \frac{\langle N \rangle_{\Delta Y}}{\langle N + \bar{N} \rangle_{4\pi}} \qquad \qquad \bar{\alpha} = \frac{\langle \bar{N} \rangle_{\Delta Y}}{\langle N + \bar{N} \rangle_{4\pi}}$$

 $B(n, N, \alpha)$ Binomial distribution with Bernoulli prob α

analogous to "efficiency" corrections $k(N,4\pi)$

on of ΔY for both protons and anti protons

Include volume fluctuations

$$C_{1}[N] = \langle N_{w} \rangle C_{1}[n] = \langle N_{w} \rangle \langle n \rangle = \langle N \rangle,$$

$$C_{2}[N] = \bar{C}_{2}[N] + \langle N \rangle^{2} \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}},$$

$$C_{3}[N] = \bar{C}_{3}[N] + 3 \langle N \rangle \bar{C}_{2}[N] \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}} + \langle N \rangle^{3} \frac{\kappa_{3}[N_{w}]}{\langle N_{w} \rangle^{3}},$$

$$C_{4}[N] = \bar{C}_{4}[N] + 4 \langle N \rangle \bar{C}_{3}[N] \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}} + 3\bar{C}_{2}^{2}[N] \frac{\kappa_{2}[N_{w}]}{\langle N_{w} \rangle^{2}} + 6 \langle N \rangle^{2} \bar{C}_{2}[N] \frac{\kappa_{3}[N_{w}]}{\langle N_{w} \rangle^{3}} + \langle N \rangle^{4} \frac{\kappa_{4}[N_{w}]}{\langle N_{w} \rangle^{4}}.$$

Since
$$\bar{C}_n \sim \alpha^n \Rightarrow C_n \sim \alpha^n$$

If
$$\frac{C_k}{C_1^k} \neq const$$
 as function of ΔY : S

. . . et al. 2403.03598

 C_n : Factorial cumulant WITHOUT volume fluctuations

 C_n : Factorial cumulant WITH volume fluctuations

Some other (short range) physics is at play as well (Example: excluded volume)

- Baryquark matter is energetically favored over Quarkyonic matter
- Pauli blocking of the quark sector sets in at $\rho \simeq 1 2\rho_0$
- Consequences: Larry's talk

- STAR has deliver on the BESII data - cannot hide behind errorbars anymore
- Interpretation requires some care - we won't get better data in this energy regime anytime soon

Summary

possible test of a baseline involving baryon number conservation and volume fluctuations

Backup

Factorial cumulants from RHIC-BES-II

From M. Stephanov (SQM2024):

$$\omega_n = \hat{C}_n / \hat{C}_1$$

Bzdak et al review 1906.00936

Expected signatures: bump in ω_2 and ω_3 , dip then bump in ω_4 for CP at $\mu_B > 420$ MeV

STAR data:

baseline (hydro):

VV, V. Koch, C. Shen, PRC 105, 014904 (2022)

- describes right side of the peak in C_3 ullet
- implies ullet
 - *positive* \hat{C}_2 baseline > 0
 - negative \hat{C}_3 baseline < 0

Vovchenko, RHIC-AGS Users meeting, June 2024

Factorial cumulants and nuclear liquid-gas transition

Calculation in a van der Waals-like HRG model along the freeze-out curve*

*Poberezhnyuk et al., PRC 100, 054904 (2019)

VV, Gorenstein, Stoecker, EPJA 54, 16 (2018)

Vovchenko, RHIC-AGS Users meeting, June 2024

