

Thermal dileptons as a probe of QCD phase structure at high baryon density

Tetyana Galatyuk, GSI / Technische Universität Darmstadt

EMMI Workshop at the University of Wrocław - Aspects of Criticality II, July 2-4, 2024, Wroclaw

Searching for landmarks of the QCD matter phase diagram

Experimental challenges:

- isolate unambiguous signals of new phases of QCD matter, order of phase transitions, conjectured QCD critical point
- probe microscopic matter properties

Measure with utmost precision:

- light flavour (chemistry, vorticity, flow)
- event-by-event fluctuations (criticality)
- charm (transport properties)
- hypernuclei (interaction)
- dileptons (emissivity)

Worldwide experimental and theoretical efforts

Chen, Dong, Fukushima, Galatyuk, *et al.*, doi:10.1007/978-981-19-4441-3_4 (2022)

Xiaofeng Luo - Qun Wang - Nu Xu Pengfei Zhuang - *Ed*itors

Properties of OCD Matter

Density

at High Baryon

1/26

Quest for critical phenomenon connected to the 1st order phase transition

¹DSE: Bernhardt, Fischer and Isserstedt, PLB 841 (2023)
 ²FRG: Fu, Pawlowski, Rennecke, PRD 101, 053032 (2020)
 ³BHE: Hippert et al., arXiv:2309.00579
 ⁴FSS: Sorensen and Sorensen, arXiv:2405.10278 [nucl-th]
 ⁵IQCD-Pade: Basar, arXiv:2312.06952
 ⁶IQCD-Pade: Clarke *et al.*, PoS LATTICE2023 (2024), 168

Bazavov et al. [HotQCD], PLB 795 (2019) 15-21 Borsanyi et al. [Wuppertal-Budapest], PRL 125 (2020)

- Lattice QCD disfavours QCD critical point at $\mu_B/T < 3$
- Effective QCD theories^[1-5] and lattice-Pade^[6,7] predict QCD critical point in a similar ballpark $T \sim 90 120 \text{ MeV}$, $\mu_B \sim 500 650 \text{ MeV}$
- If true, reachable in heavy-ion collisions at $\sqrt{s_{NN}} \sim 3-5 \text{ GeV}$
- Including possibility that the QCD critical point does not exist

Cuteri, Philipsen, Sciarra, JHEP 11 (2021) 141 Vovchenko *et al.*, PRD 97, 114030 (2018)

Role played by thermal radiation? Not measured in the $\sqrt{s_{NN}} \sim 3 - 8$ GeV regime April 2024

FAIR GmbH – Facility for Antiproton and Ion Research

> Emerging facility: FAIR (Ground-breaking: 2017)

GSI GmbH – Helmholtzzentrum für Schwerionenforschung

Existing facility: GSI Darmstadt (Foundation: 1969)

FAIR project status

installation of SIS100 dipoles Apr'24

transport of the first quadrupole magnet in tunnel, Mar'24

start of cable pulling work, Q3/23

Apr'24 six He tanks of the cryo facility were installed

cryogenic bypass lines placed in SIS100 tunnel, Apr'24

construction area south

CBM cave, Jun'24

FAIR project status

installation of SIS100 dipoles Apr'24

transport of the first quadrupole magnet in tunnel, Mar'24

start of cable pulling work, Q3/23

Apr'24 six He tanks of the cryo facility were installed

Wrocław University of Science and Technology

cryogenic bypass lines placed in SIS100 tunnel, Apr'24

construction area south

CBM cave, Jun'24

Exploring the "terra incognita" with EM probes

- **CBM** will play a unique role in the exploration of the QCD phase diagram in the region of high μ_B with rare and electromagnetic probes: high rate capability, **energy range 3** < $\sqrt{s_{NN}}$ < 5 GeV
- HADES: established thermal radiation at high μ_B , limited to 20 kHz and $\sqrt{s_{NN}}$ =2.4 GeV
- STAR FXT@RHIC: BES program completed; limited capabilities for rare probes
- NA60+ proposal: dimuon spectrometer at SPS, energy range $6 < \sqrt{s_{NN}} < 17$ GeV, $>10^5$ Hz rate capability
- ALICE / ALICE 3: exploit the forefront detector technologies and high luminosity potential of the LHC for ions

Program needs ever more precise data and sensitivity for rare signals

Thermal dilepton measurements

- Dileptons are rare probes!
- Decisive parameters for data quality: interaction rates (IR) and signal-to-combinatorial background ratio (S/CB): effective signal size: S_{eff} ~ IR × S/CB
- Needs coverage of mid-rapidity, low- $M_{\ell\ell}$, and low-p
- Isolation of thermal radiation by subtraction of measured decay cocktail (π⁰, η, ω, φ), Drell-Yan, cc̄ (bb̄)

Dilepton invariant mass spectra from HADES

Clear excess visible above contributions from initial NN reference and freeze-out cocktail

Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

Ag+Ag at $\sqrt{s_{NN}} = 2.42$ GeV

simulated reference (GiBUU) → analysis of NN measurement at the same collision energy ongoing

HADES, Nature Phys. 15 (2019) 1040

strongest isospin effect seen in np vs pp \Rightarrow measured NN reference strongest isospin effect seen in np vs pp \Rightarrow measured NN reference 7/26

Thermal dileptons at few GeV energies?

- Necessary ingredients to understand dilepton production in HIC:
 - accurate description of fireball evolution
 - realistic emission rates
 - sensitivity studies for the Equation of State

Coarse-Grained transport approach

- bulk evolution from microscopic transport
- ➡ apply equilibrium rates locally

CG GSI-Texas A&M: TG et al., EPJ A52 (2016) no.5, 131

- Simulate events with a transport model
 → ensemble average to obtain smooth space-time distributions
- Divide space-time into 4-dim. cells
- Check if cell is thermalized (→ enough interactions)
- Determine baryon density ρ_B , medium velocity \vec{u} , and temperature $T (\rightarrow m_T \text{ spectra of pions})$
- Use in-medium spectral functions to compute EM emission rates

 $\rho_{\rm B}/\rho_{\rm o}$

(fm)

 $\tau = 14.0 \text{ fm}/c$

Justifying local thermal equilibrium Au+Au $\sqrt{s_{NN}} = 2.42$ GeV, central cell

Relaxation function r(x) vs time

Check for every cell:

- Gaussian shaped p_z distribution builds up for nucleons with $N_{coll} \ge 3$
- r(x) deviates from 1 by < 5%
- *m*_T spectra have exponential shape

9/26

Determination of bulk properties

- Baryon density via 4-current
- Lorentz-boost to local rest frame (LRF) where the baryon current vanishes

• In Boltzmann approximation

- Fill $m_{\rm T}$ spectra with particle momenta in LRF (mean flow v_{coll} vanishes)
- Fit exponential function to extract T (species of choice: pions)

11/26

$\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2}$

- McLerran-Toimela formula
- In-medium ρ -meson undergoes a strong broadening

Thermal dilepton production

- additional contributions to the self-energy in the medium through coupling to (anti-)baryons and mesons

$$D_{\rho}(M,q,T,\mu_B) = \frac{1}{\left[M^2 - m_{\rho}^2 - \Sigma_{\rho\pi\pi} - \Sigma_{\rho B} - \Sigma_{\rho M}\right]}$$

02

0.8

0.6

• If
$$\frac{Im\Pi_{em}}{M^2} \sim const.$$
 \Rightarrow thermometer

 ImD_{ρ} (GeV²)

$$\begin{array}{c} & \sigma = 0.1 \ \rho_{B} = 0.1 \ \rho_{0} \\ & \sigma = 2.5 \ \text{GeV/c} \\ & \sigma = 0.5 \ \text{GeV/c} \\ & \sigma = 1.5 \ \text{GeV/c} \\ & \sigma = 1.5 \ \text{GeV/c} \\ & \sigma = 2.0 \ \text{GeV/c} \\ & \sigma = 2.0 \ \text{GeV/c} \\ & \sigma = 2.5 \ \text{GeV/c} \\ & \sigma = 1.5 \ \text{GeV/c} \\ & \sigma$$

1.4

M (GeV/c2)

$$\Sigma_{\rho\pi\pi} = \underbrace{\rho}_{\Sigma_{\pi}} \underbrace{\Sigma_{\pi}}_{\Sigma_{\pi}} + \underbrace{\Sigma_{\pi}}_{\Sigma_{\pi}}$$

thermal Bose distribution

 $f^B(q_0,T)Im\Pi_{em}(M,q,T,\mu_B)$

Rapp, Wambach, EPJA 6 (1999) 415

-q = 0.1 GeV/cq = 0.25 GeV/c= 0.5 GeV/c = 0.75 GeV/c = 1.0 GeV/c q = 1.5 GeV/c $\dot{q} = 2.0 \text{ GeV}/c$ q = 2.5 GeV/c

1.2

1.4

M (GeV/c²)

 \frown

0.6

04

0.8

electromagnetic spectral function

Thermal dileptons HADES systematics

very good agreement between experiment and theory for excess radiation

Au+Au at $\sqrt{s_{NN}} = 2.42$ GeV

Ag+Ag at $\sqrt{s_{NN}} = 2.42$ GeV

- in-medium spectral function from many-body theory consistently describes SIS18, SPS, RHIC, LHC energies
- ρ -meson peak undergoes a strong broadening in medium, baryonic effects are crucial!

Rapp and Wambach, Adv.Nucl.Phys. (2000) 25

Ag+Ag at $\sqrt{s_{NN}} = 2.55$ GeV

First measurement of massive γ^* emission from N^* baryon resonances (exclusive analysis $\pi^- p \rightarrow e^+ e^- n$)

- Study the structure of the nucleon as an extended object (quark core and meson cloud)
- Dominance of the $N^*(1520)$ resonance at $\sqrt{s_{NN}} = 1.49$ GeV
 - ρ meson as "excitation" of the meson cloud
 - Vector Meson Dominance basis of emissivity calculations for QCD matter

Lifetime of the interacting medium

Heinz and Lee, PLB 259, 162 (1991) Barz, Friman, Knoll and Schulz, PLB 254, 315 (1991) Rapp, van Hees, PLB 753, 586 (2016)

 CBM, NA60+ performance studies with realistic detector geometries, material budget, response, S/B and statistics → precision 1.5 – 4.5%

 Search for emerging signatures indicative of a 1st order phase transition (and critical point?):

prolonged lifetime of the system due to latent heat →
 "excess excess-radiation"?

Integrated low-mass excess yield radiation
 0.3 < M < 0.7 GeV/c² tracks the fireball lifetime

Dilepton signature of a 1st order phase transition

- Ideal hydro simulations with and w/o 1st order nuclear matter – quark matter phase transition
- Chiral Mean Field model that matches lattice QCD at low μ_B and neutron-star constraints at high density

Most et al., PRD 107 (2023) 4, 043034

Dilepton emission shows a significant effect: factor 2 enhancement of dilepton emission due to extended "cooking"

Dilepton signature of a 1st order phase transition & critical point

- Spinodal instabilities of baryon-rich quark matter
 - NJL blast-wave initial conditions (F>3)
 - NJL with AMPT initial conditions (F~2)

Li and Ko, PRC 95 (2017) no.5, 055203

Dilepton signature of a 1st order phase transition & critical point

- Spinodal instabilities of baryon-rich quark matter
 - NJL blast-wave initial conditions (F>3)
 - NJL with AMPT initial conditions (F~2)

Li and Ko, PRC 95 (2017) no.5, 055203

- Thermodynamically consistent spectral functions from FRG
- Dilepton rates at CEP T=10 MeV, μ=292 MeV

Jung, Rennecke, Tripolt, v. Smekal, Wambach, PRD 95 (2017) 036020 Tripolt *et al.*, NPA 982 (2019) 775

Dilepton signature of a 1st order phase transition & critical point

17/26

Mapping the QCD "caloric curve" (T vs ε)

Invariant mass slope measures true (no blue shift!) radiating source temperature:

 $\frac{dR_{ll}}{dM} \propto (MT)^{\frac{3}{2}} \exp(-\frac{M}{T})$

- Probe time dependence of fireball temperature: *M*_{ℓℓ} versus v₂, photon polarization → access to hottest fireball T
- Search for flattening of caloric curve $(T \lor \varepsilon) \rightarrow$ evidence for a **phase transition**

19/26

High μ_B region of QCD phase diagram probed with dileptons

- Measured by HADES average **temperatures** from 'Planck-like' fit to **invariant mass** Ag+Ag, Au+Au
- Trajectories from coarse-grained UrQMD

FO curve: Cleymans, Redlich, NPA 661 (1999) 379 Au+Au 2.4 GeV data: HADES, Nature Phys. 15(2019) 1040 Ag+Ag data: HADES preliminary figure: Seck, TG

19/26

High μ_B region of QCD phase diagram probed with dileptons

Jaikumar, Rapp, Zahed, PRC 65, 055205 (2002)

Low-mass low-momentum dileptons

 Color superconductivity could manifest itself in an enhanced yield of low-energy dileptons

Nishimura et al., PTEP 2022 (2022) 9, 093D02

 Transport properties of the medium - electrical conductivity can be directly obtained from the low-energy limit of the EM spectral function (at vanishing momentum)

$$\sigma_{el}(T) = -e^2 \lim_{q_0 \to 0} \frac{\delta}{\delta q_0} Im \Pi_{em}(q_0, q = 0; T)$$

Kubo, J. Phys. Soc. Jap. 12 (1957) 570-586 Moore, Robert, arXiv:hep-ph/0607172 (2006) Atchison, Rapp, NPA 1037 (2023) 122704 Flörchinger *et al.*, PLB 837 (2023) 137647 Nishimura, Kitazawa, Kunihiro, arXiv:2312.09483 [hep-ph]

Non-monotonic trend of σ_{el} as the phase transition occurs? visible in a beam energy scan?

Geurts, Tripolt, PPNP 128 (2023) 104004

Low-mass low-momentum dileptons

experimental challenges

- Low momentum lepton tracks bent out of acceptance by magnetic field
- Photon conversion suppressed via opening angle cut
- Physical background of π^0 and η mesons
- Step towards measurement:
 - dedicated Ag+Ag test run at HADES with low magnetic field
 - new Au+Au at $\sqrt{s_{NN}}$ = 2.23 GeV data recorded this year with 50% field + low field run scheduled for 2025

Virtual photon polarization

- Decompose spectral function using projectors for a spin-1 particle $\rho_{EM}^{\mu\nu} = \rho_L P_L^{\mu\nu} + \rho_T P_T^{\mu\nu}$ with $g_{\mu\nu} \rho_{EM}^{\mu\nu} = \rho_L + 2\rho_T$
- Angular distribution of single lepton in γ^* rest frame depends on polarization of γ^*

$$\frac{dN}{d^4 x d^4 q d\Omega} = \mathcal{N}(1 + \lambda_\theta \cos^2 \theta + \lambda_\varphi \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi + \lambda_\varphi^{\perp} \sin^2 \theta \sin 2\varphi + \lambda_{\theta\varphi}^{\perp} \sin 2\theta \sin \varphi)$$

- Different virtual photon production mechanisms imprint different anisotropy parameters λ
- λ coefficients related to difference between longitudinal and transverse spectral function components $\lambda_{\theta} = \frac{\varrho_T \varrho_L}{\varrho_T + \varrho_L}$

Comparison to NA60 data

- NA60 measured polarization coefficients λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ of excess radiation in the CS frame in In+In collisions at $\sqrt{s_{NN}} = 17.2 \text{ GeV}$
- Space-time evolution via isentropic fireball model with transition from QGP to hadronic rates at T=170 MeV

NA60, PRL 96, 162302 (2006) Rapp, van Hees, PLB 753 (2016) 586

- Good agreement between data and theory \rightarrow size and trend
- Near absence of a net polarization not related to thermal isotropy arguments

Prospect of disentangling hadronic and partonic sources

• Polarization plays important role in exploring the mechanisms underlying EM emission

Seck *et al.*, arXiv: 2309.03189 Coquet, Winn, Du, Ollitrault, Schlichting, PRL132 (2024) no.23, 232301 Speranza *et al.*, PLB 782, 395 (2018) Baym *et al.*, PRC95, 044907(2017) Bratkovskaya *et al.*, PLB 376, 12 (1996)

- Multi-differential measurements of the virtual photon polarization
 - − resolve mass, p_T , rapidity, lepton emission angles θ_l , ϕ_l → large datasets needed
 - future high-rate experiments CBM, NA60+ and ALICE3
 - search for onset of QGP
 - important in disentangling ρa_1 chiral mixing from QGP around $M_{\parallel} \sim 1.2 \text{ GeV}/c^2$

25/26

Muon wal

Multi-differential ($M_{\ell\ell}$, p_{T} , v_{n} , λ_{θ}) emission probability of dileptons, >2030

STAR

NA60+ at SPS

magnet

Pb/p beam Toroidal

absorber

ALICE, Run3 & Run4

https://cds.cern.ch/record/2703140

ALICE 3

http://cds.cern.ch/record/2803563

CBM / HADES_{100kHz} at FAIR

J-PARC-HI

Résumé: The future is bright

Unique possibility of characterizing properties of hot and dense QCD matter with dileptons

- Robust understanding of low-mass dilepton excess radiation through ρ-baryon coupling (at LHC, RHIC, SPS and SIS18 energies)
- 1st order phase transition and QCD critical point is awaiting discovery
 - might be detected in dileptons excitation functions
- Complementary program on exclusive measurements in π , p induced reactions with HADES
- Thermal dileptons enable unique measurements
 - degrees of freedom of the medium
 - restoration of chiral symmetry
 - transport properties
 - fireball lifetime, temperature, acceleration, polarization

Résumé: The future is bright

Unique possibility of characterizing properties of hot and dense QCD matter with dileptons

- Robust understanding of low-mass dilepton excess radiation through ρ-baryon coupling (at LHC, RHIC, SPS and SIS18 energies)
- 1st order phase transition and QCD critical point is awaiting discovery
 might be detected in dileptone excitation functions
 - might be detected in dileptons excitation functions
- Complementary program on exclusive measurements in π , p induced reactions with HADES
- Thermal dileptons enable unique measurements
 - degrees of freedom of the medium
 - restoration of chiral symmetry
 - transport properties
 - fireball lifetime, temperature, acceleration, polarization

Thank you for your attention!

Tetyana Galatyuk | EMMI Workshop | Aspects of criticality II | Wroclaw

BONUS SLIDES

Electromagnetic radiation as multi-messenger of fireball

Electromagnetic radiation (γ , γ^*)

Reflect the whole history of a collision

No strong final state interaction \sim leave reaction volume undisturbed

Encodes information on matter properties enabling unique measurements

- degrees of freedom of the medium
- fireball lifetime, temperature, acceleration, polarization

60/26

- transport properties
- restoration of chiral symmetry

CBM subsystems are on the verge of series production

➡ pre-production is ongoing in all systems

award of contract to Bilfinger Noell GmbH 20.12.2023

Beam monitoring system

Transition Radiation Detector

pre-production modules of 1D and 2D options ready

Micro Vertex Detector

Time of flight detector

module pre-production concluded

MUon CHamber system

test of full-size GEM and RPC prototypes

Silicon Tracking System

Forward Spectator Detector

ZnS scintillators and LYSO crystals read-out via SiPM or/and PMT

Ring Imaging Cherenkov detector

1 of 2 photo cameras ready 50% FEE produced

61/26

Prototype of CBM online data processing tests with mCBM

m_{p#} [GeV/c²]

Dileptons and chiral symmetry of QCD

Spontaneously broken in the vacuum $\langle 0|\bar{q}q|0\rangle = \langle 0|\bar{q}_Lq_R + \bar{q}_Rq_L|0\rangle \neq 0$

Condensates $\langle \bar{q}q \rangle$ calculated by lattice QCD

Bazavov et al. [Hot QCD Coll.], PRD90 (2014) 094503

$$\int_{0}^{\infty} \frac{ds}{\pi} [\Pi_{V}(s) - \Pi_{AV}(s)] = m_{\pi}^{2} f_{\pi}^{2} = -2m_{q} \langle \bar{q}q \rangle$$

Restoration at finite *T* and μ_B manifests itself through mixing of vector and axial-vector correlators

Hadronic many-body theory Hohler and Rapp, PLB 731 (2014)
FRG Jung, Rennecke, Tripolt, v. Smekal, Wambach, PRD95 (2017) 036020
Light mesons and baryons from lattice QCD, Aartz, QM2022, April 2022

62/26

S. Weinberg, PRL 18 (1967) 507

Signature for chiral symmetry restoration: chiral $\rho - a_1$ mixing

 \Rightarrow experimental challenge: physics background ($M_{\ell\ell} > 1$ GeV)

CBM energies: negligible correlated charm contribution, decrease of QGP, Drell-Yan contribution pp, pA

LHC energies: large contribution from $c\bar{c}, b\bar{b}$ and **QGP**, negligible Drell-Yan

Signature for chiral symmetry restoration: chiral $\rho - a_1$ mixing

 \Rightarrow experimental challenge: physics background ($M_{\ell\ell} > 1$ GeV)

CBM energies: negligible correlated charm contribution, decrease of QGP, Drell-Yan contribution pp, pA

LHC energies: large contribution from $c\bar{c}, b\bar{b}$ and **QGP**, negligible Drell-Yan

64/26

Thermal dileptons from baryon rich matter

McLerran - Toimela formula, Phys. Rev. D 31 (1985) 545

- Thermal excess radiation established at HADES (Au+Au, Ag+Ag)
 - ρ -meson peak undergoes a strong broadening in medium
 - in-medium spectral function from many-body theory consistently describes SIS18, SPS, RHIC, LHC energies

Rapp and Wambach, Adv.Nucl.Phys. (2000) 25

