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1. Perturbation theory subtleties for T >0

* It has long been understood that the inclusion of temperature T >0

introduces various complications:

— QCD perturbation theory suffers inconsistencies above a fixed loop order
(“Linde problem” [PLB 96, 1980])

— Perturbative series have poor convergence properties: need to reorganise
the expansion (screened perturbation theory, infinite resummations,

functional techniques, ...)

* All of these problems stem from the fact that T > 0 perturbation theory
introduces a class of diagrams that are not present in the vacuum theory, and

these are highly sensitive to the infrared dynamics
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1. Perturbation theory subtleties for T >0

* These features are often viewed as a purely perturbative feature of finite-
temperature QFT, but they may in fact be a symptom of a more fundamental

(non-perturbative) constraint:
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Idea: construct thermal “quasi-particle” in/out scattering states with real

dispersion relations w = E(p) — Conclusion: the S-matrix must be trivial!

* So quasi-particles can exist, but only when there are no interactions...




1. Perturbation theory subtleties for T >0

— What'’s the reason for this?

> QFT: thermal states satisfy the KMS condition, and this gives rise to

very different spectral constraints than in the vacuum case

~ Physics: Dissipative effects of the thermal medium are everywhere-present,

so need to take these into account in the definition of scattering states!

* This has significant implications for perturbation theory: neither free field, nor

quasi-particle propagators with real poles w = E(p), can form the basis of

finite-temperature perturbative expansions [Landsman, Ann. Phys. 186, 141 (1988)]

* Note: these constraints are not restricted to infrared regimes, but also affect

systems at low temperatures, or with non-vanishing mass scales (i.e. T/m < 1)



1. Perturbation theory subtleties for T >0

— Is there evidence for these constraints?

Yes! Weldon [PRD 65 (2002)] showed that the standard perturbative procedure

for scalar theories has inconsistencies

Can classify the singularities occurring in the n-loop perturbative

propagator given the singularities of the basic propagator

If the basic propagators have real poles w=E(p), at some loop order the
perturbative propagator will develop a branch point singularity at these

poles, e.g. in @ theory this occurs at 2-loop order

This prohibits perturbative corrections to the propagator pole from being

computed, hence the standard approach breaks down!

This is a generic feature of any perturbative 1

‘ .
computation that uses propagators with real poles (w+i€)? — E(p)?




2. Investigation of @' theory on the lattice

In principle, the implications of these constraints can also be looked for by

comparing perturbative predictions with lattice calculations

Idea [PL, O. Philipsen, 2405.02009]: perform lattice simulations of basic field
correlators in @' theory and compare these with the predictions of lattice
perturbation theory (LPT) — see: Montvay & Miinster

1
In LPT one uses the discretised propagator |G(pa L, L) = I 2 >
2 (75) +m
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Theory is defined on a finite N> x Ny lattice — internal loop integrals are

replaced with sums over first Brillouin zone B,={peR': -2 <p, <}

m3

In ¢* theory the lattice action is: |s > lzx_\;j@o Afido(z) + 2o (a )2+%4)0( )4]
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Here we focus on perturbative calculations

of the spatial correlator, which is defined: —




2. Investigation of @' theory on the lattice

* How do the 2-loop LPT predictions compare with the lattice data as one
varies the (lattice) temperature T=1/(alNy)?

1. For sufficiently small gy the perturbative predictions are consistent with

the data for all temperatures

2. For non-negligible gy the perturbative predictions for C(z) increasingly

deteriorate as T/m increases
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‘ For T/m ~ 1 the 2-loop predictions ‘ ‘ These deviations are also reflected by the screening mass m, }
| : : . |
deviate drastically from the data ‘ . defined: C(z) ~ emz, having the opposite T dependence




2. Investigation of @' theory on the lattice

* To establish the origin of these deviations one needs to understand how the

2-loop perturbative predictions are computed
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The functions J,

and /5 are defined:




2. Investigation of @' theory on the lattice

* Numerically, one finds that the sunset diagram contribution is sub-dominant,
and that the behaviour of C(z) is largely controlled by the interplay between
the tadpole and cactus diagrams

* As one varies (amg, gp) there are certain choices for which the self-energy at

any fixed Ny is smaller than when Ny — oo (i.e. T =0)

— This implies that the screening mass m.., which is defined via the

(continuum) large-z behaviour: C(z) ~ exp(-m. z), decreases with T

* When Am,, < 0, and the sunset is sufficiently
small, then: mg., (T=0) > my, (T >0)

* This behaviour is opposite to physical expectations
(and the lattice data!)




2. Investigation of @' theory on the lattice

* The proximity to the region Am,, < 0 depends on the structure of the

propagators entering the loop calculations

* From the plot one can see that for fixed gy one will always move into this

region when amyg is sufficiently small

— This can be understood by the fact that for small amg the zero-mode

contributions dominate the sums in J,, and these have the form:

1 1 1 1
, , :Ng, N ) ~ — :
N3N, (amg)2’ °° (amo; Ny, Nr) N3N; (amg)?
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Jl(amU;N85N’T) ~

— The cactus diagram outcompetes the tadpole for small enough amyg

Conclusion: the deviations in the two-loop perturbative predictions are driven by

|
| |
- |
i the analytic structure of the free field propagators — this is consistent with the :
. constraints of the NRT theorem and the findings of Weldon [PRD 65 (2002)] |




3. A potential resolution

* The NRT constraints and previous results suggest that one needs an
alternative approach to scalar perturbation theory when T >0

|dea: Start with propagators that consistently take thermal effects into

account from the outset, i.e. non-real singularities
— But what form should these propagators take?

* There's theoretical evidence to suggest that the thermal medium contains
discrete particle-like excitations [Bros, Buchholz, NPB 627 (2002)]

“Thermoparticle”
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— Thermoparticles reduce to those of a vacuum particle with mass m when T — 0

— “Damping factor” 5B(u) results in thermally-broadened peaks in the spectral
function: this parametrises the effects of collisional broadening



3. A potential resolution

* Thermoparticle components have distinctive properties:

. 1. They dominate the large-time behaviour of (¢(zo,)$(0))

—3/2

i 2. Along the direction x =v xg they behave like: D, s(7x0) || so their

damped behaviour depends on their velocity [Bros, Ann. H. Poincare 4, (2003)] :

3. They evade the consequences of the NRT theorem since they no longer |

, have a sharp dispersion law |

— There's also (mounting) evidence from lattice QCD data that these excitations are

present in various (meson) spectral functions
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3. A potential resolution

Thermoparticles dominate the large-time behaviour of correlators and are

therefore natural candidates for describing scattering states when T>0

Scattering states determine the form of the basic field propagators used in any

perturbative QFT expansion — Thermoparticle propagators could form the

basis of a consistent T >0 perturbative expansion

Note: It has been shown that these propagators can be uniquely fixed by the

dynamical equations of the theory [Bros, Buchholz, 2002]

For ®* theory there appear to be signatures of these excitations in the data
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See: [PL, O. Philipsen, 2405.02009]




Summary & outlook

* Perturbation theory has several known issues related to the infrared structure

of certain classes of diagrams when T > 0

* This seems to be a realisation of a more fundamental constraint: non-trivial

scattering at T > 0 is incompatible with real dispersion laws (NRT theorem)

* There is now both analytic (Weldon, 2002) and numerical (PL, Philipsen, 2024)

evidence for this, even for massive theories, and at small T

* A potential resolution of these issues is to use propagators which don’'t have

real dispersion laws — thermoparticles are a natural candidate

* The analytic structure of thermoparticle propagators s s s
can be derived for specific QFTs (Bros, Buchholz, 2002),
and therefore might provide a consistent perturbative

framework when T > 0. Stay tuned!



Backup: (Axiomatic) QFT in a nutshell

* QFT framework defined by a core set of axioms:

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré
Spinor group )f"T .

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator

P* is confined to the closed forward light cone V' = {p* | p* = 0, p” > 0}, where
Ula,1) = e,

Wightman
_ [R. F. Streater and A. S. Wightman, PCT,
Axiom 4 (Field operators). The theory consists of fields o' (x) (of type (k) ) which Spin and Statistics, and all that (1964).]

)

have components ¢;  (x) that are operator-valued tempered distributions in H, and the

Axiom 3 (Uniqueness of the vacuum). There erists a unit state vector |0) (the A

vacuum state) which is a unique translationally invariant state in H.

vacuum state |0) is a cyclic vector for the fields.

N . T ' T . K} ] .
Axiom 5 (Relativistic covariance). The fields -.;;[ (x) transform covariantly under
the action of JZ‘1| :

s
i

Ula, o)l (x)U(a.a) ' = 5'1.[_:."}((}- D"

(Ala)r + a)
where S(ev) is a finite dimensional matriz representation of the Lorentz spinor group
7 |T and A(a) is the Loventz transformation corresponding to o € %] .
Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of
the fields o™, o) are space-like separated, then:

[ (), 0 (9))+ = @™ (el (9) = el (9)e)™ (F) = 0
R. Haag

[R. Haag, Local Quantum
Physics, Springer-Verlag (1996).]

when applied to any state in H, for any fields ¢, o).




Backup: Particle signatures in vacuum

* Correlation functions 0y (z))--- " (,)|0) encode all of the dynamical

information, including the properties of particles!

* For the purpose of this talk | will focus on (scalar) 2-point correlation

functions, in particular the spectral function, defined by

(. ) = f d*x "D ([g(x), (0)])

* The simplest case: a non-interacting particle with mass m

p(w,p) = 2me(w)d(w® — |p° —m?)

. and when we add interactions




Backup: Beyond the vacuum

* To describe physical phenomena in “extreme environments” one must

understand of how QFT applies to systems that are hot, dense, or both

* Therefore need to figure out how the inclusion of temperature T=1/f
or density modifies the standard QFT assumptions, and what effect this

has on the correlation functions

— Let’s stick to the case T >0 and vanishing density



Backup: Beyond the vacuum

* Idea: Look for a generalisation of the standard axioms which is

compatible with T > 0, and approaches the vacuum case for T— 0

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré

spinor group )ﬂT :

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator
P* is confined to the closed forward light cone VY = {p* | p* > 0, p" > 0},
Ua, 1) = e,

where

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the

vacuum state) which is a unique translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which
have components p}":(.z'} that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

. . (&) . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under

the action of J”1| :
(x)(a,a) ' = "(Ala)x + a)

where S(av) is a finite dimensional matriz representation of the Lorentz spinor group

Ula, a)p!” 5'1.[?'1'((} ').,:";."

,fT and A(a) is the Lorentz transformation corresponding to o € 728

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of

+ 2 s .
the fields @™, o\5") are space-like separated, then:

el ). 28N @) = e (F)e% (9) £ &% (@)™ (f) =0

when applied to any state in H, for any fields o™, o).

l
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i Causality is unaffected by the
: properties of the background state. :
This is important! |



Backup: Beyond the vacuum

* For T >0 there are some immediate modifications:

> Lorentz invariance X — but can retain rotational invariance
-~ Spectral condition X — replaced by equilibrium (KMS) condition

- Field locality (causality) v — this is important!

* Taking all of these T > 0 constraints into account implies that the

spectral function has the representation”

o d3il 9 S o ~
p(w,ﬁ):./(; als./(%r)2 e(w)o(w® — (P—u)* —s) D5(1<3)

\ :
- “Thermal spectral density” |

This is the T > 0 generalisation of the o, ) = 27re(w)/ s —s)os)| 5
Jo

textbook Kéllén-Lehmann representation!

* T>0 effects amount to understanding: p(s) — EB(u,s), which tell us

about the possible excitations that can exist in a thermal medium

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys. Theor. 64 (1996)



Backup: A thermal particle? — “Thermoparticle”

Proposition: the medium contains “Thermoparticles”: particle-like

up as discrete contributions to Dg(u,s) [Bros, Buchholz, NPB 627 (2002)]
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— Thermoparticle components Dy(u)6(s-m*) reduce to those of a vacuum particle

with mass m in the limit T— 0
— Non-trivial “Damping factor” 53(“) results s
in thermally-broadened peaks in the spectral Sty

function: this parametrises the effects of

collisional broadening

— Component 5C,B(u,s) contains all other

types of excitations, including those that

are continuous in s



Backup: Perturbation theory setup

* Perturbation theory for T= 1/B > 0 can be performed using either real or
imaginary-time propagators. Both have their advantages and disadvantages
(see: Kapusta & Gale, Le Bellac)

* Here we focus on the imaginary time T formalism. The basic idea is that one

uses imaginary time “Matsubara” propagators 1
which have discrete energies w, = 2mn/B Gwn, ) = w? + P2 + m?

* This discretisation comes about because the Euclidean 2-point function
WE(T,x) is B-periodic in T (due to the KMS condition)

— At the end one analytically continues the result: iw,— wW-+i€

* The perturbation theory rules are analogous to the T=0 case, TZ/ d*p
— | (2n)3

except now each internal line is integrated with the measure:




Backup: Perturbation theory results

* Results for L=16:

Lg X LT (a-'m(], QU) m/AC fflm (Xz.'/d'o'f')g_]oop A‘i—l()op [%] 2 loop [A]
16° x 16 | (0.315,0.5) | 0.118 | 0.17 1.7 04(0.6) | 038 (0.6)
16° <8 | (0.315,0.5) | 0.118 | 0.34 0.4 02 (0.6) | 0.2 (0.6)
S ey | 165 x4 | (0.315,0.5) | 0.118 | 0.68 0.3 1.0 (06) | 04(00)
- enaall estaliag Eue deslliEs s [ 1 x2 | (0.315,05) | 0.18 | 1.35 05 12 (0.6) | 0.4(0.6)
- withdataforall T/m 6% x 16 | (0.25,1.0) | 0.117 | 0.17 01 2.0 (0.6) | 0.2 (0.0)
6° %8 | (0.25,1.0) | 0.117 | 0.34 0.7 T1(06) | 08 (0.)
ffffffffffffffffffffffffff 16° x4 | (0.25,1.0) | 0.117 | 0.68 0.1 2.4(0.6) | 0.1(0.6)
| . i I 3 = .
| For Iarge coupllng the vacuum—llke | 167 x 2 (0.20, 10:1 0.117 1.36 3.9 3.3 (06) 0.9 (06)
 data differs from orediction | —110° %16 | (0.15,15) | 0.115 | 0.17 10.3 11(06) | 2.3 (0.6)
L mevslniiiee e | prediction ‘ 16° x8 | (0.15,1.5) | 0115 | 0.3 197 16 (06) | 4.2 (0.6)
3 y = = - - =
— Higher-loop corrections needed! 16,% x4 | (0.15,1.5) | 0.115 | 0.69 188.5 6.0 (0.6) 8.7 (0.7)
16°x2 | (0.15,1.5) | 0.115 | 1.38 1262.3 87(05) | 222 (0.7)

2lbop, Lizl6 L SN 2leop, =16 G 1 SN 2Toop, Lis16

7 zloop ;_ —7 i 2loop, Li=2 — 2lpop, L,§=2

(amo 0315.% 05) L (amo=025,g,=1.0) | | : . (am=0.15, go=1.5) :
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Backup: Spectral properties from QCD data

Goal: Extract information about the finite T spectral function p{w,p) from

data of Euclidean correlator Cr(r,7) = (Or(r,%)Or(0,0))r Oy = scalar operator

* Standard approach: extract p{(w,p) from temporal correlator C(1,p)

> dw CO“—’h 2 |T|) w} — Problem is ill-conditioned,
(1,9) = pr(w, p)

sinh (5 ) need more information!

* Instead, one can use the spatial correlator, where one integrates C{T,x) over

{T,x,y} and fixes a spatial direction z

* dp, . > dw
Cr(z) = / ——er / — pr(w, pz = py = 0,p2)
J —oo JO

27 TW

* It turns out that if thermoparticles exist, then 1 [ R
T - C(e) =5 [ dR e D, ()
they will give a distinct contribution to C(z) 2 )}z

[P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]

— This component can be extracted directly from data



Backup: Spectral properties from QCD data

* But what impact do thermoparticles have on the behaviour of ((z)?

dR e™D,, 5(R)

z|

C(z) ~ =

— They give contributions that 1 /
dominate for large z 2

* If they exist, one can extract their damping factors Dy(x) directly from C(z)

and then determine the spectral contribution pp(w,p)

,/ r— | \\
‘ \ |
s g o -
\ \ \ \ !

: ‘ :
C(2) data + p(we)
| [fm—— = - __”d_Bu__”___”___”_i_”_l ********** \
| | plw. 7) d e(w) 6(w? — (F—@)? — 5) Ds(d,s) | |

* Apply approach to QCD lattice data — simple case is the spatial correlator

Cos(2) of the pseudo-scalar meson operator |Ofg = vy 5 ¢

—> Done for light-light (pion), light-strange (kaon), and strange-strange (eta)

quarks [P.L., O. Philipsen, 2022; D. Bala, O. Kaczmarek, P.L., O. Philipsen, and T. Ueding, 2310.13476]




Backup: Spectral properties from QCD data

* Apply approach to lattice QCD data — simple case is the spatial correlator Cy4(2)

of the pseudo-scalar meson operator |0g, = V52w

* Analysis performed for various pseudo-scalar meson operators:

4x10°7 7.x1078
— T=220 MeV 6.%10713 — T=220 MeV
— ;:320 xcz o 1013 — T=320 MeV
=380 = _
rovey| | xio® oy Light-light pseudo-scalar meson
—, eV § 4.x10 T=480 MeV g g p
T=660 MeV o ) — T=660 MeV
\S_SXIU 13 . g
ressomev| % — -60 Mev (pion) channel [P.L., O. Philipsen,
- T2.x10713
- JHEP 10, 161 (2022)]
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< 6x107 | S "% . \\\:,
(eta) pseudo-scalar meson channels [D. Bala, | 2 S
o oaxol | ‘ T=145.6MeV | © —
O. Kaczmarek, P. L., O. Philipsen, and T. Ueding, . | 7 o’ | -
JHEP 05, 332 (2024)] i) N N I
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Backup: Spectral properties from QCD data

* The robustness of the thermoparticle hypothesis can also be tested by
comparing with different causal models, e.g. a Breit Wigner

4wl

AW = : : : 9N ¢ 919 3
pB“( :ﬁ) (wg_lﬂg_mz_rz)z+4wzrg,

Cew(z) =

e—\/-:rng—i—f‘i|z|
2v/m? +T2

* Same procedure as with the thermoparticle case: (i) extract the width

parameter I and coefficient from the spatial lattice data (ii) use this to
predict the corresponding temporal correlator
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500000

e

p=0 MeV —/——
p=229 MeV ———
p=457 MeV
i p=686 MeV
) p=914 MeV ——
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$V5S

® [MeV]

G" [MeV?

10
1x10 pl_D MeV ——
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1x1 06 L L L L 1 1
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— Data is not consistent with a Breit-Wigner-type ground state!




Backup: An alternative approach

— But given a specific QF T, what form should these components take?

Idea: thermal scattering states are defined by imposing an asymptotic field
condition [Bros, Buchholz, (2002)]:

In @*theory

.................................................

i Asymptotic fields ®, are assumed to satisfy

| (82 +m*)go () +

' dynamical equations, but only at large x,

* Since thermoparticles dominate the large-time behaviour of correlators, they
are natural candidates for describing such states. It turns out that their
damping factors 5m13(u) are uniquely fixed by the asymptotic condition

* In @' theory one finds (where K is a thermal width):

4
For g<0: D, d(“ET) = Zi(‘,'{|u| — K), For g> 0: D'Er:r::i( i) = ko (|72 + K2)’

| |

1 —k2 4+ m? )2 ~ (4 ( —k2+m? —i|p| + &
Gy ' (ko.p) = 111[ 3+IT32+(W+H)2 Gf«;ﬂ(kn,ﬁ) =5 T2 L
4|plk —k§ + m? + (|p] — K) | |ﬂ*"ﬂ VvV —k§ +m? +ip| + K
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