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● It has long been understood that the inclusion of temperature T > 0 
introduces various complications:

→  QCD perturbation theory suffers inconsistencies above a fixed loop order   
     (“Linde problem” [PLB 96, 1980])

→  Perturbative series have poor convergence properties: need to reorganise   
     the expansion (screened perturbation theory, infinite resummations,          
     functional techniques, ...)

● All of these problems stem from the fact that T > 0 perturbation theory 
introduces a class of diagrams that are not present in the vacuum theory, and 
these are highly sensitive to the infrared dynamics

 e.g. 2-loop order Φ4 theory:

Includes sub-
component

Diverges for m → 0, even after renormalisation 

1. Perturbation theory subtleties for T > 0
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● These features are often viewed as a purely perturbative feature of finite-
temperature QFT, but they may in fact be a symptom of a more fundamental 
(non-perturbative) constraint:

Idea: construct thermal “quasi-particle” in/out scattering states with real 
dispersion relations ω = E (p) → Conclusion: the S-matrix must be trivial!

● So quasi-particles can exist, but only when there are no interactions...

 

“Narnhofer-Requardt-Thirring Theorem” [Commun. Math. Phys. 92, 247 (1983)] 

 x0

∞-∞

1. Perturbation theory subtleties for T > 0
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→  What’s the reason for this?

➢ QFT: thermal states satisfy the KMS condition, and this gives rise to             
very different spectral constraints than in the vacuum case 

➢ Physics: Dissipative effects of the thermal medium are everywhere-present,      
so need to take these into account in the definition of scattering states!

● This has significant implications for perturbation theory: neither free field, nor 
quasi-particle propagators with real poles ω = E (p), can form the basis of 
finite-temperature perturbative expansions [Landsman, Ann. Phys. 186, 141 (1988)]

● Note: these constraints are not restricted to infrared regimes, but also affect 
systems at low temperatures, or with non-vanishing mass scales (i.e. T/m  1)≤

 

1. Perturbation theory subtleties for T > 0
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→  Is there evidence for these constraints?

Yes! Weldon [PRD 65 (2002)] showed that the standard perturbative procedure 
for scalar theories has inconsistencies 

➢ Can classify the singularities occurring in the n-loop perturbative                  
propagator given the singularities of the basic propagator

➢ If the basic propagators have real poles ω=E (p), at some loop order the        
perturbative propagator will develop a branch point singularity at these          
poles, e.g. in Φ4 theory this occurs at 2-loop order

➢ This prohibits perturbative corrections to the propagator pole from being       
computed, hence the standard approach breaks down!

 

This is a generic feature of any perturbative 
computation that uses propagators with real poles

1. Perturbation theory subtleties for T > 0
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2. Investigation of Φ4 theory on the lattice 

● In principle, the implications of these constraints can also be looked for by 
comparing perturbative predictions with lattice calculations 

Idea [PL, O. Philipsen, 2405.02009]: perform lattice simulations of basic field 
correlators in Φ4 theory and compare these with the predictions of lattice 
perturbation theory (LPT) → see: Montvay & Münster

● In LPT one uses the discretised propagator

● Theory is defined on a finite Ns
3 x Nτ lattice → internal loop integrals are 

replaced with sums over first Brillouin zone  

● In Φ4 theory the lattice action is:                                                          
  

● Here we focus on perturbative calculations                                              
of the spatial correlator, which is defined: 
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● How do the 2-loop LPT predictions compare with the lattice data as one 
varies the (lattice) temperature T=1/(aNτ)?

  1.  For sufficiently small g0 the perturbative predictions are consistent with         
       the data for all temperatures 

  2.  For non-negligible g0 the perturbative predictions for C(z) increasingly          
       deteriorate as T/m increases 

  

For T/m ~ 1 the 2-loop predictions 
deviate drastically from the data 

These deviations are also reflected by the screening mass m, 
defined: C(z) ~ e-m z , having the opposite T dependence

2. Investigation of Φ4 theory on the lattice 
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● To establish the origin of these deviations one needs to understand how the   
2-loop perturbative predictions are computed 

 

The functions Jn  
and I3 are defined:

2. Investigation of Φ4 theory on the lattice 
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● Numerically, one finds that the sunset diagram contribution is sub-dominant, 
and that the behaviour of C(z) is largely controlled by the interplay between 
the tadpole and cactus diagrams

● As one varies (am0, g0) there are certain choices for which the self-energy at 
any fixed N  τ  is smaller than when N  τ → ∞ (i.e. T  = 0)

   →  This implies that the screening mass mscr, which is defined via the              
         (continuum) large-z behaviour: C(z) ~ exp(-mscr z), decreases with T 

 

● When Δmscr < 0, and the sunset is sufficiently 
small, then: mscr (T = 0) > mscr (T > 0)

● This behaviour is opposite to physical expectations 
(and the lattice data!) 

2. Investigation of Φ4 theory on the lattice 

Predictions with (am0, g0) closer to the region 
Δmscr < 0  deviate further from the data



 10

● The proximity to the region Δmscr < 0 depends on the structure of the 
propagators entering the loop calculations

● From the plot one can see that for fixed g0 one will always move into this 
region when am0 is sufficiently small 

→  This can be understood by the fact that for small am0 the zero-mode       
     contributions dominate the sums in Jn, and these have the form:

→  The cactus diagram outcompetes the tadpole for small enough am0      

 

Conclusion: the deviations in the two-loop perturbative predictions are driven by 
the analytic structure of the free field propagators → this is consistent with the 

constraints of the NRT theorem and the findings of Weldon [PRD 65 (2002)] 

2. Investigation of Φ4 theory on the lattice 
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3. A potential resolution 

→  But what form should these propagators take? 

“Thermoparticle”

~

● The NRT constraints and previous results suggest that one needs an 
alternative approach to scalar perturbation theory when T > 0

Idea: Start with propagators that consistently take thermal effects into    
account from the outset, i.e. non-real singularities

● There’s theoretical evidence to suggest that the thermal medium contains 
discrete particle-like excitations [Bros, Buchholz, NPB 627 (2002)] 

→  Thermoparticles reduce to those of a vacuum particle with mass m when T → 0

→  “Damping factor” Dβ(u) results in thermally-broadened peaks in the spectral         
      function: this parametrises the effects of collisional broadening
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3. A potential resolution 

 1. They dominate the large-time behaviour of 

 2. Along the direction x =v x0 they behave like:                      so their     
     damped behaviour depends on their velocity [Bros, Ann. H. Poincare 4, (2003)] 

 3. They evade the consequences of the NRT theorem since they no longer   
     have a sharp dispersion law 

→  There’s also (mounting) evidence from lattice QCD data that these excitations are         
     present in various (meson) spectral functions 

π

π

π*

π*

Light-light pseudo-scalar meson (pion) channel 
[P.L., O. Philipsen, JHEP 10, 161 (2022)] 

Light-strange (kaon) and strange-strange (eta) pseudo-
scalar meson channels [D. Bala, O. Kaczmarek, P. L., 
O. Philipsen, and T. Ueding, JHEP 05, 332 (2024)] 

● Thermoparticle components have distinctive properties:
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3. A potential resolution 

See: [PL, O. Philipsen, 2405.02009] 

● Thermoparticles dominate the large-time behaviour of correlators and are 
therefore natural candidates for describing scattering states when T > 0 

● Scattering states determine the form of the basic field propagators used in any 
perturbative QFT expansion → Thermoparticle propagators could form the 
basis of a consistent T > 0 perturbative expansion

● Note: It has been shown that these propagators can be uniquely fixed by the 
dynamical equations of the theory [Bros, Buchholz, 2002]

● For Φ4 theory there appear to be signatures of these excitations in the data
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Summary & outlook 

● Perturbation theory has several known issues related to the infrared structure 
of certain classes of diagrams when T > 0  

● This seems to be a realisation of a more fundamental constraint: non-trivial 
scattering at T > 0 is incompatible with real dispersion laws (NRT theorem)

● There is now both analytic (Weldon, 2002) and numerical (PL, Philipsen, 2024) 
evidence for this, even for massive theories, and at small T     

● A potential resolution of these issues is to use propagators which don’t have 
real dispersion laws → thermoparticles are a natural candidate

● The analytic structure of thermoparticle propagators                                  
can be derived for specific QFTs (Bros, Buchholz, 2002),                               
and therefore might provide a consistent  perturbative                               
framework when T > 0. Stay tuned!
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● QFT framework defined by a core set of axioms:

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1996).]

Backup: (Axiomatic) QFT in a nutshell
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● Correlation functions                          encode all of the dynamical 
information, including the properties of particles! 

● For the purpose of this talk I will focus on (scalar) 2-point correlation 
functions, in particular the spectral function, defined by 

● The simplest case: a non-interacting particle with mass m 

 

 

             

Delta peak → stable particle component

Continuum onset → multi-particle states  

Backup: Particle signatures in vacuum

... and when we add interactions
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● To describe physical phenomena in “extreme environments” one must 
understand of how QFT applies to systems that are hot, dense, or both  
          

● Therefore need to figure out how the inclusion of temperature T = 1/β 
or density modifies the standard QFT assumptions, and what effect this 
has on the correlation functions 

         → Let’s stick to the case T > 0 and vanishing density   

[Brookhaven National Lab] [Skyworks Digital Inc.] 

Backup: Beyond the vacuum
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  ● Idea: Look for a generalisation of the standard axioms which is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

→

→

→

H
β
 is defined for fixed β=1/T

Replaced by the KMS condition

Instead, thermal background state |Ω
β
>

Fields are still distributions  

The fields no longer transform 
under general unitary Lorentz 

transformations  

Causality is unaffected by the 
properties of the background state. 

This is important!  

 ✓

→

 ✓

Backup: Beyond the vacuum
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● For T > 0 there are some immediate modifications: 

● Taking all of these T > 0 constraints into account implies that the 
spectral function has the representation 

*

● T > 0 effects amount to understanding: ρ(s) → Dβ(u,s), which tell us 
about the possible excitations that can exist in a thermal medium 

“Thermal spectral density” 

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys.Theor. 64 (1996)

➢ Lorentz invariance ✘  →  but can retain rotational invariance
➢ Spectral condition ✘  →  replaced by equilibrium (KMS) condition   
➢ Field locality (causality) ✓ →  this is important!

This is the T > 0 generalisation of the 
textbook Källén-Lehmann representation!

Backup: Beyond the vacuum

~
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→  Thermoparticle components Dβ(u)δ(s-m2) reduce to those of a vacuum particle          
     with mass m in the limit T → 0

→  Non-trivial “Damping factor” Dβ(u) results                                                        
     in thermally-broadened peaks in the spectral                                                      
     function: this parametrises the effects of                                                           
     collisional broadening 

→  Component Dc,β(u,s) contains all other                                                             
     types of excitations, including those that                                                           
     are continuous in s

             

~

~

~

Proposition: the medium contains “Thermoparticles”: particle-like 
excitations which differ from collective quasi-particle modes, and show 
up as discrete contributions to Dβ(u,s)  [Bros, Buchholz, NPB 627 (2002)]

Backup: A thermal particle? → “Thermoparticle” 

~
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● Perturbation theory for T = 1/  β > 0 can be performed using either real or 
imaginary-time propagators. Both have their advantages and disadvantages 
(see: Kapusta & Gale, Le Bellac)

● Here we focus on the imaginary time τ formalism. The basic idea is that one 
uses imaginary time “Matsubara” propagators                                          
which have discrete energies ωn = 2 n/π β 

● This discretisation comes about because the Euclidean 2-point function 
WE(τ,x) is β-periodic in τ (due to the KMS condition)

→ At the end one analytically continues the result: i ωn→ ω+i ε

● The perturbation theory rules are analogous to the T = 0 case,                     
except now each internal line is integrated with the measure: 

Backup: Perturbation theory setup
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● Results for L=16: 

For small coupling the results agree 
with data for all T/m 

 For large coupling the vacuum-like   
      data differs from prediction     

→  Higher-loop corrections needed!

→  In all cases where the interactions are non-negligible, the predictions deteriorate as T/m increases

Backup: Perturbation theory results
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● Standard approach: extract ρΓ( ,ω p) from temporal correlator CΓ(τ,p)  

● Instead, one can use the spatial correlator, where one integrates CΓ(τ,x) over 
{τ,x,y} and fixes a spatial direction z    

● It turns out that if thermoparticles exist, then                                                 
they will give a distinct contribution to C(z)

 

 

             

→ Problem is ill-conditioned,   
     need more information!

~

[P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]   

→ This component can be extracted directly from data 

Goal: Extract information about the finite T spectral function ρΓ( ,ω p) from 
data of Euclidean correlator                                  OΓ = scalar operator  

Backup: Spectral properties from QCD data
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● But what impact do thermoparticles have on the behaviour of C(z)?  

● If they exist, one can extract their damping factors Dβ(x) directly from C(z) 
and then determine the spectral contribution ρTP( ,ω p)  

  

             

→  They give contributions that    
          dominate for large z

C(z) data  ρTP( ,ω p)

Dβ(x)

+

● Apply approach to QCD lattice data → simple case is the spatial correlator 
CPS(z) of the pseudo-scalar meson operator

→ Done for light-light (pion), light-strange (kaon), and strange-strange (eta)     
    quarks [P.L., O. Philipsen, 2022; D. Bala, O. Kaczmarek, P.L., O. Philipsen, and T. Ueding, 2310.13476] 

Backup: Spectral properties from QCD data
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● Apply approach to lattice QCD data → simple case is the spatial correlator CPS(z) 
of the pseudo-scalar meson operator

● Analysis performed for various pseudo-scalar meson operators: 

π

π

π*

π*
Light-light pseudo-scalar meson 
(pion) channel [P.L., O. Philipsen, 
JHEP 10, 161 (2022)] 

Light-strange (kaon) and strange-strange 
(eta) pseudo-scalar meson channels [D. Bala, 
O. Kaczmarek, P. L., O. Philipsen, and T. Ueding, 
JHEP 05, 332 (2024)] 

Data in all channels consistent with a thermoparticle-type ground state: suggests light 
pseudo-scalar mesons (pions, kaons,..) still have a bound-state-like structure, even at high T

Backup: Spectral properties from QCD data
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● The robustness of the thermoparticle hypothesis can also be tested by 
comparing with different causal models, e.g. a Breit Wigner

● Same procedure as with the thermoparticle case: (i) extract the width 
parameter Γ and coefficient from the spatial lattice data (ii) use this to 
predict the corresponding temporal correlator

             

→ Data is not consistent with a Breit-Wigner-type ground state! 

Backup: Spectral properties from QCD data
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→ But given a specific QFT, what form should these components take?

Idea: thermal scattering states are defined by imposing an asymptotic field 
condition [Bros, Buchholz, (2002)]:

    

● Since thermoparticles dominate the large-time behaviour of correlators, they 
are natural candidates for describing such states. It turns out that their 
damping factors Dm,β(u) are uniquely fixed by the asymptotic condition 

● In Φ4 theory one finds (where  κ is a thermal width): 

 

Asymptotic fields Φ0 are assumed to satisfy 
dynamical equations, but only at large x0

In Φ4 theory

~

For g < 0: For g > 0:

Backup: An alternative approach 
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