EMMI Workshop at the University of Wrocław

July 2 - 4, 2024, Wrocław, Poland

Aspects of Criticality II

Bottomonium spectral functions in thermal QCD

Maria Paola Lombardo

INFN Firenze lowbardo@fi.infn.it

FASTSUM Collaboration

FASTSUM Collaborators for Bottomonium

Gert Aarts, Chris Allton, N	Naeem Anwar,										• •		
Ryan Bignell,													
Tim Burns,													
Rachel Horsham d'Arcy,													
Ben Jäger, Seyong Kim,	MpL, Benjamin F	Page,	Sine	ead	l Ry	an,	Jo	n-l	var	· SI	kull	lerı	JU
Antonio Smecca,					•								
Tom Spriggs													
		Dov			n rof	oroi							
		nev		VVILI	ilei	erei	ICE	55.					
		Prog	g.Pa	rt.N	lucl.l	Phy	s. 1	33	(20)23)) 10)40	70
		+ Ur	npub	olish	ied i	NOr	k						

.

FASTSUM Collaborators for Bottomonium

Gert Aarts, Chris Allton, N	Naeem Anwar,										• •		
Ryan Bignell,													
Tim Burns,													
Rachel Horsham d'Arcy,													
Ben Jäger, Seyong Kim,	MpL, Benjamin F	Page,	Sine	ead	l Ry	an,	Jo	n-l	var	· SI	kull	lerı	JU
Antonio Smecca,					•								
Tom Spriggs													
		Dov			n rof	oroi							
		nev		VVILI	ilei	erei	ICE	55.					
		Prog	g.Pa	rt.N	lucl.l	Phy	s. 1	33	(20)23)) 10)40	70
		+ Ur	npub	olish	ied i	NOr	k						

.

Bottomonium as a probe of QGP

CMS

Eur.Phys.J. C76 (2016) no.3, 107

...still continuing ...

Plots from Boundino

Bottomonium — starting from the summary: Exp/Pheno:	
 Beauty sector: good overall consistency of the following facts: Similar production of Y(1S) from RHIC -> LHC Higher states strongly suppressed Washing out of the spectral function (but the Y(1S) which surviv 	Not paying too much attention at CNM effects: e up to T = 0.45 GeV)
Lattice Bottomonium spectral functions:	Paul Gossieaux @ SQM2024
Methods based on inverse Laplace : no clea	Alexander Rothkopf 2211.10680 Ch. Allton in Prog.Part.Nucl.Phys. 133 (2023) 104070
Laplace transform inversion works on co Fitting models help recover missing info A good fitting model is a necessary requ	ontinuum models Salvatore Cuomo in Prog.Part.Nucl.Phys. 133 (2023) 104070 irement

Plan

Two paths to spectral functions: inversion and analytic continuation

Overview of bottomonium results from inversion methods

Living in Euclidean space : sum rules and 'moments'

The spectral function is defined as:

$$ho(\omega,ec{p}) = -rac{1}{\pi} {
m Im}\, D^R(\omega,ec{p}).$$

$$D^E(p_0) = \int_{-\infty}^{\infty} d\tau D^E(\tau) \exp(ip_0\tau),$$

$$D^{E}(p_{0}) = \frac{1}{TN} \sum_{n=-N/2}^{N/2-1} D^{E}\left(\frac{n}{NT}\right) \exp\left(ip_{0}\frac{n}{NT}\right) \ p_{0} = 2n\pi T$$

$$D^{R}(\omega, \vec{p}) = -D^{E}(p_{0} \rightarrow i\omega - \epsilon, \vec{p}),$$

omega real time energy

Euclidean correlator in imaginary (Matsubara) frequency space

The 'red' path simplified:

Relativistic

$$D(\tau) = \int_0^\infty \frac{e^{-\tau\omega} + e^{-(\beta - \tau)\omega}}{1 - e^{-\beta\omega}} S(\omega) d\omega$$

Relativistic propagators:

 $G(\tau) = G(-\tau + 1/T)$

1/T

Non-relativistic

$$D(\tau) = \int_{-M_0}^{\infty} e^{-\tau \omega} S(\omega) d\omega$$

Inverse Laplace: makes life easier..

Non-relativistic propagators : only forward

 $G(\tau) \neq G(-\tau + 1/T)$

Relativistic and non-relativistic kernels

$$K(\tau,\omega) = \frac{\left(e^{-\omega\tau} + e^{-\omega(1/T-\tau)}\right)}{1 - e^{-\omega/T}}.$$

$$K(\tau,\omega) \simeq \left(e^{-\omega\tau} + e^{-\omega(1/T-\tau)}\right)$$
:

NRQCD

· · · ·

1

In practice one retains only *n*=0

$$D(\tau) = \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} e^{(-\beta\omega)^n} e^{-\tau\omega} S(\omega) d\omega$$
$$= \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} e^{-\omega(\tau+n\beta)} S(\omega) d\omega$$

1 1 1 1

1.1.1

and periodicity is lost

Spectral functions and two point functions : a challenge for LFT

$$G(t) = \int \delta(M-\omega)e^{-\omega t} \propto e^{-Mt}$$
 $G(t) = \int S(\omega)e^{-\omega t}$

Bottomonium via NRQCD

......

Zero temperature NRQCD works beautifully for the spectrum

$n^{S+1}L_J$	State	$a_{ au}M$	$E_0 + M$ (MeV)	M_{expt} (MeV)
$1^1 \mathbf{S}_0$	η_b	0.20549(4)	9409(12)	9398.0(3.2)
$2^1 \mathbf{S}_0$	η_b'	0.311(3)	10004(21)	9999(4)
1^3 S $_1$	Υ	0.21460(5)	9460*	9460.30(26)
2^3 S ₁	Υ'	0.318(3)	10043(22)	10023.26(31)
$1^1 \mathbf{P}_1$	h_b	0.2963(4)	9920(15)	9899.3(1.0)
$1^3 \mathbf{P}_0$	χ_{b0}	0.2921(4)	9896(15)	9859.44(52)
$1^3 \mathbf{P}_1$	χ_{b1}	0.2964(4)	9921(15)	9892.78(40)
$1^3 \mathbf{P}_2$	χ_{b2}	0.2978(4)	9928(15)	9912.21(40)

Bottomonium spectral functions from the lattice

Bottomonium spectral functions from the lattice

Issues:

Control the systematics!

FASTSUM setup

Review by C.Allton:

https://www.ggi.infn.it/talkfiles/slides5843.pdf

Study of Numerical Methods

Lattice Parameters

observations

MEM vs BR

Y. Burnier, A. Rothkopf 2013

FASTSUM + Y. Burnier and A. Rothkopf 2015

The same set of correlators has been analized by standard MEM and by the Burnier-Rothkopf method

Can we trust the width?

Y. Burnier, A. Rothkopf 2013

Good agreement for Υ and χ rescaled propagators.

Caveat: Small discrepancies may hide important differences

Thanks to NPQCD for parameters tuning

G(t)

 ω [GeV]

Lattice systematics - are "small" Slide by C. Allton Going lighter m_q Going finer a_{τ}

Understanding and quantifying the systematics FASTSUM EPJ Web Conf. 274 (2022) 05011

Sensitivity to the details of the implementation of the BR method

Sensitivity to the details of a Gaussian ansatz

Crucial step : Analytic continuation

Try RVP - a variant of Pade' approximants which has proven very performing

Model spectral function

...partial and preliminary.. to get a feeling on the possibilities ...

Tripolt, Rothkopf, MpL

Propagators in the conformal phase of QCD (Nf=12)

NB: pion is not a pseudoGoldstone

Under discussion: behaviour of propagators in the conformal window?

$$D(\tau) = \sum a_i e^{-m_i \tau}$$
 or $D(\tau) = \frac{e^{-m_i \tau}}{\tau^{\alpha(y_h)}}$

lwasaki et al.

Observation:

Post's inversion formula

$$f(t)=\mathcal{L}^{-1}\{F\}(t)=\lim_{k o\infty}rac{(-1)^k}{k!}igg(rac{k}{t}igg)^{k+1}F^{(k)}\left(rac{k}{t}igg)$$

Calls attention on the derivatives

Another observation:

Weighted Spectral Functions

Fastsum-mpl

Sum rules

Thor meeting, Athens 2017

$$-\frac{1}{G(t)}\frac{dG(t)}{dt} = m_{eff}(t) = \frac{\int \omega e^{-\omega t} S(\omega) \frac{d\omega}{2\pi}}{G(t)} = \langle \omega \rangle_{e^{-\omega t} S(\omega)}$$
$$\frac{dm_{eff}(t)}{dt} = \langle (\omega - \langle \omega \rangle_t)^2 \rangle_t$$
$$e^{-\omega t} S(\omega)$$

P. Petreczky et al: observation that a decreasing Effective mass implies a width

Results from the Upsilon propagator

$$-\frac{1}{G(t)}\frac{dG(t)}{dt} = m_{eff}(t) = \frac{\int \omega e^{-\omega t} S(\omega) \frac{d\omega}{2\pi}}{G(t)} = \langle \omega \rangle_{e^{-\omega t} S(\omega)}$$

off the Euclidean propagators

Experimenting with variable masses

"Width" as a function of the quark mass for different temperatures

Comparative Study of Quarkonium Transport in Hot QCD Matter

A. Andronic^{*a}, P.B. Gossiaux^{*b}, P. Petreczky^{*c}, R. Rapp^{*d}, M. Strickland^{*e}, J.P. Blaizot^f,
N. Brambilla^g, P. Braun-Munzinger^{h,i}, B. Chen^j, S. Delorme^k, X. Du^l, M. A. Escobedo^{m,l}, E.
G. Ferreiro^l, A. Jaiswalⁿ, A. Rothkopf^o, T. Song^h, J. Stachelⁱ, P. Vander Griend^p, R. Vogt^q,
B. Wu^d, J. Zhao^b, and X. Yao^r

2402.04366

R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky Phys. Lett. B 800 (2020) 135119

Plot courtesy of Ryan Bignell

Summary

A broadly consistent picture of bottomonium sequential suppression Remaining quantitative differences among inversion methods Lattice artefacts well under control — fitting models/continuum data needed Simple sum rules may help identifying the winner among different methods A good framework for analytic continuation is available and perhaps worth exploring