Correlations and fluctuations in a thermal system with non－abelian charges

Ludwik Turko
University of Wrocław，Poland

EMMI Workshop at the University of Wrocław
－Aspects of Criticality
July 2－4， 2024

Some common intuitive beliefs．．．

．．．are not quite true，as e．g．
－Uniform mixture of π^{+}, π^{-}，and π^{0} would prefer to be in the isosinglet state．
－Uniform mixture of protons and neutrons would prefer to be in the isosinglet state
$\sharp \pi^{+}=\sharp \pi^{0}=\sharp \pi^{-}=15 \quad \sharp$ protons $=\sharp$ neutrons $=50$
－These are expansions of these states into corresponding irreducible representations $S U(2)$ ．

Statistical ensembles of high energy physics

The thermodynamic system of volume V and temperature T composed of charged particles and their antiparticles carrying charge ± 1 ．
The partition functions of the canonical and grand canonical statistical system

$$
\begin{aligned}
\mathcal{Z}_{Q}^{C}(V, T) & =\operatorname{Tr}_{Q} \mathrm{e}^{-\beta \hat{H}}=\sum_{N_{+}-N_{-}=Q}^{\infty} \frac{z^{N_{-}+N_{+}}}{N_{-}!N_{+}!}=I_{Q}\left(2 V z_{0}\right), \\
\mathcal{Z}^{G C}(V, T) & =\operatorname{Tr~}^{-\beta(\hat{H}-\mu \hat{Q})}=\exp \left(2 V z_{0} \cosh \frac{\mu}{T}\right) .
\end{aligned}
$$

$V z_{0}$ is the sum over all one－particle partition functions

$$
z_{0}^{(i)}(T)=\frac{1}{V} \frac{V}{(2 \pi)^{3}} g_{i} \int d^{3} p e^{-\beta \sqrt{p^{2}+m_{i}^{2}}}=\frac{1}{2 \pi^{2}} \operatorname{Tg}_{i} m_{i}^{2} K_{2}\left(\frac{m_{i}}{T}\right),
$$

$g_{i}-$ the spin degeneracy factor．

Abelian and nonabelian

Example

Perform and compare results of the statistical system: nucleons (n, p) and pions $\left(\pi^{ \pm}, \pi^{0}\right)$ with an exact isospin $S U(2)$ and $U(1)_{B}$ symmetry.

- Abelian approach based on $U(1)_{l_{3}} \times U(1)_{B}$ symmetry. Abelian canonical partition function is given as

$$
\mathcal{Z}_{B, l_{3}}^{(a)}=\operatorname{Tr}_{B, l_{3}} \mathrm{e}^{-\beta H}
$$

with the trace-sum over all states with the given value I_{3} of the third component of the isospin.

- Nonabelian approach based $S U(2) \times U(1)_{B}$ symmetry. Nonabelian canonical partition function is given as

$$
\mathcal{Z}_{B, l}^{(n a)}=\operatorname{Tr}_{B, I} \mathrm{e}^{-\beta H}
$$

with the trace-sum over all states with the given value I of the total ${ }_{\text {tisy }}$ isospin.

General projective approach

A generating function is given as

$$
\begin{aligned}
& \tilde{\mathcal{Z}}(g)=\operatorname{Tr}\left\{U(g) \mathrm{e}^{-\beta H}\right\}=\sum_{\Lambda} \frac{\chi_{\Lambda}(g)}{\operatorname{dim}(\Lambda)} Z_{\Lambda}^{(n a)} \\
& Z_{\Lambda}^{(n a)}=\operatorname{Tr}_{\Lambda} \mathrm{e}^{-\beta H}
\end{aligned}
$$

Then

$$
Z_{\Lambda}^{(n a)}=\operatorname{dim}(\Lambda) \int d \mu(g) \chi_{\Lambda}(g) \tilde{\mathcal{Z}}(g)
$$

Technical details

Redlich K., and T.L.: Z. Phys. C 5 (1980) 201 T.L.: Phys. Lett. B 104 (1981) 153

Thermal models calculations - in principle

$$
\begin{aligned}
\epsilon & =\frac{1}{2 \pi^{2}} \sum_{i=1}^{\prime}\left(2 s_{i}+1\right) \int_{0}^{\infty} d p \frac{p^{2} E_{i}}{\exp \left\{\frac{E_{i}-\mu_{i}}{T}\right\} \pm 1}, \\
n_{B} & =\frac{1}{2 \pi^{2}} \sum_{i=1}^{l}\left(2 s_{i}+1\right) \int_{0}^{\infty} d p \frac{p^{2} B_{i}}{\exp \left\{\frac{E_{i}-\mu_{i}}{T}\right\} \pm 1}, \\
n_{S} & =\frac{1}{2 \pi^{2}} \sum_{i=1}^{\prime}\left(2 s_{i}+1\right) \int_{0}^{\infty} d p \frac{p^{2} S_{i}}{\exp \left\{\frac{E_{i}-\mu_{i}}{T}\right\} \pm 1}, \\
n_{Q} & =\frac{1}{2 \pi^{2}} \sum_{i=1}^{l}\left(2 s_{i}+1\right) \int_{0}^{\infty} d p \frac{p^{2} Q_{i}}{\exp \left\{\frac{E_{i}-\mu_{i}}{T}\right\} \pm 1} .
\end{aligned}
$$

where

$$
\mu_{j}=b_{j} \mu_{b}+s_{j} \mu_{s}++q_{j} \mu_{q}
$$

SU(2) case

One can compare analytically abelian and nonabelian approach Characters if irreducible representation are given as

$$
\chi_{J}(\gamma)=\frac{\sin \left(J+\frac{1}{2}\right) \gamma}{\sin \frac{\gamma}{2}}=\sum_{j_{3}=-J}^{J} \mathrm{e}^{\mathrm{ij} / 3 \gamma}
$$

with the measure

$$
d \mu(\gamma)=\sin ^{2} \frac{\gamma}{2} d \gamma=\frac{1-\cos \gamma}{2} d \gamma
$$

and the integration domain $\{0,2 \pi\}$.

Projections

A generating function is given as

$$
\tilde{\mathcal{Z}}=\operatorname{Tr}\left\{U(g) \mathrm{e}^{-\beta H}\right\}=\sum_{J=0}^{\infty} \frac{\chi_{J}(\gamma)}{2 J+1} Z_{J}^{(n a)} ; \quad Z_{J}^{(n a)}=\operatorname{Tr}_{J} \mathrm{e}^{-\beta H}
$$

So we have

$$
Z_{J}^{(n a)}=\frac{2 J+1}{\pi} \int_{0}^{2 \pi} d \gamma \chi_{J}(\gamma) \tilde{\mathcal{Z}}(\gamma) \sin ^{2} \frac{\gamma}{2}
$$

The abelian canonical partition function

$$
Z_{j_{3}}^{(a)}=\operatorname{Tr}_{j_{3}} \mathrm{e}^{-\beta H}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma \tilde{\mathcal{Z}}(\gamma) \mathrm{e}^{-i j_{3} \gamma}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma \tilde{\mathcal{Z}}(\gamma) \cos j_{3} \gamma
$$

Projections from trigonometry

For the abelian canonical partition function $Z_{j_{3}}^{(a)}$

$$
Z_{j_{3}}^{(a)}=\operatorname{Tr}_{j_{3}} \mathrm{e}^{-\beta H}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma \tilde{\mathcal{Z}}(\gamma) \mathrm{e}^{-i j_{3} \gamma}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma \tilde{\mathcal{Z}}(\gamma) \cos j_{3} \gamma
$$

But

$$
\chi_{J}(\gamma) \sin ^{2} \frac{\gamma}{2}=\frac{\sin \left(J+\frac{1}{2}\right) \gamma}{\sin \frac{\gamma}{2}} \sin ^{2} \frac{\gamma}{2}=\frac{1}{2}(\cos J \gamma-\cos (J+1) \gamma)
$$

This allows to express a nonabelian $S U(2)$ partition function by means of abelian partition functions

$$
Z_{J}^{(n a)}=(2 J+1)\left(Z_{J}^{(a)}-Z_{J+1}^{(a)}\right)
$$

Direct variables

The chemical potential μ determines the average charge in the grand canonical ensemble

$$
\langle Q\rangle=T \frac{\partial}{\partial \mu} \ln \mathcal{Z}^{G C}
$$

This allows to eliminate the chemical potential from further formulae for the grand canonical probabilities distributions

$$
\frac{\mu}{T}=\operatorname{arcsinh} \frac{\langle Q\rangle}{2 V z_{0}}=\ln \frac{\langle Q\rangle+\sqrt{\langle Q\rangle^{2}+4\left(V z_{0}\right)^{2}}}{2 V z_{0}}
$$

Probabilities in ensembles

To have N_{-}negative particles in the canonical ensemble

$$
\mathcal{P}_{Q}^{C}\left(N_{-}, V\right)=\frac{\left(V z_{0}\right)^{2 N_{-}+Q}}{N_{-}!\left(N_{-}+Q\right)!} \frac{1}{I_{Q}\left(2 V z_{0}\right)}
$$

To have N_{-}negative particles in the grand canonical ensemble

$$
\begin{aligned}
& \mathcal{P}_{\langle Q\rangle}^{G C}\left(N_{-}, V\right)= \\
& \frac{1}{N_{-}!}\left[\frac{2\left(V z_{0}\right)^{2}}{\langle Q\rangle+\sqrt{\langle Q\rangle^{2}+4\left(V z_{0}\right)^{2}}}\right]^{N_{-}} \exp \left[-\frac{2\left(V z_{0}\right)^{2}}{\langle Q\rangle+\sqrt{\langle Q\rangle^{2}+4\left(V z_{0}\right)^{2}}}\right]
\end{aligned}
$$

Technical details

Cleymans J., Redlich K., and Turko L. Phys. Rev. C 71047902 (2005) Cleymans J., Redlich K., and Turko L. J. Phys. G 311421 (2005)

Canonical functions

For the pion gas

$$
\begin{equation*}
Z_{I_{3}}=\exp \left[\lambda_{0} Z_{\pi}^{(1)}\right]\left(\frac{\lambda_{+}}{\lambda_{-}}\right)^{I_{3} / 2} I_{3}\left(2 Z_{\pi}^{(1)} \sqrt{\lambda_{+} \lambda_{-}}\right) \tag{1}
\end{equation*}
$$

For the $\pi-N$ system

$$
\begin{aligned}
Z_{B, I_{3}}= & \exp \left[\lambda_{0} Z_{\pi}^{(1)}\right] \sum_{n=-\infty}^{\infty}\left(\frac{\lambda_{p}}{\lambda_{\bar{p}}}\right)^{n / 2}\left(\frac{\lambda_{n}}{\lambda_{\bar{n}}}\right)^{(B-n) / 2}\left(\frac{\lambda_{+}}{\lambda_{-}}\right)^{\left(B / 2+I_{3}-n\right) / 2} \\
& \times I_{n}\left(2 Z_{N}^{(1)} \sqrt{\lambda_{p} \lambda_{\bar{p}}}\right) I_{B-n}\left(2 Z_{N}^{(1)} \sqrt{\lambda_{n} \lambda_{\bar{n}}}\right) I_{B / 2+I_{3}-n}\left(2 Z_{\pi}^{(1)} \sqrt{\lambda_{+} \lambda_{-}}\right)
\end{aligned}
$$

Conclusions

－In the thermodynamic limit relevant probabilities are density distributions．
－Density probability distributions obtained from different statistical ensembles have the same thermodynamical limit．
－Finite volume effect more relevant for higher moments．
－Canonical suppression factor for particles depends on densities．
－Canonical ensembles based on the nonabelian symmetries are different from ensembles based on the direct product of abelian subgroups．
－Quantitative results are also different．
－There is a hope to calculate canonical＂nonabelian＂partition function without using poorly defined oscilating integrals－also for higher internal symmetries，beyond $S U(2)$ ．
－．．．work in progress．

