

The Physics of Parity-Doublet Nucleons in Dense Matter

Chihiro Sasaki
Institute of Theoretical Physics
University of Wroclaw, Poland

&

SKCM², Hiroshima University, Japan

Outline

- ☐ Toward the observation of partial restoration of chiral sym via chiral mixing at J-PARC with R. Ejima, P. Gubler & K. Shigaki
- ☐Superfluids of nucleon parity-doublet in neutron stars

with S. Yasui & M. Nitta

Ref. Ejima, Gubler, Sasaki and Shigaki, paper in preparation

OBSERVING CHIRAL MIXING AT J-PARC E16

Direct V-A mixing at finite µB

$$S_{\text{4dim}} = \int d^4x \left[\frac{1}{2} \left(\partial_{\mu} \pi \right)^2 - \frac{1}{2} m_{\pi}^2 \pi^2 - \frac{1}{4} \left(\rho_{\mu\nu} \right)^2 - \frac{1}{4} \left(a_{\mu\nu} \right)^2 \right. \\ \left. + \frac{1}{2} m_{\rho}^2 \rho_{\nu}^2 + \frac{1}{2} m_a^2 a_{\mu}^2 + C \epsilon^{ijk} \left(\rho_i \partial_j a_k + a_i \partial_j \rho_k \right) \right] \\ p_0^2 - |\vec{p}|^2 = \frac{1}{2} \left[m_{\rho}^2 + m_{a_1}^2 \pm \sqrt{(m_{a_1}^2 - m_{\rho}^2)^2 + 16C^2 |\vec{p}|^2} \right] \\ \left. + \frac{1}{2} m_{\rho}^2 \rho_{\nu}^2 + \frac{1}{2} m_a^2 a_{\mu}^2 + C \epsilon^{ijk} \left(\rho_i \partial_j a_k + a_i \partial_j \rho_k \right) \right] \\ \left. + \frac{1}{2} m_{\rho}^2 \rho_{\nu}^2 + \frac{1}{2} m_a^2 a_{\mu}^2 + C \epsilon^{ijk} \left(\rho_i \partial_j a_k + a_i \partial_j \rho_k \right) \right] \\ \left. + \frac{1}{2} m_{\rho}^2 \rho_{\nu}^2 + \frac{1}{2} m_a^2 a_{\mu}^2 + C \epsilon^{ijk} \left(\rho_i \partial_j a_k + a_i \partial_j \rho_k \right) \right] \\ \left. + \frac{1}{2} m_{\rho}^2 \rho_{\nu}^2 + \frac{1}{2} m_a^2 a_{\mu}^2 + C \epsilon^{ijk} \left(\rho_i \partial_j a_k + a_i \partial_j \rho_k \right) \right] \\ \left. + \frac{1}{2} m_{\rho}^2 \rho_{\nu}^2 + \frac{1}{2} m_a^2 a_{\mu}^2 + C \epsilon^{ijk} \left(\rho_i \partial_j a_k + a_i \partial_j \rho_k \right) \right] \\ \left. + \frac{1}{2} m_{\rho}^2 \rho_{\nu}^2 + \frac{1}{$$

ф meson in nuclear matter

- \square No φ N resonances, but the kaon cloud.
- ☐ Kaon in nuclear matter: Kaplan, Nelson (86)

$$m_K^* = \left[m_K^2 - a_K \rho_S + (b_K \rho)^2 \right]^{1/2} + b_K \rho,$$

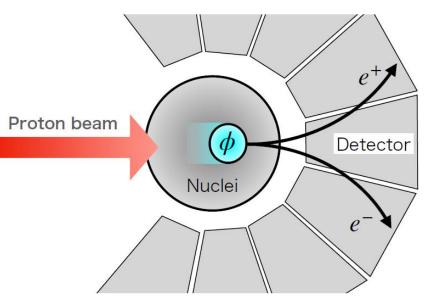
$$m_{\bar{K}}^* = \left[m_K^2 - a_{\bar{K}} \rho_S + (b_K \rho)^2 \right]^{1/2} - b_K \rho,$$

$$b_K = 3/(8f_{\pi}^2)$$
 $a_K = a_{\bar{K}} = \Sigma_{KN}/f_{\pi}^2$

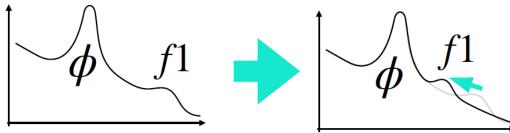
□Li, Lee, Brown (97): kaon production in Ni+Ni at 1 & 1.8 A GeV

 $a_K \approx 0.22 \text{ GeV}^2 \text{ fm}^3 \text{ and } a_{\bar{K}} \approx 0.45 \text{ GeV}^2 \text{ fm}^3$

 $T \approx 0 \& \rho_B \approx \rho_0$ $\frac{f_{\pi}^*}{f_{\pi}} \approx 0.7 \text{ (left)} \quad \Phi \text{ meson in nuclei}$ p/GeV = 0.5p/GeV = 0.50.1 0.1 $\text{Im} \, G_V \, [\text{GeV}^2]$ ${
m Im}\,{
m G}_{
m V}\,{
m [GeV}^2{
m]}$ 0.01 0.01 0.001 0.001 No restoration 30% restored 0.0001 0.0001 1.2 0.9


✓ Strong evidence of partial (~30%) restoration in pionic atoms [Nishi et al., Nature Physics, 2023]

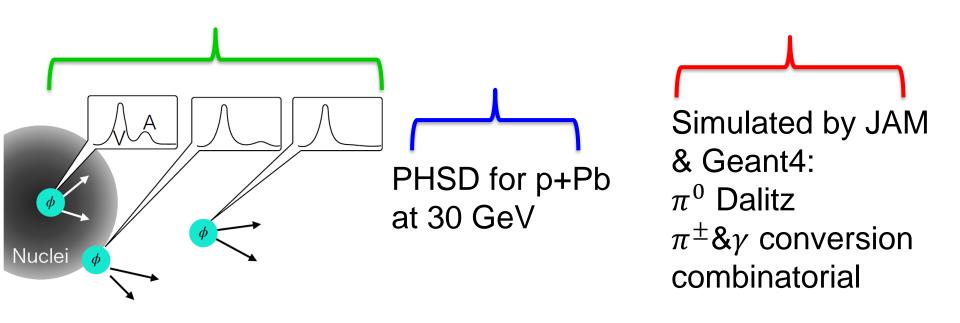
s^{1/2} [GeV]


s^{1/2} [GeV]

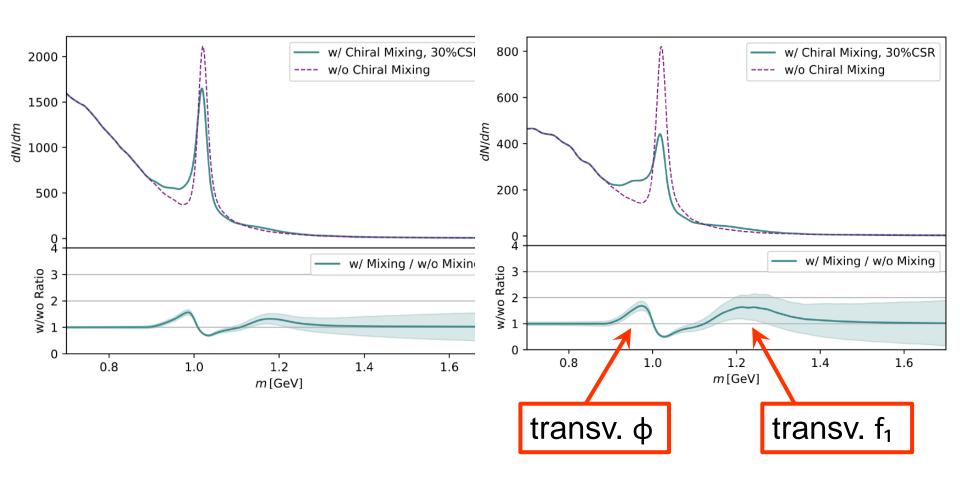
- ☐ Density-induced chiral mixing in broken phase
- \square More structure & their shift due to f_{π}^* in SF

E16 experiment at J-PARC

- Measurements of spectral change of vector mesons in nuclei
- ☐ Proton beam at 30-50 GeV


Run 1 (Dec 2024): 15k φ mesons Run 2 (?): 69k φ mesons

Dilepton production


InvMassDist =
$$\int \left[\int \mathbf{Im} G_V(s, p, \rho) \frac{dN}{d\vec{p}d\rho dt} \frac{d\vec{p}}{2p_0} d\rho dt + \int \mathbf{Bkg}(s, p) dp \right] g(m - s) ds$$

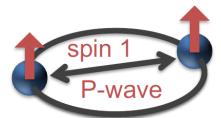
Spectral Fx Kinematic dist Background Detector responce

Dilepton production

p+Pb, Run-2 statistics, c = 0.2, 0.5 GeV at ρ_0

Dilepton production

Signatures with $< 1\sigma$

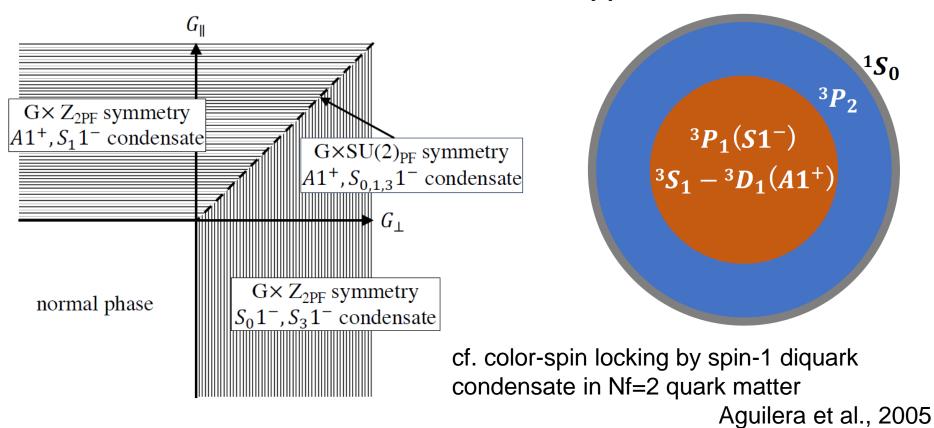

Ref. Yasui, Nitta and Sasaki, in preparation

SUPERFLUID IN NEUTRON STARS

Superfluidity in neutron stars

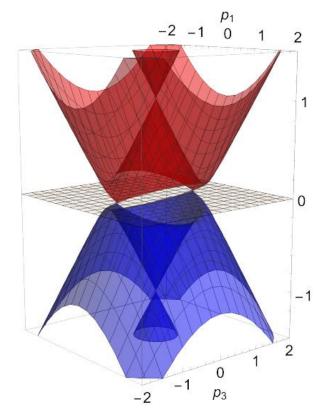
 \square s-wave superfluid by ${}^{1}S_{0}$

- [Migdal, '60]
- \Box p-wave superfluid by ${}^{3}P_{2}$ at $\rho/\rho_{0} > \frac{1}{2}$ [Tabakin, '68]
 - ✓ Pulser glitches
 - ✓ Rapid cooling



- □This study: Cooper pairing of neutron paritydoublet at high density → the role of N*
 - Extended chiral sym G such that G ⊃ naïve&mirror $G = U(1)_{1L} \times U(1)_{1R} \times U(1)_{2L} \times U(1)_{2R}$
 - $\psi_1 \leftrightarrow \psi_2$ symmetry? Extra Z_2 or SU(2) introduced
 - Common operators to the naïve & mirror assign.

Phase diagram


Cooper pairings: NN, NN*, N*N*

☐Phase structure: two vector-type condensates

Dirac points

□Spatial anisotropy → both rotational & chiral sym. broken → type-II NG mode

cf. type-I NG mode in ordinary matter

$$\vec{\delta} = (0,\!0,\!\delta)$$
 Dirac points at $p_3 = \pm \sqrt{\mu^2 + \delta^2}$

$$\varepsilon_q \cong \sqrt{\frac{q_1^2 + q_2^2}{1 + \frac{\mu^2}{\delta^2}} + q_3^2}$$

- ➤ Propagation along 1&2 directions in v << c=1
- \triangleright Propagation along 3 direction in v = c = 1
- → Anisotropy in transport phenomena, NS cooling

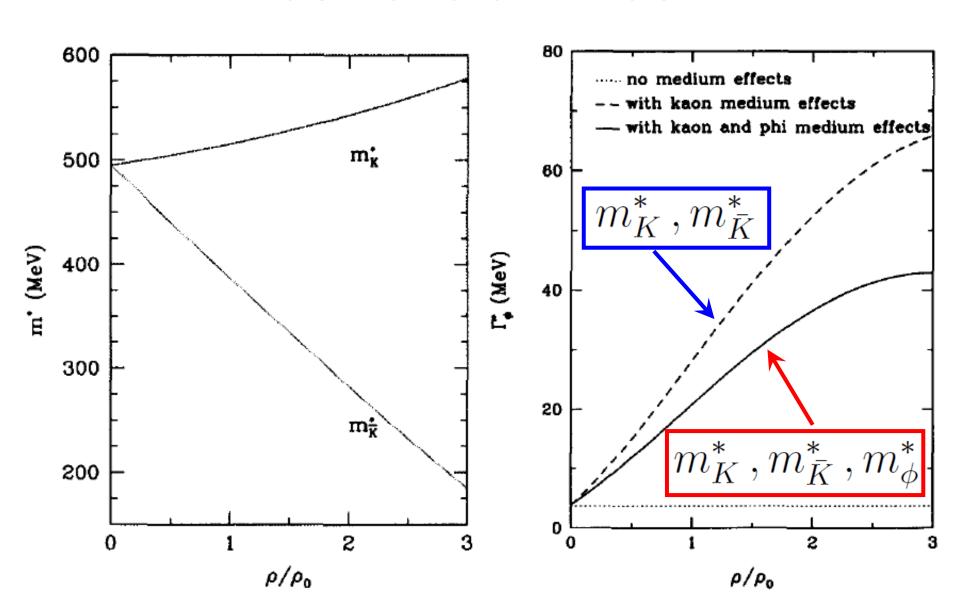
SUMMARY

Final remarks

Parity doubling of hadrons as signatures of chiral symmetry restoration in a medium

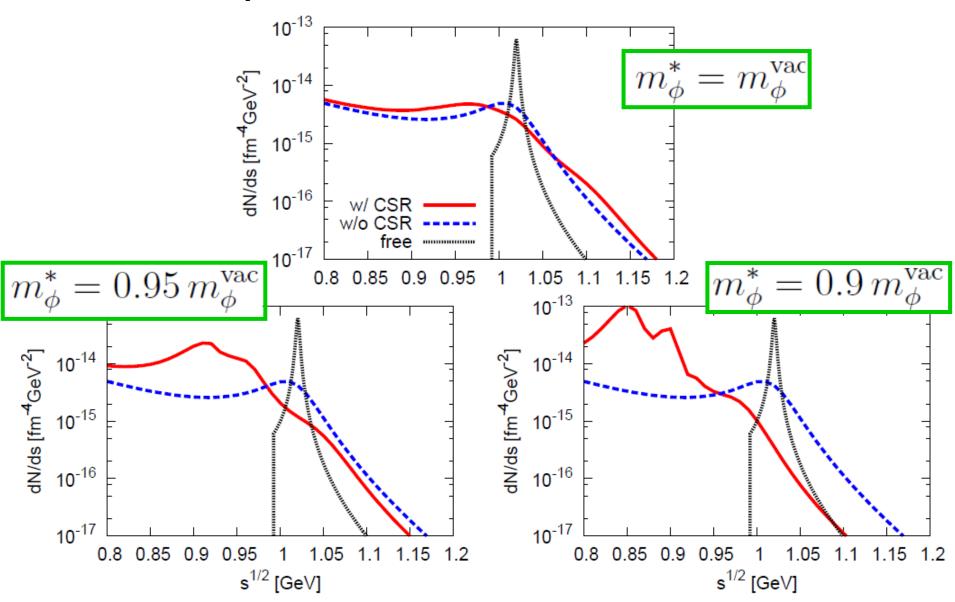
- ☐ Density-induced chiral mixing
 - Estimated signatures at J-PARC E16 experiment (p+Pb) via dilepton production, Run-2 adequate
- □ Superfluidity in neutron stars
 - 2 kinds of vector condensates, strong anisotropy, type-II NGB
 - Specific in mirror scenario? Vortices? QM?

BACKUP

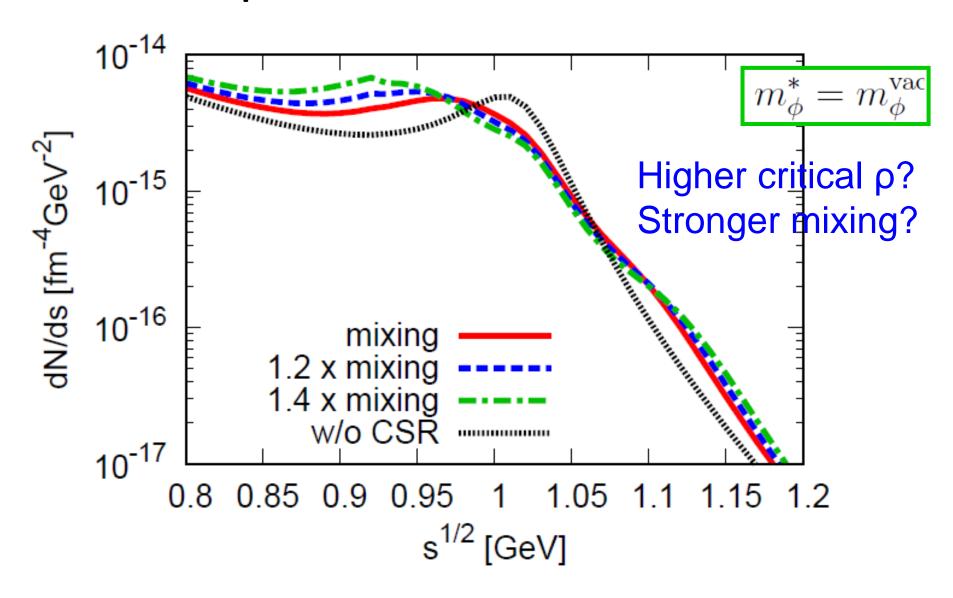

Vector-current correlator

$$G_V^L = \left(\frac{g_{\rho}}{m_{\rho}}\right)^2 \frac{-s}{D_V}, \quad G_V^T = \left(\frac{g_{\rho}}{m_{\rho}}\right)^2 \frac{-sD_A + 4C^2\bar{p}^2}{D_V D_A - 4C^2\bar{p}^2},$$

$$D_{V,A} = s - m_{\rho,a_1}^2 + im_{\rho,a_1} \Gamma_{\rho,a_1}(s),$$


- \square m and Γ : *in-medium* masses and widths
- ☐Strategy of an illustrative computation:
 - Modify only mass and width of axial-vector states.
 - Set G_A equal to G_V at CSR, according to $\Gamma_a 1 = \Gamma(a 1 \rightarrow \rho \pi) + \delta \Gamma(f_p i) \rightarrow \Gamma_p$

Kaon and anti-kaon


Int.over p > 0.5 GeV

Dilepton rates at T=50 MeV

Int.over p > 0.5 GeV

Dilepton rates at T=50 MeV

