

Simulating collectivity in dense baryon matter with multiple fluids

Pasi Huovinen

Incubator of Scientific Excellence—Centre for Simulations of Superdense Fluids University of Wrocław

Aspects of Criticality II

July 4, 2024, Wrocław, Poland

with Jakub Cimerman, Iurii Karpenko, Boris Tomasik and Clemens Werthmann PRC107, 044902 (2023)

1. lower multiplicity \implies smaller system

 \implies larger deviations from equilibrium?

- 1. lower multiplicity \implies smaller system \implies larger deviations from equilibrium?
- 2. primary collisions overlap with secondary collisions

- 1. lower multiplicity \implies smaller system \implies larger deviations from equilibrium?
- 2. primary collisions overlap with secondary collisions

Shen & Schenke, PRC97, 024907 (2018)

- 1. lower multiplicity \implies smaller system \implies larger deviations from equilibrium?
- 2. primary collisions overlap with secondary collisions

Solutions

- "Sandwich hybrid"
 - cascade until the nuclei have passed each other
 - fluid until hadronisation
 - cascade until freeze out

Auvinen & Petersen, PRC88, 064908 (2013)

- at $\sqrt{s_{NN}} < 10~{\rm GeV}$ not much happens during the hydro stage
- sensitivity to EoS?

Solutions

- Dynamical initialisation
 - each primary collision a source term for fluid

$$- \partial_{\mu}T^{\mu\nu} = J^{\nu}$$
$$- \partial_{\mu}N^{\mu}_{B} = \rho_{B}$$

Shen & Schenke, PRC97, 024907 (2018)

 no interaction between incoming nucleons and produced particles

$$0 = \partial_{\mu}T^{\mu\nu}$$

$$0 = \partial_{\mu} T^{\mu\nu}$$
$$= \partial_{\mu} T^{\mu\nu}_{t}$$

 $T_{\rm t}^{\mu
u} = {\rm target~fluid}$

$$0 = \partial_{\mu} T^{\mu\nu}$$
$$= \partial_{\mu} T^{\mu\nu}_{t} + \partial_{\mu} T^{\mu\nu}_{p}$$

 $T_{\rm t}^{\mu
u} =$ target fluid $T_{\rm p}^{\mu
u} =$ projectile fluid

$$0 = \partial_{\mu} T^{\mu\nu}$$
$$= \partial_{\mu} T^{\mu\nu}_{t} + \partial_{\mu} T^{\mu\nu}_{p} + \partial_{\mu} T^{\mu\nu}_{fb}$$

 $T_{\rm t}^{\mu\nu} =$ target fluid $T_{\rm p}^{\mu\nu} =$ projectile fluid $T_{\rm fb}^{\mu\nu} =$ fireball fluid

- target and projectile represent colliding nucleons
- fireball (loosely) represents produced particles
- three fluids, each with temperature and flow velocity of its own

• distributions in momentum space

one fluid

$$\begin{aligned} \partial_{\mu} T_{t}^{\mu\nu}(x) &= -F_{t}^{\nu}(x) + F_{ft}^{\nu}(x) \\ \partial_{\mu} T_{p}^{\mu\nu}(x) &= -F_{p}^{\nu}(x) + F_{fp}^{\nu}(x) \\ \partial_{\mu} T_{fb}^{\mu\nu}(x) &= F_{p}^{\nu}(x) + F_{t}^{\nu}(x) - F_{fp}^{\nu}(x) - F_{ft}^{\nu}(x) \end{aligned}$$

- interaction between target and projectile: friction terms $-F_{\rm t}^{\nu}(x)$ and $-F_{\rm p}^{\nu}(x)$
- interaction between fireball and target/projectile: friction terms $F_{\rm fp}^{\nu}(x)$ and $F_{\rm ft}^{\nu}(x)$

Friction from kinetic theory

Boltzmann equation for three fluids

$$p^{\mu}\partial_{\mu}f_{i} = C_{i}[f_{p}, f_{t}, f_{f}] = \sum_{j,k} C_{i}^{jk}[f_{j}, f_{k}], \qquad i, j, k \in \{p, t, f\}$$

 C_i^{jk} : change in distribution/fluid *i* due to interactions of particles in *j* and *k* for given C_i^{jk} , friction obtained as

$$\partial_{\mu}T_{i}^{\mu\nu} = \int \frac{\mathrm{d}^{3}p}{p^{0}}p^{\nu}C_{i} = F_{i}^{\nu}, \quad \partial_{\mu}J_{B,i}^{\mu} = B_{i}\int \frac{\mathrm{d}^{3}p}{p^{0}}C_{i} = R_{B,i}$$

Friction from kinetic theory

collision integrals in terms of scattering cross sections

$$C_{i}^{ij}[f_{i}, f_{j}](p_{i}) = \int d^{3}p_{j} p_{i}^{0} \left[\underbrace{-f_{i}(p_{i})f_{j}(p_{j})v_{\text{rel}}\sigma_{ij \to X}}_{\text{loss}} + \underbrace{\int d^{3}q_{i}f_{i}(q_{i})f_{j}(p_{j})v_{\text{rel}}}_{\text{gain}} \frac{d\sigma_{ij \to iX}}{d^{3}p_{i}} \right]$$

from these, approximative friction formulae are derived

problems:

- cross sections may not be fully measured in experiment
- d.o.f. change in deconfinement transition

Satarov/Ivanov approach

Ivanov, Russkikh, Toneev PRC 73, 044904 (2006)

- N+N scattering: N strongly peaked at ingoing rapidities, π at midrapidity
 ⇒ in p-t friction: N stay in p/t, π go to f
- $\pi + N$ mostly resonance formation \Rightarrow all outgoing particles from p-f friction go to p
- uncertainty in deconfined phase: densities multiplied with \sqrt{s} -dependent prefactor

<u>pros</u>: only need total crosssections. can describe the double peak in baryon distributions! <u>cons</u>: $\mu_B = 0$ in fireball

modified Satarov/Ivanov approach

- for our purposes: need high μ_B also in fireball!
- idea: divide outgoing N from N+N into 3 regions
 ⇒ modified p+t friction moves B to fireball

<u>but:</u> need doubly differential cross sections! (y, E)

Results: (pseudo)rapidity distributions

Results: transverse momentum distributions

Results: elliptic flow

Viscosity not yet included!

Dissipation

$$T_{i}^{\mu\nu} = \epsilon_{i} u_{i}^{\mu} u_{i}^{\nu} + P_{i} \Delta_{i}^{\mu\nu} + \pi_{i}^{\mu\nu}, \qquad i \in \{t, p, f\}$$

$$\partial_{\mu}T_{i}^{\mu\nu} = \partial_{\mu}(\epsilon_{i}u_{i}^{\mu}u_{i}^{\nu}) + \partial_{\mu}(P_{i}\Delta_{i}^{\mu\nu}) + \partial_{\mu}\pi_{i}^{\mu\nu} = F_{i}^{\nu}$$

where $\pi_i^{\mu
u}$ obeys

$$u^{\alpha}\partial_{\alpha}\pi_{i}^{\mu\nu} = -\frac{1}{\tau_{\pi}}\left(\pi_{i}^{\mu\nu} - 2\eta\nabla^{\langle\mu}u_{i}^{\nu\rangle}\right) + \cdots$$

independent of F_i^{μ} ?

 \implies corrections to the evolution equations needed

• second moment of Boltzmann equation—work in progress

Summary

- 3-fluid approach to collisions at BES energies
 - projectile, target, produced particles described as separate fluids
- rough reproduction of rapidity and p_T distributions
- overshoots anisotropies—no viscosity
- work in progress—stay tuned!