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Gravitational-Wave 
Astrophysics
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The Dynamic Universe
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Quadrupole formula for GW production:

We need aspherical mass-energy 
movement.

GW sources:
● “Vanila”, e.g. stellar-mass 

binary black holes
● Exceptional!

AURORE SIMONNET/LIGO/CALTECH/MIT/SONOMA STATE

Image: NSF/LIGO/Sonoma/A. 
Simonnet
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Exceptional GW sources

Exceptional astrophysical sources might play the key role in our 
endeavor of exploring the Universe.
● New GW source populations:

○ Compact binaries: binaries with eccentric orbits, hyperbolic encounters, 
head-on collisions, sub-solar mass binaries, extreme mass ratio

○ GW bursts: core-collapse supernovae, neutron star or pulsar glitches, 
cosmic strings

● Multi-messenger GW sources (electromagnetic waves, neutrinos, 
cosmic rays): BNS, NSBH, BNS post-merger

● GW sources with new phenomena (usually weaker effects): 
○ GR: pre- and post-merger higher harmonics, GW cross-polarization, 

black hole kicks, GW memory, effects of precession, high spins, black 
hole formation etc.

○ Beyond GR: GW echo, beyond-quadrupolar GW polarizations, 
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Gravitational-Wave detectors
● GWs passing through two objects change 

distance between them.

● GW detectors: interferometers (the longer,

the more sensitive)

● Preferably far away from human activities.
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Nature 568, 469–476 (2019)

LIGO Hanford
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Detectors network

● GEO and KAGRA - recently joined observations

● LIGO India - under construction

● NEMO - planned Australian high-frequency detector
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arXiv:1904.03187 [gr-qc]
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Observing Timeline

9



Observing gravitational waves from astrophysical sources, Warsaw2024.09.04

Gravitational-wave
searches
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GW searches

● Types:

○ Model-dependent (template based): binary 
black holes (BBH), binary neutron stars or binary 
black hole - neutron star

○ Model-independent (template-independent) 
or “burst”: for example core-collapse supernovae, 
cosmic strings, as well as regular or special 
binaries, such as heavy/eccentric BBHs

● Latency:

○ Low-latency: rapid (within seconds to minutes) 
identification of the GW sources and preliminary 
validation (within hour) for quick astronomical 
follow-up.

○ Offline: identification of GWs after data 
acquisition, weeks or even years.
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Image: NSF/LIGO/Sonoma/A. 
Simonnet

Crab Nebula
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Model-dependent searches
Matched-filtering

● Cross-correlating data with 
waveform templates

● The template signals from compact 
binaries are derived from General 
Relativity.

● The method requires accurate 
waveform models. To the leading order, 
the waveform morphology depends on 
the chirp mass and effective spin.

● Missing parameter space or having an 
inaccurate model may result in missing 
a detection.

● Example algorithms: GstLAL, PyCBC, 
SPIIR, MBTA
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Abbott et al. 2016
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Model-independent searches
coherent WaveBurst

● Coherent WaveBurst (cWB, Klimenko+16) is a 
software designed to detect a wide range of burst 
transients without prior knowledge of the signal 
morphology

● cWB uses minimal assumptions, for example 
growing frequency over time in case of binaries

● Complementing matched filtering

● cWB has detected:

○ GW150914 - the very first GW 
(PRL 116, 061102)

○ GW190521 - an intermediate mass binary 
black hole (PRL 125, 101102)

○ several GWs together with template based 
searches

● The cWB is the most sensitive burst algorithm 
in O4
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https://gwburst.gitlab.io/

Screenshot of the 
first GW detection
gw-openscience.org
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x(t) h(t)Wavelet 
Transform

Inverse 
Wavelet 
Transform

● Time-Frequency
Decomposition

● Cluster Selection
● Constrained 

Likelihood

coherent WaveBurst (cWB)

GW150914
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Time 

Time-frequency maps (GW150914 example)
● Challenges:

○ Temporal leakage (time domain)

○ Spectral leakage (frequency domain)

○ Combining resolutions

● Latest developments on high-resolution 
time-frequency transform and minimizing 
leakage:
Klimenko+22 “wavescan” (2201.01096)

Abbott+2016

2020

2023
“wavescan”

https://arxiv.org/abs/2201.01096
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Energy excess at around 230 Hz

Compact binary searches (minimally modeled) Generic searches (unmodeled) 

Binary black holes
Binary neutron stars
Black hole - neutron star

Core-collapse supernovae
Pulsar glitches
Cosmic strings
Unknown

GW150914
GW190521 Core-collapse 

supernova

Binaries with eccentric orbits
Intermediate-mass black holes
Hyperbolic encounters
Extreme mass-ratio

Model-independent searches
classification

Public alerts for 
multi-messenger observations:
electromagnetic, cosmic rays, 
and neutrino

Low-latency searches

Higher harmonics
GW cross-polarization
Deviations from GR

Searches for new phenomena
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Observing Run 4

● O4: 24 months total, until Jun 2025

● BNS ranges: 140-180 Mpc (LIGO), 

around 55 Mpc (Virgo)

● The duty cycle for Hanford and Livingston is 

around 70-80%.

● Public communication about the observing run:

○ OpenLVEM:

https://wiki.gw-astronomy.org/OpenLVEM

○ Latest plans:

https://observing.docs.ligo.org/plan/
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● KAGRA:

○ Hit by 7.6 magnitude 

earthquake

○ Several months delay

https://wiki.gw-astronomy.org/OpenLVEM
https://observing.docs.ligo.org/plan/
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Observing Run 4

● Live detector status:

https://online.igwn.org/

● Daily detector status:

https://gwosc.org/detector_status/

● Public data release is 18 months 

after data collection
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June 11, 2024

June 11, 2024

https://online.igwn.org/
https://gwosc.org/detector_status/
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Observing Run 4
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S230529ay

● GW candidates: 81 (O4a) and 24 (O4b so far)

● Detection rate: 3 per week

● Almost all events are BBHs

○ NSBH/BNS: 9 events with non-zero probability

● Matched filtering: GstLAL, PyCBC, SPIIR, MBTA

● GW Bursts: cWB, oLIB

○ cWB-generic: generic searches for GW bursts

○ cWB-BBH: compact binaries

https://gracedb.ligo.org/

GW230929 (Abbott+25) 

- 2.5-4.5 Mo Compact 

Object and a Neutron 

Star

https://gracedb.ligo.org/superevents/S230529ay/view/
https://gracedb.ligo.org/
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Observing Run 4
cWB-BBH search
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cWB-BBH search:

● Search for stellar- and intermediate-mass black holes. 

● It’s capable to detect “vanilla” and 

special/exceptional compact binaries (e.g. 

GW150914 or GW190521)

● Complementing matched filtering

● It detects around 80% of BBHs identified by matched 

filtering searches (for the Hanford-Livingston network)

● So far 3 alerts were sent publicly (non-significant)
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Public alerts
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● General (example plots: S231226av):

○ Sky localization

○ Distance

○ Source classification

○ Detection pipeline

● Additional information for burst 

event alerts:

○ “Fluence” ~ GW energy

○ Peak frequency

○ Duration

● S200114f - a burst public alert in O3, 

later classified as noise

● No burst public alerts so far in O4

https://gracedb.ligo.org/superevents/S231226av/view/
https://gracedb.ligo.org/superevents/S200114f/view/
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Searches for Core-Collapse 
Supernovae
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SN 1987A
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Optically Targeted searches
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Time 

O1-O2 data (5 CCSN up to 20 Mpc, 1908.03584):
● First constraints of CCSN engine

O3 data  (9 CCSN up to 30 Mpc, 2305.16146):
● First upper limits on GW power and ellipticity
● Continuation of constraining extreme emission models

While waiting for the 
Galactic event, we search for 
GWs from extra-Galactic 
CCSNe (targets).

https://arxiv.org/abs/1908.03584
https://arxiv.org/abs/2305.16146
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O3 Optically Targeted search
(Szczepanczyk et al. 2023)
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Time 

● No GW detection so far
● Most significant event for SN 2020fqv: 2.8 sigma significance
● Detection range: distance at 50% detection efficiency

○ Neutrino-driven explosions: up to 13.7 kpc
○ Magnetorotationally-driven explosions: up to 15.9 kpc
○ QCD phase transition: up to 2.1 kpc
○ Black hole formation: up to 0.8 kpc 
○ Extreme emission models: several Mpc
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O3 Optically Targeted search
(Szczepanczyk et al. 2023)
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Time 

● Extensive constraints of the 
CCSN engine.
○ Assuming monochromatic 

(narrowband) emission

● GW energy constraints 
○ Isotropic emission
○ Stringest: 1x10−4 M

⊙
c2

● GW power (luminosity) 
constraints
○ First observational 

constraints
○ Stringest: 5x10−4 M

⊙
c2/s
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Parameter Estimation
Recently a lot of efforts to extract physical parameters from CCSN. See review in 
Mezzacappa&Zanolin+24 (2401.11635), examples:
● Proto-neutron star (PNS) evolution: Casallas-Lagos+23 (2304.11498), Bizouard+21 

(2012.00846), 
● Equation of State: Edwards+21 (2009.07367), 
● SN kicks (GW memory): Richardson+21 (2109.01582)
● Standing Accretion Shock Instability: Takeda+21 (2107.05213)
● PNS rotation: Chan+21 (ADS), Hayama+18 (1802.03842)
● Rotation properties: Pastor-Marcos+23 (2308.03456), Villegas+23 (2304.01267)
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Credit: Takiwaki

https://arxiv.org/abs/2401.11635
https://arxiv.org/abs/2304.11498
https://arxiv.org/abs/2012.00846
https://arxiv.org/abs/2009.07367
https://arxiv.org/abs/2109.01582
https://arxiv.org/abs/2107.05213
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103j3024C/abstract
https://arxiv.org/abs/1802.03842
https://arxiv.org/abs/2308.03456
https://arxiv.org/abs/2304.01267
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Summary

● Gravitational-Wave Astrophysics

○ The exceptional GW sources may play a key role in 

exploring the Universe and fundamental physics

● Gravitational-wave searches

○ Model-independent searches are suitable for observing 

exceptional events

○ Observing Run 4: around GW events so far

● Core-collapse supernovae are rare but golden events.
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