Multimessenger signals from core collapse of massive stars

Shota Shibagaki (University of Wroclaw)

Collaborators: Takami Kuroda (AEI) Kei Kotake (Fukuoka U.) Tomoya Takiwaki (NAOJ) Tobias Fischer (UWr)

Fate of massive stars

Short-Term Fourier Transform

Multi-messengers from SNe: GW

Imprints of standing accretion shock instability (SASI) & g-mode of protoneutron star may be found in observed GW.

ex.) Kuroda et al. 2017 Andresen et al. 2017, 2019 O' Connor et al. 2018 Vartanyan et al. 2019 Powell & Muller 2020 Mezzacappa et al. 2020

Short term Fourier trans.

Kuroda et al. 2017

Multi-messengers from SNe: v

• Imprints of standing accretion shock instability (SASI) may be found in observed neutrinos.

Rapidly rotating cases

- Ott et al. 2005 Newtonian + no neutrino
- Ott et al. 2007 full GR + Ye prescription
- Scheidegger et al. 2008, 2010 effective GR + leakage
- Takiwaki et al. 2016, 2018 Newtonian + IDSA

Full GR v radiation-hydrodynamics simulations

PNS Convection

The Ledoux criterion depends on the property of EOS:

$$\left(\frac{\partial\rho}{\partial Y_l}\right)_{\mathbf{P},S} \left(\frac{dY_l}{dr}\right) + \left(\frac{\partial\rho}{\partial S}\right)_{\mathbf{P},Y_l} \left(\frac{dS}{dr}\right) \ge 0$$

stable against convection

Sumiyoshi et al. 2004

GW from PNS Oscillation

$$f_{p} = \frac{N}{2\pi} \approx \frac{1}{2\pi} \frac{GM}{R^{2}} \sqrt{1.1 \frac{m_{n}}{\langle E_{\bar{\nu}_{e}} \rangle}} \left(1 - \frac{GM}{Rc^{2}}\right)^{2}$$
$$N^{2} = \frac{\alpha C_{L}}{\rho h \phi^{4}} \frac{\partial \alpha}{\partial r} \qquad C_{L} = \frac{\partial \rho (1 + \epsilon)}{\partial r} - \left(\frac{d\rho (1 + \epsilon)}{dP}\right)_{s, Y_{e} = \text{const.}} \frac{\partial P}{\partial r}$$
Brunt-Vaisala frequency

Muller et al. 2013

GW from Aspherical Explosion

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources

Effect of EOS on GW (rot. case)

Systematic 2D simulations (1824 models) revealed the two universal relationships.

$$h_+ \sim \frac{GM\Omega^2 R^2}{c^4 D} \sim \frac{T}{|W|} \frac{(GM)^2}{Rc^4 D}$$

Abdikamalov et al. 2014, Richers et al. 2017

Effect of EOS on GW (rot. case)

Systematic 2D simulations (1824 models) revealed the two universal relationships.

$$2\pi f_{\text{peak}}/\sqrt{G\bar{\rho}_c} = 0.5(1+\Omega_{\text{max}}/\sqrt{G\bar{\rho}_c})$$

Abdikamalov et al. 2014, Richers et al. 2017

Mode analysis

$$\mathcal{L}^2 \equiv \frac{\alpha^2}{\psi^4} c_s^2 \frac{l(l+1)}{r^2}$$
 Lamb freq.

$$\mathcal{N}^2 \equiv \frac{\alpha^2}{\psi^4} \mathcal{G}^i \mathcal{B}_i$$
 Brunt-Vaisala freq.

Torres-Forne et al. 2018, 2019a, 2019b

Universal Relation

								2000 -							
								2000		R _{PNS} (0.5s	5)	R _{shock} (0.5	ōs)		
Mode	x	а	$b/10^{5}$	$c/10^{6}$	$d/10^{9}$	R^2	σ								
2f	$\sqrt{M_{\rm shock}/R_{\rm shock}^3}$		1.410 ± 0.004	-4.23 ± 0.06		0.966	45	1500 -	\mathbf{i}	² a.					
${}^{2}p_{1}$	$\sqrt{M_{\rm shock}/R_{\rm shock}^3}$		2.205 ± 0.007	4.63 ± 0.09	•••	0.991	61			92					1000 ലം
$^{2}p_{2}$	$\sqrt{M_{\rm shock}/R_{\rm shock}^3}$		4.02 ± 0.02	7.4 ± 0.3		0.983	123	兰 1000 十	·]	///		+			1000 112
$^{2}p_{3}$	$\sqrt{M_{\rm shock}/R_{\rm shock}^3}$		6.21 ± 0.03	-1.9 ± 0.6		0.979	142	£	\mathbb{N}						
$^{2}g_{1}$	$M_{\rm PNS}/R_{\rm PNS}^2$		8.67 ± 0.03	-51.9 ± 0.5		0.958	205	500 -				2 f			
$^{2}g_{2}$	$M_{\rm PNS}/R_{\rm PNS}^2$		5.88 ± 0.03	-86.2 ± 1.0	4.67 ± 0.08	0.956	85	500							300 Hz
$^{2}g_{3}$	$\sqrt{M_{\rm shock}/R_{\rm shock}^3} p_C/\rho_C^{2.5}$	905 ± 3	-79.9 ± 1.7	-11000 ± 2000		0.925	41								
								0 +)	40	60	80	100	120	140

Torres-Forne et al. 2018, 2019a, 2019b

R_{PNS}, R_{shock} [km]

Method

- Fully general relativistic neutrino radiation hydrodynamics code (Kuroda et al. 2016)
 - BSSN formalism for general relativity
 - Multi-energy neutrino transport with M1 scheme
 - Lattimer & Swesty EOS (K = 220 MeV)
 - 70 M_{sun} zero-metallicity star (Takahashi et al. 2014)
 - initial central rotation rate: $\Omega_0 = 2, 1, 0 \text{ rad/sec}$ c.f.) non rot. sim. showed BH formation at $t_{pb} \sim 230 \text{ms}$

Ω_0 =0rad/sec model

Entropy Evolution

-350 x-z plane -175 z axis (km) 0 175 350 z-y plane x-y plane 175 y axis (km) 0 -175 -350 -350 -175 0 175 350 175 0 -175 -350 x axis (km) z axis (km) Entropy 252.314 ms 8. 10. 12. 14. 16. 18. 20. 6.

S. Shibagaki

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources

 $\Omega_0 = 2 \text{ rad/sec}$

Shock Radius

What is happening?

Ω_0 =2rad/sec

Density Distribution

Shock Radius

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources

S. Shibagaki

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources

25

GW Detectability

Current GW detectors have a potential to detect this GW up to ~Mpc scale!!

Oscillation in event rate found for equatorial observer

Correlation between GW and neutrino!!

m=1 spiral arm ($50 < t_{pb} < 100 \text{ ms}$): $f_v \sim f_{GW}/2$ m=2 spiral arm ($120 < t_{pb} < 270 \text{ ms}$): $f_v \sim f_{GW}$

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources

Shock is stalled like normal non-rotating core-collapse. Two spiral arms are generated (m=2 mode).

Comparison with Ω_0 =1rad/sec model

Weaker low-frequency GW signal in Ω_0 =1rad/sec model

GW Detectability

Neutrino event rate (spectrum) @10kpc

Lower peak amplitude in Ω_0 =1rad/sec, but it still exceeds the noise level!!

Energetic supernova

Nomoto et al. 2005

36

3D MHD Jet SN

Setup

- Progenitor: s20 (Woosley & Heger2007)
- full GR RMHD code (Kuroda et al. 2020, 2021)
- neutrino transport: M1 scheme
- EOS: SFHo (Steiner et al. 2013)
- cylindrical rotation
- dipole magnetic field

Model	$\Omega_0 [rad s^{-1}]$	$\frac{B_0}{\sqrt{4\pi}}$ [10 ¹² G]				
R05B12	0.5	1				
R10B12	1.0	1				
R10B13	1.0	10				
R20B12	2.0	1				

	Model	$\Omega_0 [rad s^{-1}]$	$\frac{B_0}{\sqrt{4\pi}}$ [10 ¹² G]								
Entrony	R05B12	0.5	1								
		R10B12	1.0	1							
		R10B13	1.0	10							
		R20B12	2.0	1							
R10B12	R	20B12									
$t_{\rm pb} = 105.5 {\rm ms}$	25 3 $t_{\rm pb} =$	63.4ms	25								
2	20 2		-20								
				[^B]							
			15 ^{.5}	$\frac{\sqrt{2}}{2}$							
	10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	10 ⁴	10.	trop							
			F	E							
-2	⁻⁵ -2		5	منام مار من من المسر المسر المسر المسر من من مار من من مار المسر ا							
	0 -3 2 2 1	01031		e de la construcción de la construc							
-3 -2 -1 0 1 2 3 $x [10^2 \text{km}]$	-3 -2 -1- 2	10^{2} km]		R04	SB12						
$t_{\rm rb} = 365.9 {\rm ms}$	$t_{ m nb} =$	544.1ms '		R02)B12 ·····						
20	25 20 ^{pb}		25	R10)B13						
	20 10	10 ²	20	R 20	JB 12 —						
10-		0	100 2	2 <u>0</u> 0 300	400 50						
			-15	$\stackrel{\square}{\geq} t_{\rm pb} [{\rm ms}]$							
	10 III 0 III 0		-10	outro							
-10	L ^出 -10-	7									
	5	6 -	5								
-2020 -10 0 10 20	-20 -20 -10	0 5 − 10	20/0								
$x [10^2 \text{km}]$		$[10^{2} \text{km}]$	/	R10	B12						
Shihaga	Shihaqaki Kuroda Kotaka Takiwaki Fischer $(2024)^{R10B13}_{R10B13}$										
Silibayaki, Kuluud, Kuluud, Kulake, Iakiwaki, Iiscilei (2024) $R_{20B12} = -$											

S. Shibagaki

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources

39

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer (2024)

GW Detectability

equatorial observer

The neutrino component is dominated over the jet component at low frequencies.

Shibagaki, Kuroda, Kotake, Takiwaki, Fischer, accepted (2024)

Summary

- 3D GR v -radiation hydrodynamics simulation of 70 solar mass rapidly rotating stellar core collapse
- The protoneutron star deformation due to rotation changes relationship between GW and neutrinos on their spectrograms.
 - m=1 deformation : $f_v \sim f_{GW}/2$
 - m=2 deformation : $f_v \sim f_{GW}$
- This indicates that joint observation of GW and neutrino could give us a hint of the protoneutron star deformation.
- Fully general relativistic 3D neutrino radiationmagnetohydrodynamics simulations of rotating magnetized core collapse
- GW from anisotropic neutrino emission may hide GW from hydrodynamic motion.