

Probing the QCD phase transition within various astrophysical scenarios

Noshad Khosravi Largani Brainstorming workshop

Weber, F. & Negreiros, Rodrigo & Rosenfield, Philip. (2007)

Khosravi Largani et al., A&A 687, A245 (2024)

Khosravi Largani et al., A&A 687, A245 (2024)

 $M_{\rm NS} = 1.55~M_{\odot}$

Khosravi Largani et al., A&A 687, A245 (2024)

Weak process 1 $e^- + p \rightleftharpoons n + \nu_e$ $e^+ + n \rightleftharpoons p + \bar{\nu}_e$ 2 3 $n \rightleftharpoons p + e^- + \bar{\nu}_e$ $\nu_e + (A, Z - 1) \rightleftharpoons (A, Z) + e^-$ 4 $\nu + N \rightleftharpoons \nu' + N$ 5 $\nu + (A, Z) \rightleftharpoons \nu' + (A, Z)$ 6 $\nu + e^{\pm} \rightleftharpoons \nu' + e^{\pm}$ 7 $e^- + e^+ \rightleftharpoons \nu + \bar{\nu}$ 8 9 $N + N \rightleftharpoons \nu + \bar{\nu} + N + N$ $\nu_e + \bar{\nu}_e \rightleftharpoons \nu_{\mu/\tau} + \bar{\nu}_{\mu/\tau}$ 10 $\nu = \{\nu_e, \bar{\nu}_e, \nu_{\mu/\tau}, \bar{\nu}_{\mu/\tau}\} \text{ and } N = \{n, p\}$

Khosravi Largani et al., A&A 687, A245 (2024)

$$Q_{ij} = \int \rho(r)(3r_ir_j - |\vec{r}|^2\delta_{ij})d^3r$$
$$h_{ij} = \frac{2G}{c^4r}\frac{d^2}{dt^2}Q_{ij}$$

$$\partial_r \eta_r = A \eta_r + B \eta_\perp,$$

$$\partial_r \eta_\perp = C \eta_r + D \eta_\perp.$$

g-modes:

$$\partial_r \eta_r + \left[\frac{2}{r} + 6\frac{\partial_r \psi}{\psi}\right] \eta_r - \frac{l(l+1)}{r^2} \eta_\perp = 0,$$

 $\partial_r \eta_\perp - \left(1 - \frac{\mathcal{N}^2}{\sigma^2}\right) \eta_r + \left[\partial_r \ln q - G\right] \eta_\perp = 0.$

Torres-Forne et al. (2019), Mon. Not. Roy. Astron. Soc. Torres-Forne et al. (2018), Mon. Not. Roy. Astron. Soc.

$$\begin{split} \rho &\to \rho + \delta \rho \\ \delta \rho &= \delta \rho + \xi^{i} \partial_{i} \rho \\ \partial_{t} \xi^{i} &= \delta v^{*i} \\ \delta P &= \delta \hat{P} Y_{lm} e^{-i\sigma t}, \\ \xi^{r} &= \eta_{r} Y_{lm} e^{-i\sigma t}, \\ \xi^{\theta} &= \eta_{\perp} \frac{1}{r^{2}} \partial_{\theta} Y_{lm} e^{-i\sigma t}, \\ \xi^{\varphi} &= \eta_{\perp} \frac{1}{r^{2} \sin^{2} \theta} \partial_{\varphi} Y_{lm} e^{-i\sigma t}, \end{split}$$

Types of fluid modes (non-radial oscillations of non-rotating stars)

p-modes

- Pressure modes ($l \ge 0$)
- Restoring force = pressure
- Standing sound waves
- Lamb frequency (*L*):

$$L^2 \approx c_s^2 \frac{l(l+1)}{r^2}$$

- Mode frequency

$$f \propto c_s \propto \sqrt{\overline{\rho}} \propto \sqrt{M/R^3}$$

f-mode

- Fundamental mode ($l \ge 2$)
- Node-less mode (simple case)
- Lowest-order p-mode?

$$L^2 \approx c_s^2 \frac{l(l+1)}{r^2}$$

Mode frequency

$$f \propto c_s \propto \sqrt{\overline{\rho}} \propto \sqrt{M/R^3}$$

g-modes

- Gravity modes ($l \ge 1$)
- Restoring force = buoyancy
- Brunt-Väisälä frequency (*N*)

$$N^{2} \approx \frac{\partial \Phi}{\partial r} \frac{1}{\rho} \left(\frac{1}{c_{s}^{2}} \frac{\partial P}{\partial r} - \frac{\partial \rho}{\partial r} \right)$$

Mode frequency

$$f \propto \frac{M}{R^2} \times \sqrt{\frac{(\Gamma - 1)m_n}{\Gamma k_b T}}$$

 $M_{\rm NS} = 1.55~M_{\odot}$

Khosravi Largani et al., A&A 687, A245 (2024)

Credit: NASA images from Hubble telescope

Black-hole formation: Two distinct scenarios

Jakobus et al., MNRAS, 516, 2554 (2022) Khosravi Largani et al., ApJ 946, 143 (2024)

v – signal @ Super-Kamiokande (d ~ 10 kpc)

Fischer et al., Nature Astron. 2, 980 (2018)

Kuroda et al., ApJ 924, 38 (2022)

Kuroda et al., ApJ 924, 38 (2022)

Khosravi Largani et al., ApJ 946, 143 (2024)

Progenitor	EOS	t_{burst}	$L_{\overline{\nu}_e, \mathrm{peak}}$	$\langle E_{\overline{\nu}_e} \rangle$	E_{expl}
	RDF	$[\mathbf{S}]$	$[10^{53} \text{ erg s}^{-1}]$	[MeV]	$[10^{51} \text{ erg}]$
s25a28	1.9	0.345	6.36	38.59	4.21
s30a28	1.2	1.056	4.80	56.21	1.93
s30a28	1.8	0.833	5.64	42.21	2.66
s30a28	1.9	0.580	8.30	43.49	3.28
s40a28	1.2	0.895	4.15	38.60	1.59
s40a28	1.8	0.717	2.06	35.77	1.23
s40a28	1.9	0.491	4.28	39.94	3.31
s40.0	1.8	0.694	5.61	43.03	2.32
s40.0	1.9	0.443	8.52	48.69	3.79
u50	1.1	1.227	3.90	26.55	2.3
u50	1.2	0.819	5.37	36.19	3.8
s75.0	1.2	1.803	3.06	34.35	1.0

Thank you