Equation of state of neutron star matter in a relativistic density functional approach

Stefan Typel

Brainstorming workshop: Deciphering the equation of state using gravitational waves from astrophysical sources Institute of Theoretical Physics, University of Warsaw August 5 - 7, 2024

- Introduction
- Generalized Relativistic Energy Density Functional
 - Degrees of Freedom, In-Medium Interaction
 - Lagrangian Density, Approximations, Energy
 - Tensor Couplings
- Model Parameters
- Results
 - Nuclei, Nuclear Matter, Neutron Stars
- Correlations and Clusters
- Compact Star Matter
- Conclusions

Introduction

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 3

Theory for Nuclei and Nuclear Matter

different approaches

- hadronic 'ab-initio' methods with realistic interactions
 - interactions: potential models, meson exchange, chiral forces, RG evolved, ... (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - many-body methods: BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, ...
- QCD-based/inspired descriptions
- effective field theories (EFT)
- energy density functionals (EDF)
- shell models, algebraic models, cluster models, ...

Theory for Nuclei and Nuclear Matter

different approaches

- hadronic 'ab-initio' methods with realistic interactions
 - interactions: potential models, meson exchange, chiral forces, RG evolved, ... (Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, ...)
 - many-body methods: BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, ...
- QCD-based/inspired descriptions
- effective field theories (EFT)
- energy density functionals (EDF)
- shell models, algebraic models, cluster models, ...

challenge:

description of atomic nuclei and nuclear matter in a unified model

- methods not always applicable (methodological/technical limitations)
- \Rightarrow here: generalized relativistic energy density functional

Energy Density Functionals for Nuclei and Nuclear Matter

various types

- nonrelativistic or relativistic/covariant
- often derived from mean-field models in different approximations (Hartree, Hartree-Fock, Hartree-Fock-Bogoliubov)
- nucleons (hyperons, other baryons, clusters, ...) as degrees of freedom

Energy Density Functionals for Nuclei and Nuclear Matter

various types

- nonrelativistic or relativistic/covariant
- often derived from mean-field models in different approximations (Hartree, Hartree-Fock, Hartree-Fock-Bogoliubov)
- nucleons (hyperons, other baryons, clusters, ...) as degrees of freedom

examples

- Skyrme Hartree-Fock models
 - zero-range two- and three-body interactions
- Gogny Hartree-Fock models
 - finite-range two-body interaction, three-body as in Skyrme
- relativistic models
 - field-theoretical approach, mean-field approximation
 - interaction by meson exchange (σ , ω , ρ , ...)
 - medium effects:
 - nonlinear models (selfcoupling of mesons)
 - density dependent couplings

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 8

relativistic mean-field approach

with density dependent minimal meson-nucleon couplings and meson-nucleon tensor couplings (new!) details: see S. Typel and S. Shlomo, arXiv:2408.00425

relativistic mean-field approach

with density dependent minimal meson-nucleon couplings and meson-nucleon tensor couplings (new!)

degrees of freedom

- baryon: nucleons, hyperons (optional)
 - \Rightarrow quasiparticles with effective mass $M_i^* = M_i S_i$ and effective chemical potential $\mu_i^* = \mu_i - V_i$
- mesons: σ , ω , $\rho \Rightarrow$ treated as classical fields
- Ight clusters (d, t, ³He, α), heavy clusters

relativistic mean-field approach

with density dependent minimal meson-nucleon couplings and meson-nucleon tensor couplings (new!)

degrees of freedom

- baryon: nucleons, hyperons (optional)
 - \Rightarrow quasiparticles with effective mass $M_i^* = M_i S_i$ and effective chemical potential $\mu_i^* = \mu_i - V_i$
- mesons: σ , ω , $\rho \Rightarrow$ treated as classical fields
- light clusters (d, t, ³He, α), heavy clusters

effective in-medium interaction

- phenomenological approach
 - \Rightarrow model parameters to be determined
- scalar (S_i) and vector (V_i) potentials with rearrangement contributions ⇒ thermodynamic consistency

Particles, Fields, and Lagrangian Density

particles and fields

- **nucleons** (Ψ_p, Ψ_n) with (vacuum) masses M_p, M_n
- photons (A_{μ}) and mesons (σ , ω_{μ} , $\vec{\rho}_{\mu}$) with masses M_{σ} , M_{ω} , M_{ρ}
- field tensors $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$, $G_{\mu\nu} = \partial_{\mu}\omega_{\nu} \partial_{\nu}\omega_{\mu}$, $\vec{H}_{\mu\nu} = \partial_{\mu}\vec{\rho}_{\nu} \partial_{\nu}\vec{\rho}_{\mu}$

Particles, Fields, and Lagrangian Density

particles and fields

- **nucleons** (Ψ_p, Ψ_n) with (vacuum) masses M_p, M_n
- photons (A_{μ}) and mesons (σ , ω_{μ} , $\vec{\rho}_{\mu}$) with masses M_{σ} , M_{ω} , M_{ρ}
- field tensors $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$, $G_{\mu\nu} = \partial_{\mu}\omega_{\nu} \partial_{\nu}\omega_{\mu}$, $\vec{H}_{\mu\nu} = \partial_{\mu}\vec{\rho}_{\nu} \partial_{\nu}\vec{\rho}_{\mu}$
- Lagrangian density

$$\begin{split} \mathcal{L} &= \sum_{\eta=\rho,n} \overline{\Psi}_{\eta} \left(\gamma_{\mu} i \mathcal{D}_{\eta}^{\mu} - \sigma_{\mu\nu} \mathcal{T}^{\mu\nu} - \mathcal{M}_{\eta} \right) \Psi_{\eta} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ \frac{1}{2} \left(\partial^{\mu} \sigma \partial_{\mu} \sigma - M_{\sigma}^{2} \sigma^{2} - \frac{1}{2} G_{\mu\nu} G^{\mu\nu} + M_{\omega}^{2} \omega_{\mu} \omega^{\nu} - \frac{1}{2} \vec{H}_{\mu\nu} \cdot \vec{H}^{\mu\nu} + M_{\rho}^{2} \vec{\rho}_{\mu} \vec{\rho}^{\nu} \right) \end{split}$$

- covariant derivative $i\mathcal{D}^{\mu}_{\eta} = i\partial^{\mu} \Gamma_{\omega}\omega^{\mu} \Gamma_{\rho}\vec{\rho}^{\mu}\cdot\vec{\tau} \Gamma_{\gamma}A^{\mu}\frac{1+\tau_{3\eta}}{2}$
- mass operator $\mathcal{M}_{\eta} = M_{\eta} \Gamma_{\sigma}\sigma$
- tensor contribution $\mathcal{T}^{\mu\nu} = \frac{\Gamma_{T\omega}}{2M_p} \mathcal{G}^{\mu\nu} + \frac{\Gamma_{T\rho}}{2M_p} \vec{H}^{\mu\nu} \cdot \vec{\tau}$
- couplings Γ_{ω} , Γ_{ρ} , Γ_{σ} (depend on baryon density n_b) and $\Gamma_{T\omega}$, $\Gamma_{T\rho}$ (constants)

Field Equations

• use Euler-Lagrange equations $\frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}$ for all fields $\phi = \Psi_{\eta}$, $\overline{\Psi}_{\eta} = \Psi_{\eta}^{\dagger} \gamma^{0}$, σ , ω_{μ} , $\vec{\rho}_{\mu}$

Field Equations

• use Euler-Lagrange equations $\frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}$ for all fields $\phi = \Psi_{\eta}$, $\overline{\Psi}_{\eta} = \Psi_{\eta}^{\dagger} \gamma^{0}$, σ , ω_{μ} , $\vec{\rho}_{\mu}$

apply approximations

- photon/meson fields ⇒ classical fields
- Hartree approximation for many-body wave function of nucleons
- no-sea approximation ⇒ negative-energy states not considered
- only static solutions (no time dependence), no change of isospin
 only one component of vector fields remains

Field Equations

- use Euler-Lagrange equations $\frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}$ for all fields $\phi = \Psi_{\eta}$, $\overline{\Psi}_{\eta} = \Psi_{\eta}^{\dagger} \gamma^{0}$, σ , ω_{μ} , $\vec{\rho}_{\mu}$
- apply approximations
 - photon/meson fields \Rightarrow classical fields
 - Hartree approximation for many-body wave function of nucleons
 - no-sea approximation ⇒ negative-energy states not considered
 - only static solutions (no time dependence), no change of isospin
 - \Rightarrow only one component of vector fields remains
- self-consistent solution of coupled field equations
 - nuclear matter
 - meson fields: constants, field equations trivial
 - nucleons: modified plane-wave states
 - nuclei
 - meson fields determined using expansion in Riccati-Bessel functions
 - numerical solution of Dirac equation with Lagrange-mesh method (see, e.g, S. Typel, Front. Phys. 6 (2018) 73)

Energies

energy density from energy-momentum tensor

$$arepsilon(ec{r}) = \langle T^{00}
angle \qquad T^{\mu
u} = \sum_{\phi} rac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial^{
u}\phi - g^{\mu
u}\mathcal{L}$$

Energies

energy density from energy-momentum tensor

$$arepsilon(ec{r}) = \langle T^{00}
angle \qquad T^{\mu
u} = \sum_{\phi} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial^{
u}\phi - g^{\mu
u}\mathcal{L}$$

- nuclei: total energy $E = \int d^3 r \, \varepsilon(\vec{r})$ by numerical integration over spatial coordinates
 - correction for breaking of symmetries (cm motion, rotation for non-spherical nuclei)

Energies

energy density from energy-momentum tensor

$$arepsilon(ec{r}) = \langle T^{00}
angle \qquad T^{\mu
u} = \sum_{\phi} rac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial^{
u}\phi - g^{\mu
u}\mathcal{L}$$

nuclei: total energy $E = \int d^3 r \, \varepsilon(\vec{r})$

by numerical integration over spatial coordinates

- correction for breaking of symmetries (cm motion, rotation for non-spherical nuclei)
- nuclear matter: energy per nucleon $E/A = \epsilon/n_b M_{nucleon}$ with average nucleon mass $M_{nucleon}$
 - analytic expression for temperature zero
 - particles & antiparticles at finite temperature
 - no contribution of tensor terms

Tensor Couplings

previous studies:

- already suggested in early applications of relativistic mean-field models (see, e.g., M. Rufa et al., Phys. Rev. C 38 (1988) 390), but not explored extensively
- some initial parameterizations without fine tuning in
 S. Typel and D. Alvear Terrero, Eur. Phys. J. A 56 (2020) 160
- recent study of effects, without fully selfconsistent fit of parameters in M. Salinas and J. Piekarewicz, Phys. Rev. C 109 (2024) 045807

Tensor Couplings

previous studies:

- already suggested in early applications of relativistic mean-field models (see, e.g., M. Rufa et al., Phys. Rev. C 38 (1988) 390), but not explored extensively
- some initial parameterizations without fine tuning in
 S. Typel and D. Alvear Terrero, Eur. Phys. J. A 56 (2020) 160
- recent study of effects, without fully selfconsistent fit of parameters in M. Salinas and J. Piekarewicz, Phys. Rev. C 109 (2024) 045807
- relevance of tensor couplings:
 - adds new freedom in description of surface properties of nuclei
 - releases strong correlation: effective mass
 - \leftrightarrow strength of σ meson field
 - $\leftrightarrow \text{size of spin-orbit splittings}$
 - acts only in nuclei but not in homogenous nuclear matter

Model Parameters

Parameterisation of Density Dependence of Couplings

 general ansatz: Γ_m(n_b) = Γ_m(n_{ref}) f_m(x) with coupling Γ_m(n_{ref}) at reference density n_{ref} = n_{sat} and function f_m(x) with x = n_b/n_{ref}

Parameterisation of Density Dependence of Couplings

- general ansatz: Γ_m(n_b) = Γ_m(n_{ref}) f_m(x) with coupling Γ_m(n_{ref}) at reference density n_{ref} = n_{sat} and function f_m(x) with x = n_b/n_{ref}
- functional forms as introduced in
 S. Typel and H.H. Wolter, Nucl. Phys. A 656 (1999) 331
 - isoscalar mesons ($m = \sigma, \omega$) \Rightarrow rational function

$$f_m(x) = a_m \frac{1 + b_m (x + d_m)^2}{1 + c_m (x + d_m)^2}$$
 with constraints $f(1) = 1$ $f''(0) = 0$

• isovector meson ($m = \rho$) \Rightarrow exponential function

$$f_m(x) = \exp\left[-a_m\left(x-1\right)\right]$$

Determination of Model Parameters I

- fit of parameters to properties of nuclei ⇒ experimental observables
 - not to indirectly obtained quantities, e.g., nuclear matter parameters
 - not to constraints from other theories, e.g., \chi EFT

Determination of Model Parameters I

- fit of parameters to properties of nuclei \Rightarrow experimental observables
 - not to indirectly obtained quantities, e.g., nuclear matter parameters
 - not to constraints from other theories, e.g., χEFT
- selection of observables O_i (i = 1, ..., 7)
 - nuclear binding energies B
 - quantities related to charge form factor
 - charge radius r_c , diffraction radius r_d , surface thickness σ
 - rms radii r_n of single valence neutron above closed shells
 - spin-orbit splittings ΔE_{so}
 - constraint isoscalar monopole giant resonance energies E_{mono}

Determination of Model Parameters I

- fit of parameters to properties of nuclei ⇒ experimental observables
 - not to indirectly obtained quantities, e.g., nuclear matter parameters
 - not to constraints from other theories, e.g., χEFT
- selection of observables O_i (i = 1, ..., 7)
 - nuclear binding energies B
 - quantities related to charge form factor
 - charge radius r_c , diffraction radius r_d , surface thickness σ
 - rms radii r_n of single valence neutron above closed shells
 - spin-orbit splittings ΔE_{so}
 - constraint isoscalar monopole giant resonance energies E_{mono}
- selection of nuclei, mostly (semi-)closed-shell nuclei
 - ¹⁶O, ¹⁷O, ²⁴O, ²⁸O, ³⁴Si, ³⁴Ca, ⁴⁰Ca, ⁴¹Ca, ⁴⁸Ca, ⁴⁸Ni, ⁵⁶Ni, ⁶⁸Ni, ⁷⁸Ni, ⁹⁰Zr, ¹⁰⁰Sn, ¹¹⁶Sn, ¹³²Sn, ¹⁴⁰Ce, ¹⁴⁴Sm, ²⁰⁸Pb
 - \Rightarrow 20 nuclei with $N_{\text{data}} =$ 50 data points

Determination of Model Parameters II

minimisation of objective function

$$\chi^{2}(\{p_{k}\}) = \sum_{i=1}^{N_{obs}} \chi^{2}_{i}(\{p_{k}\}) \qquad \chi^{2}_{i}(\{p_{k}\}) = \sum_{n=1}^{N^{(obs)}_{i}} \left[\frac{\mathcal{O}^{(model)}_{i}(n, \{p_{k}\}) - \mathcal{O}^{(exp)}_{i}(n)}{\Delta \mathcal{O}_{i}}\right]^{2}$$

by variation of parameters $\{p_k\}$

Determination of Model Parameters II

minimisation of objective function

$$\chi^{2}(\{p_{k}\}) = \sum_{i=1}^{N_{obs}} \chi^{2}_{i}(\{p_{k}\}) \qquad \chi^{2}_{i}(\{p_{k}\}) = \sum_{n=1}^{N^{(obs)}_{i}} \left[\frac{\mathcal{O}^{(model)}_{i}(n, \{p_{k}\}) - \mathcal{O}^{(exp)}_{i}(n)}{\Delta \mathcal{O}_{i}}\right]^{2}$$

by variation of parameters $\{p_k\}$

readjustment of uncertainties ΔO_i so that

$$\frac{\chi^2(\{\boldsymbol{p}_k\})}{N_{\text{dof}}} = 1 \qquad \frac{\chi^2_i(\{\boldsymbol{p}_k\})}{N_i^{(\text{obs})}} = \frac{\chi^2(\{\boldsymbol{p}_k\})}{N_{\text{data}}}$$

with $N_{dof} = N_{data} - N_{par} \Rightarrow$ reasonable model uncertainties $(\Delta O_i = \left[(\Delta O_i^{(exp)})^2 + (\Delta O_i^{(fit)})^2 \right]^{1/2}$ for binding energies)

Determination of Model Parameters III

model parameters

- M_{σ} (all other masses fixed)
- $\Gamma_{\sigma}(n_{\text{ref}}), \Gamma_{\omega}(n_{\text{ref}}), \Gamma_{\rho}(n_{\text{ref}})$, and their density dependence (5 parameters) • $\Gamma_{T_{\omega}}, \Gamma_{T_{\rho}}$
- $\Rightarrow N_{\rm par} = 11 (9)$ for model with (without) tensor couplings

no direct fit of all original model parameters

 $\hfill use nuclear matter parameters <math display="inline">\Rightarrow$ quasi-analytic conversion

Determination of Model Parameters III

model parameters

- M_{σ} (all other masses fixed)
- **α** $\Gamma_{\sigma}(n_{ref}), \Gamma_{\omega}(n_{ref}), \Gamma_{\rho}(n_{ref})$, and their density dependence (5 parameters) **α** $\Gamma_{T\omega}, \Gamma_{T\rho}$
- \Rightarrow N_{par} = 11 (9) for model with (without) tensor couplings

no direct fit of all original model parameters

 $\hfill \ensuremath{\,\circ}$ use nuclear matter parameters \Rightarrow quasi-analytic conversion

technical approach:

combination of simplex method and diagonalisation of second derivative of $\chi^2 \Rightarrow$ direction of χ^2 reduction

determination of uncertainties (and correlation coefficients) from

$$\mathcal{M}_{ij} = \frac{1}{2} \left. \frac{\partial^2 \chi^2}{\partial p_i \partial p_j} \right|_{min} \qquad \overline{\Delta \mathcal{O}_1 \Delta \mathcal{O}_2} = \sum_{ij} \left. \frac{\partial \mathcal{O}_1}{\partial p_i} (\mathcal{M}^{-1})_{ij} \frac{\partial \mathcal{O}_2}{\partial p_j} \right|_{min} \qquad \Delta \mathcal{O} = \sqrt{\overline{\Delta \mathcal{O} \Delta \mathcal{O}}}$$

Parameterisation I

TECHNISCHE UNIVERSITÄT DARMSTADT

models

- DDT: full model with tensor couplings \Rightarrow base model, fixes uncertainties ΔO_i
- variation DDTC:
 - reduction of Coulomb field ($Z \rightarrow Z 1$) to consider exchange term approximately (not discussed here)
- DD2: previous, often used parameterisation
 - (S. Typel et al., Phys. Rev. C 81 (2010) 015803)

Parameterisation I

models

- DDT: full model with tensor couplings \Rightarrow base model. fixes uncertainties ΔO_i
- variation DDTC:

reduction of Coulomb field ($Z \rightarrow Z - 1$) to consider exchange term approximately (not discussed here)

DD2: previous, often used parameterisation

(S. Typel et al., Phys. Rev. C 81 (2010) 015803)

self-consistent model uncertainties

\mathcal{O}_i	B	r _c	r _d	σ	<i>r_n</i>	ΔE_{so}	E _{mono}
	[MeV]	[fm]	[fm]	[fm]	[fm]	[MeV]	[MeV]
$\Delta \mathcal{O}^{(\mathrm{fit})}_i$	0.619311	0.013364	0.017155	0.026851	0.008249	0.240832	0.430714

Parameterisation II

TECHNISCHE UNIVERSITÄT DARMSTADT

density dependence of couplings

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 34

Results

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 35

Results Nuclei I

Results Nuclei I

binding energies particular $B_{theory}(Z,N) - B_{experiment}(Z,N)$ [MeV] DDT improvements DD2 with DDT: ²⁸O less bound than ²⁴O better energy difference of 0 mirror nuclei ₹Ŧ Ŧ ³⁴Si - ³⁴Ca ⁴⁸Ca - ⁴⁸Ni -4 $\stackrel{\scriptstyle 1_6}{\overset{\scriptstyle 24}{}_{0}} \stackrel{\scriptstyle 28}{\overset{\scriptstyle 34}{}_{0}} \stackrel{\scriptstyle 34}{\overset{\scriptstyle 34}{}_{0}} \stackrel{\scriptstyle 40}{\overset{\scriptstyle 48}{}_{0}} \stackrel{\scriptstyle 48}{\overset{\scriptstyle 8}{}_{0}} \stackrel{\scriptstyle 88}{\overset{\scriptstyle 56}{}_{0}} \stackrel{\scriptstyle 68}{\overset{\scriptstyle 78}{}_{0}} \stackrel{\scriptstyle 90}{\overset{\scriptstyle 100}{}_{0}} \stackrel{\scriptstyle 132}{\overset{\scriptstyle 140}{}_{0}} \stackrel{\scriptstyle 208}{\overset{\scriptstyle 208}{}_{0}}$

charge radii, diffraction radii, surface thicknesses

Results Nuclei III

charge radii, diffraction radii, surface thicknesses

Results Nuclear Matter I

equation of state

Results Nuclear Matter I

equation of state and symmetry energy

Results Nuclear Matter II

nuclear matter parameters

energy per nucleon

$$\mathsf{E}/\mathsf{A}(n_b, \alpha) = \mathsf{E}_0(n_b) + \mathsf{E}_{\mathrm{sym}}(n_b)\alpha^2 + \dots$$
 with $\alpha = (n_n - n_p)/n_b$

Results Nuclear Matter II

nuclear matter parameters

energy per nucleon

$$E/A(n_b, \alpha) = E_0(n_b) + E_{sym}(n_b)\alpha^2 + \dots$$
 with $\alpha = (n_n - n_p)/n_b$

energy per nucleon of symmetric nuclear matter

$$E_0(n_b) = -B + \frac{1}{2}Kx^2 + \frac{1}{6}Qx^3 + \dots$$
 with $x = (n_b - n_{sat})/(3n_{sat})$

B: binding energy at saturation, *K*: incompressibility coefficient, *Q*: skewness parameter

Results Nuclear Matter II

nuclear matter parameters

energy per nucleon

$$E/A(n_b, \alpha) = E_0(n_b) + E_{sym}(n_b)\alpha^2 + \dots$$
 with $\alpha = (n_n - n_p)/n_b$

energy per nucleon of symmetric nuclear matter

$$E_0(n_b) = -B + \frac{1}{2}Kx^2 + \frac{1}{6}Qx^3 + \dots$$
 with $x = (n_b - n_{sat})/(3n_{sat})$

B: binding energy at saturation, K: incompressibility coefficient,

Q: skewness parameter

symmetry energy

$$E_{\rm sym}(n_b) = J + Lx + \frac{1}{2}K_{\rm sym}x^2 + \dots$$

J: symmetry energy at saturation, L: slope parameter, K_{sym} : symmetry incompressibility coefficient

Results Nuclear Matter III

nuclear matter parameters

n_{sat}: saturation density

M^{*}_{nuc} (Dirac) effective nucleon mass at saturaton

	B	<i>K</i>	Q	J	L	K _{sym}	n _{sat}	$M_{ m nuc}^*$
	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]	[fm ⁻³]	[$M_{ m nuc}$]
DDT	16.23	229.20	88.57	31.21	34.24	-69.54	0.15493	0.65729
	±0.03	±7.99	±230.06	±0.50	±4.33	±15.45	±0.00076	±0.00132
DD2	16.03	242.72	168.77	31.67	55.03	-93.22	0.14908	0.56252

special features of DDT:

- small values of K and L
- large values of n_{sat} and M^{*}_{nuc}

Results Neutron Stars I

properties of non-rotating, spherical neutron stars

 solve Tolman-Oppenheimer-Volkoff equation (R. Tolman, Phys. Rev. 55 (1939) 364,

J.R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55 (1939) 374)

$$\frac{dP}{dr} = -G\frac{M(r)\varepsilon(r)}{r^2} \left[1 + \frac{P(r)}{\varepsilon(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)}\right] \left[1 - \frac{2GM(r)}{r}\right]^{-1}$$

with mass inside radius R

$$M(r) = 4\pi \int_0^r dr' (r')^2 \varepsilon(r')$$

for given central density $n_{central} \Rightarrow$ mass-radius relation

Results Neutron Stars I

properties of non-rotating, spherical neutron stars

 solve Tolman-Oppenheimer-Volkoff equation (R. Tolman, Phys. Rev. 55 (1939) 364,

J.R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55 (1939) 374)

$$\frac{dP}{dr} = -G\frac{M(r)\varepsilon(r)}{r^2} \left[1 + \frac{P(r)}{\varepsilon(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)}\right] \left[1 - \frac{2GM(r)}{r}\right]^{-1}$$

with mass inside radius R

$$M(r) = 4\pi \int_0^r dr' (r')^2 \varepsilon(r')$$

for given central density $n_{central} \Rightarrow$ mass-radius relation

essential ingredient: equation of state (ε, P, hadrons & leptons) of charge-neutral matter in β equilibrium, proper crust EOS

Results Neutron Stars II

mass-radius relation

open symbols: multiples of saturation density

Results Neutron Stars II

mass-radius relation

Correlations anc Clusters

Correlations and Composite Particles in Nuclear Matter

- interacting many-body system ⇒ many-body correlations
 - at lowest densities: only two-body correlations relevant
 - with increasing density: three-, four-, many-body correlations
 ⇒ formation of many-body bound states: nuclei = clusters
 - with increasing temperature: competition with entropy

Correlations and Composite Particles in Nuclear Matter

- interacting many-body system ⇒ many-body correlations
 - at lowest densities: only two-body correlations relevant
 - with increasing density: three-, four-, many-body correlations
 ⇒ formation of many-body bound states: nuclei = clusters
 - with increasing temperature: competition with entropy

composite particles

- at high densities: action of Pauli principle
 - \Rightarrow blocking of states
 - \Rightarrow suppression of correlations
 - \Rightarrow dissolution of clusters
- theoretical description?

Correlations and Composite Particles in Nuclear Matter

- interacting many-body system ⇒ many-body correlations
 - at lowest densities: only two-body correlations relevant
 - with increasing density: three-, four-, many-body correlations
 ⇒ formation of many-body bound states: nuclei = clusters
 - with increasing temperature: competition with entropy

composite particles

- at high densities: action of Pauli principle
 - \Rightarrow blocking of states
 - \Rightarrow suppression of correlations
 - \Rightarrow dissolution of clusters
- theoretical description?
- physical versus chemical picture
 degrees of freedom

Description of Correlations at Low Densities

■ finite temperature, exact limit ⇒ virial equation of state (VEOS)

(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;

C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

Description of Correlations at Low Densities

• finite temperature, exact limit \Rightarrow virial equation of state (VEOS)

(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;

C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

simplification of VEOS

- \Rightarrow nuclear statistical equilibrium (NSE) \Rightarrow chemical picture
 - consider nucleons and all nuclei (ground and excited states)
 - no contributions from continuum, no explicit interaction

Description of Correlations at Low Densities

• finite temperature, exact limit \Rightarrow virial equation of state (VEOS)

(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;

C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

simplification of VEOS

 \Rightarrow nuclear statistical equilibrium (NSE) \Rightarrow chemical picture

- consider nucleons and all nuclei (ground and excited states)
- no contributions from continuum, no explicit interaction

extension of VEOS

\Rightarrow generalized (cluster) Beth-Uhlenbeck approach \Rightarrow physical picture

(G. Röpke, L. Münchow, and H. Schulz, NPA 379 (1982) 536,

M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. 202 (1990) 57,

G. Röpke, N.-U. Bastian et al., NPA 897 (2013) 70)

 \Rightarrow suppression of cluster formation with increasing density

Cluster Formation and Dissolution

TECHNISCHE UNIVERSITÄT DARMSTADT

example: deuteron as two-body correlation

- n-p-d system, no interactions
- no deuteron suppression at high densities in NSE or standard VEOS

Cluster Formation and Dissolution

example: deuteron as two-body correlation

- n-p-d system, no interactions
- no deuteron suppression at high densities in NSE or standard VEOS

theoretical approaches for cluster suppression

geometric picture (finite size of particles)

\Rightarrow excluded-volume mechanism

- applications to compact star matter
 (M. Hempel and J. Schaffner-Bielich, NPA 837 (2010) 210;
 S. Banik et al., ApJ. Suppl. 214 (2014) 22;
 T. Fischer et al., EPJ A 50 (2014) 46, M. Hempel, PRC 91 (2015) 055897)
- generalized formulation, different interpretation (S. Typel, EPJ A 52 (2016) 16)

symmetric n-p-d matter

TECHNISCHE UNIVERSITÄT DARMSTADT

Cluster Formation and Dissolution

example: deuteron as two-body correlation

- n-p-d system, no interactions
- no deuteron suppression at high densities in NSE or standard VEOS

theoretical approaches for cluster suppression

geometric picture (finite size of particles)

\Rightarrow excluded-volume mechanism

- applications to compact star matter
 (M. Hempel and J. Schaffner-Bielich, NPA 837 (2010) 210;
 S. Banik et al., ApJ. Suppl. 214 (2014) 22;
 T. Fischer et al., EPJ A 50 (2014) 46; M. Hempel, PRC 91 (2015) 055897)
- generalized formulation, different interpretation (S. Typel, EPJ A 52 (2016) 16)
- medium modification of cluster properties
 mass shifts
 - action of Pauli principle \Rightarrow blocking of states
 - density, temperature, momentum dependence

symmetric n-p-d matter

Mass Shifts I

TECHNISCHE UNIVERSITÄT DARMSTADT

concept applies to composite particles: clusters

- light and heavy nuclei
- nucleon-nucleon correlations in continuum
 - \Rightarrow medium dependent resonances

effective change of masses/binding energies

Mass Shifts I

concept applies to composite particles: clusters

- light and heavy nuclei
- nucleon-nucleon correlations in continuum
 - \Rightarrow medium dependent resonances

effective change of masses/binding energies

- two major contributions $\Delta m_i = \Delta m_i^{\text{strong}} + \Delta m_i^{\text{Coul}}$
 - **a** strong shift $\Delta m_i^{\text{strong}} = \Delta m_i^{\text{meson}} + \Delta m_i^{\text{Pauli}}$
 - effects of strong interaction (coupling to mesons)
 - Pauli exclusion principle: blocking of states in the medium
 reduction of binding operation
 - \Rightarrow reduction of binding energies
 - \Rightarrow cluster dissolution at high densities: Mott effect
 - \Rightarrow replaces traditional excluded-volume mechanism
 - electromagnetic shift Δm_i^{Coul} (in stellar matter)
 - electron screening of Coulomb field \Rightarrow increase of binding energies
 - \Rightarrow rearrangement contribution in density functional

Mass Shifts II

light nuclei and NN scattering states₃

 parametrisation from Gerd Röpke (Rostock)

simplified and modified for high densities and temperatures

- scattering states: mass shifts as for deuteron
- dependence of $\Delta m_i^{\text{Pauli}}$ on temperature and effective density $n_i^{\text{eff}} = \frac{2}{A_i} [Z_i Y_q + N_i (1 - Y_q)] n_b$
- Δm_i^{Coul} in Wigner-Seitz approximation
- full coupling of nucleons in clusters to meson fields

Mass Shifts III

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 63

Correlations at High Densities

TECHNISCHE UNIVERSITÄT DARMSTADT

- baryon density n above n_{sat}
 - \Rightarrow no clusters expected as degrees of freedom
 - \Rightarrow only single baryons (nucleons, hyperons, ...)
- microscopic models (e.g. Brueckner HF)
 - \Rightarrow explicit two-particle correlations

Correlations at High Densities

TECHNISCHE UNIVERSITÄT DARMSTADT

baryon density n above n_{sat}

- \Rightarrow no clusters expected as degrees of freedom
- \Rightarrow only single baryons (nucleons, hyperons, ...)

microscopic models (e.g. Brueckner HF)

 \Rightarrow explicit two-particle correlations

energy density functionals

- mixture of baryons as quasiparticles
- no explicit correlations between baryons
- \Rightarrow ideal mixture of Fermion gases
- ⇒ step function in single-particle momentum distributions at zero temperature

Correlations at High Densities

TECHNISCHE UNIVERSITÄT DARMSTADT

- baryon density n above n_{sat}
 - \Rightarrow no clusters expected as degrees of freedom
 - \Rightarrow only single baryons (nucleons, hyperons, ...)
- microscopic models (e.g. Brueckner HF)
 - \Rightarrow explicit two-particle correlations
- energy density functionals
 - mixture of baryons as quasiparticles
 - no explicit correlations between baryons
 - \Rightarrow ideal mixture of Fermion gases
 - ⇒ step function in single-particle momentum distributions at zero temperature

experiments

nucleon knockout from nuclei in inelastic electron scattering

(O. Hen et al. (CLAS Collaboration), Science 346 (2014) 614, ...)

 \Rightarrow no sharp cut-off, high-momentum tail

Mass Shifts at High Densities

choice of density dependence of cluster mass shifts

- low densities: linear in n as given by parameterisation of Gerd Röpke
- higher densities (above Mott density): steeper function (∝ n³, artificial) to avoid reappearance of clusters
- ⇒ no clusters above saturation density by construction
- ⇒ transition to mixture of nucleons as quasiparticles

Mass Shifts at High Densities

- choice of density dependence of cluster mass shifts
 - ⇒ no clusters above saturation density by construction
 - ⇒ transition to mixture of nucleons as quasiparticles
- representation of short-range correlations (SRC) above saturation density in energy density functionals?
 - ⇒ quasi-deuterons as surrogate for two-body correlations

■ reactions mediated by interactions faster than system evolution ⇒ thermodynamic equilibrium

- reactions mediated by interactions faster than system evolution
 - \Rightarrow thermodynamic equilibrium
- number of independent chemical potentials
 - = number of conserved charges
 - baryon number \rightarrow baryon chemical potential μ_{B}
 - charge number \rightarrow charge chemical potential μ_Q
 - electron/muon lepton number \rightarrow electron/muon lepton potential $\mu_{L_e}/\mu_{L_{\mu}}$
 - strangeness number \rightarrow strangeness chemical potential μ_{S} (usually $\mu_{S} = 0$)

- reactions mediated by interactions faster than system evolution
 - \Rightarrow thermodynamic equilibrium
- number of independent chemical potentials
 - = number of conserved charges
 - baryon number \rightarrow baryon chemical potential μ_{B}
 - charge number ightarrow charge chemical potential μ_Q
 - electron/muon lepton number \rightarrow electron/muon lepton potential $\mu_{L_e}/\mu_{L_{\mu}}$
 - strangeness number \rightarrow strangeness chemical potential μ_{S} (usually $\mu_{S} = 0$)
- chemical equilibrium ⇒ relation of chemical potentials

 $\mu_i = B_i \mu_B + Q_i \mu_Q + L_{ei} \mu_{L_e} + L_{\mu i} \mu_{L_{\mu}} + S_i \mu_S$ with baryon, charge,... numbers B_i, Q_i, \dots of particle *i*
Compact Star Matter

- reactions mediated by interactions faster than system evolution
 - \Rightarrow thermodynamic equilibrium
- number of independent chemical potentials
 - = number of conserved charges
 - baryon number \rightarrow baryon chemical potential μ_{B}
 - charge number \rightarrow charge chemical potential μ_Q
 - electron/muon lepton number \rightarrow electron/muon lepton potential $\mu_{L_e}/\mu_{L_{\mu}}$
 - strangeness number \rightarrow strangeness chemical potential μ_{S} (usually $\mu_{S} = 0$)
- chemical equilibrium ⇒ relation of chemical potentials

 $\mu_i = B_i \mu_B + Q_i \mu_Q + L_{ei} \mu_{L_e} + L_{\mu i} \mu_{L_{\mu}} + S_i \mu_S$

- with baryon, charge,... numbers B_i, Q_i, \ldots of particle *i*
- condition of charge neutrality fixes µ_Q
- condition of β equilibrium (compact stars) fixes $\mu_{L_e} = 0$ ($\mu_{L_{\mu}} = 0$) \Rightarrow only one independent chemical potential (μ_B)

Global EoS for Astrophysical Applications I

TECHNISCHE UNIVERSITÄT DARMSTADT

■ hadronic charge fraction $Y_q = \sum_i Q_i n_i / n_b$ (without leptons) ⇒ neutronisation with increasing baryon density

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 74

Global EoS for Astrophysical Applications II

• mass fractions $X_i = A_i n_i / n_b$ of ²H and ⁴He

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 75

Global EoS for Astrophysical Applications III

• mass fraction X_{heavy} and average mass number $\langle A \rangle$ of heavy nuclei

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 76

Global EoS for Astrophysical Applications IV

average neutron (N) and charge number (Z) of heavy nuclei

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 77

Compact Star Matter Equation of State – Low Densities

- temperature T = 0, β equilibrium
- sequence of ions in background of electrons, phase transitions
- free neutrons above neutron drip density

Conclusions

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 79

Conclusions

- extension of relativistic mean-field approach (see arXiv:2408.00425)
 - density dependent minimal nucleon-meson couplings
 - **additional tensor couplings (** ω and ρ **)**
- new parameterisation of effective interaction
 - careful selection of observables (only nuclei)
 - self-consistent determination of uncertainties
 - \Rightarrow improved description of nuclei
- modified equation of state (EOS) of nuclear matter
 - small K & L, but stiff EoS
- neutron stars
 - $M_{\rm max} > 2M_{\rm sol}$, radii with DDT smaller than with DD2
- work in progress: revision of cluster description/mass shifts, EoS tables with new parameterisation DDT

Thank You for Your Attention!

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 81

Backup Slides

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 82

Field Equations - Nucleons

modified Dirac equation for nucleons

$$H\Psi_{\eta} = \left[\vec{\alpha} \cdot \vec{p} + \beta \left(M_{\eta} - S\right) + V_{\eta} + i\vec{\gamma} \cdot \frac{\vec{r}}{r}T_{\eta}\right] = E_{\eta}\Psi_{\eta}$$

• scalar potential $S = \Gamma_{\sigma} \sigma \Rightarrow$ effective mass $M_{\eta}^* = M_{\eta} - S$

• vector potential $V_{\eta} = \Gamma_{\omega}\omega_0 + g_{\eta}\Gamma_{\rho}\rho_0 + \frac{1+g_{\eta}}{2}\Gamma_{\gamma}A_0 + V^{(R)}$ with $q_n = \pm 1$ for $\eta = p/n$ and rearrangement contribution

$$\mathbf{V}^{(R)} = \frac{d\Gamma_{\omega}}{dn_b} \mathbf{n}_{\omega} \omega_0 + \frac{d\Gamma_{\rho}}{dn_b} \mathbf{n}_{\rho} \rho_0 - \frac{d\Gamma_{\sigma}}{dn_b} \mathbf{n}_{\sigma} \sigma$$

- tensor potential $T_{\eta} = -\frac{\Gamma_{T\omega}}{M_p}\frac{\vec{r}}{r}\cdot\vec{\nabla}\omega_0 \frac{\Gamma_{T\rho}}{M_p}\frac{\vec{r}}{r}\cdot\vec{\nabla}\rho_0$
 - \Rightarrow effective at surface of nuclei, vanishes in homogeneous nuclear matter

Field Equations III

Klein-Gordon/Poisson equations for mesons/photon

$$\begin{aligned} -\Delta\sigma + M_{\sigma}^{2}\sigma &= \Gamma_{\sigma}n_{\sigma} \\ -\Delta\omega_{0} + M_{\omega}^{2}\omega_{0} &= \Gamma_{\omega}n_{\omega} + \frac{\Gamma_{\tau\omega}}{M_{\rho}}\vec{\nabla}\cdot\vec{\jmath}_{\omega}^{(t)} \\ -\Delta\rho_{0} + M_{\rho}^{2}\rho_{0} &= \Gamma_{\rho}n_{\rho} + \frac{\Gamma_{\tau\rho}}{M_{\rho}}\vec{\nabla}\cdot\vec{\jmath}_{\rho}^{(t)} \\ -\Delta A_{0} &= \Gamma_{\gamma}n_{\gamma} \end{aligned}$$

Field Equations - Mesons & Photon

Klein-Gordon/Poisson equations for mesons/photon

$$\begin{aligned} -\Delta\sigma + M_{\sigma}^{2}\sigma &= \Gamma_{\sigma}n_{\sigma} \\ -\Delta\omega_{0} + M_{\omega}^{2}\omega_{0} &= \Gamma_{\omega}n_{\omega} + \frac{\Gamma_{\tau\omega}}{M_{p}}\vec{\nabla}\cdot j_{\omega}^{\text{(f)}} \\ -\Delta\rho_{0} + M_{\rho}^{2}\rho_{0} &= \Gamma_{\rho}n_{\rho} + \frac{\Gamma_{\tau\rho}}{M_{p}}\vec{\nabla}\cdot j_{\rho}^{\text{(f)}} \\ -\Delta A_{0} &= \Gamma_{\gamma}n_{\gamma} \end{aligned}$$

- source densities and currents

a
$$\vec{j}_{\omega} = \vec{j}_{p} + \vec{j}_{n}, \vec{j}_{\rho} = \vec{j}_{p} - \vec{j}_{n}$$

with tensor currents $\vec{j}_{\eta}^{(t)} = \langle \Psi_{\eta} | i \vec{\alpha} | \Psi_{\eta} \rangle$

Description of Correlations at Low Densities I

■ finite temperature, exact limit ⇒ virial equation of state (VEOS)

(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;

C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

• expansion of pressure in powers of fugacities $z_i = \exp(\mu_i/T)$

$$\rho = TV\left(\sum_{i} \frac{g_i}{\lambda_i^3} z_i + \sum_{ij} \frac{b_{ij}}{\lambda_i^{3/2} \lambda_j^{3/2}} z_i z_j + \dots\right) \quad \text{with thermal wavelength} \quad \lambda_i = \left[2\pi/(m_i T)\right]^{1/2}$$

and virial coefficients $g_i, b_{ij}, ... \Rightarrow$ limitation $n_i \lambda_i^{-3} \ll 1$

Description of Correlations at Low Densities I

■ finite temperature, exact limit ⇒ virial equation of state (VEOS)

(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;

C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

• expansion of pressure in powers of fugacities $z_i = \exp(\mu_i/T)$

$$p = TV\left(\sum_{i} \frac{g_{i}}{\lambda_{i}^{3}} z_{i} + \sum_{ij} \frac{b_{ij}}{\lambda_{i}^{3/2} \lambda_{j}^{3/2}} z_{i} z_{j} + \dots\right) \text{ with thermal wavelength } \lambda_{i} = \left[2\pi/(m_{i}T)\right]^{1/2}$$

and virial coefficients $g_i, b_{ij}, ... \Rightarrow$ limitation $n_i \lambda_i^{-3} \ll 1$

only two-body correlations relevant at lowest densities, encoded in

$$\begin{split} b_{ij} &= \frac{1+\delta_{ij}}{2} \frac{\lambda_i^{3/2} \lambda_j^{3/2}}{\lambda_{ij}^3} \int dE \, \exp\left(-\frac{E}{T}\right) D_{ij}(E) \, \pm \, \delta_{ij} \frac{g_i}{2^{5/2}} \qquad \lambda_{ij} = \left\{2\pi/[(m_i+m_j)T]\right\}^{1/2} \\ &\text{with 'density of states'} \quad D_{ij}(E) = \sum_k g_k^{(ij)} \delta(E-E_k^{(ik)}) + \sum_l \frac{g_l^{(ij)}}{\pi} \frac{d\delta_l^{(ij)}}{dE} \\ &\Rightarrow \text{ contribution from bound states and continuum,} \end{split}$$

depends only on experimental data: binding energies $E_k^{(ik)}$, phase shifts $\delta_l^{(ij)}$ (not independent! Levinson theorem)

Description of Correlations at Low Densities II

simplification of VEOS

- \Rightarrow nuclear statistical equilibrium (NSE) \Rightarrow chemical picture
 - consider nucleons and all nuclei (ground and excited states)
 - no contributions from continuum, no explicit interaction

Description of Correlations at Low Densities II

simplification of VEOS

- \Rightarrow nuclear statistical equilibrium (NSE) \Rightarrow chemical picture
 - consider nucleons and all nuclei (ground and excited states)
 - no contributions from continuum, no explicit interaction

extension of VEOS

\Rightarrow generalized (cluster) Beth-Uhlenbeck approach \Rightarrow physical picture

(G. Röpke, L. Münchow, and H. Schulz, NPA 379 (1982) 536,

M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. 202 (1990) 57,

G. Röpke, N.-U. Bastian et al., NPA 897 (2013) 70)

- quantum statistical description with thermodynamic Green's functions
- part of interaction included in self-energies of quasiparticles
- modified second virial coefficient
 - ⇒ dependence on particle-pair momentum, correction factor in continuum contribution
- \Rightarrow suppression of cluster formation with increasing density

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 90

Light Clusters and Continuum Correlations

■ particle mass fractions $X_i = A_i \frac{n_i}{n}$ $n = n_b = \sum_i A_i n_i$

- low densities: two-body correlations most important
- high densities: dissolution of clusters ⇒ Mott effect

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 91

Light Clusters and Continuum Correlations

- $X_i = A_i \frac{n_i}{n}$ $n = n_b = \sum_i A_i n_i$ Iow densities: two-body correlations most important
- ⇒ Mott effect
 ⇒ Mott effect
 effect of NN continuum correlations
 a dashed lines: without continuum
 full lines: with continuum high densities:

particle mass fractions

- - \Rightarrow reduction of deutron fraction, redistribution of other particles
- correct low-density limit

Light Clusters in Heavy-Ion Collisions

emission of light nuclei

 determination of density and temperature of source

S. Kowalski et al. PRC 75 (2007) 014601 J. Natowitz et al. PRL 104 (2010) 202501 R. Wada et al. PRC 85 (2012) 064618

 thermodynamic conditions as in neutrinosphere of core-collapse supernovae

Light Clusters in Heavy-Ion Collisions

emission of light nuclei

determination of density and temperature of source

S. Kowalski et al. PRC 75 (2007) 014601 J. Natowitz et al. PRL 104 (2010) 202501 R. Wada et al. PRC 85 (2012) 064618

- thermodynamic conditions as in neutrinosphere of core-collapse supernovae
- particle yields \Rightarrow chemical equilibrium constants $K_{\rm c}[i] = n_i / (n_p^{Z_i} n_n^{N_i})$

L. Qin et al., PRL 108 (2012) 172701

mixture of ideal gases not sufficient

10¹

10¹⁰

10⁹

Exp. (Qin et al. 2012) ideal das

HS(DD2), no CS, A<4

S220, HIC mod., cor. B, STOS, HIC mod.

SFHo, no CS, A<4

SHT(NL3)

0S

SHO(FSU2.1) aRDF

Light Clusters in Heavy-Ion Collisions

emission of light nuclei

 determination of density and temperature of source

S. Kowalski et al. PRC 75 (2007) 014601 J. Natowitz et al. PRL 104 (2010) 202501 R. Wada et al. PRC 85 (2012) 064618

- thermodynamic conditions as in neutrinosphere of core-collapse supernovae
- particle yields \Rightarrow chemical equilibrium constants $K_c[i] = n_i / (n_p^{Z_i} n_n^{N_i})$

L. Qin et al., PRL 108 (2012) 172701

mixture of ideal gases not sufficient

more recent data from INDRA collaboration see R. Bougault et al., J. Phys. G 47 (2020) 025103 and analysis, e.g., in H. Pais et al., Phys. Rev. Lett 125 (2020) 012701 H. Pais et al., J. Phys. G 47 (2020) 105204 T. Custodio et al., Eur. Phys. J. A 56 (2020) 295

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 95

Formation of Heavy Clusters

nuclear matter

- liquid-gas phase transition
- separation of phases
- no surface or Coulomb effects

heavy nuclei in stellar matter

- relativistic density functional with nucleons, light nuclei, electrons (for charge neutrality)
- spherical Wigner-Seitz cell
- extended Thomas-Fermi approximation
- self-consistent calculation

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 96

Formation of Heavy Clusters

nuclear matter

- liquid-gas phase transition
- separation of phases
- no surface or Coulomb effects

heavy nuclei in stellar matter

- relativistic density functional with nucleons, light nuclei, electrons (for charge neutrality)
- spherical Wigner-Seitz cell
- extended Thomas-Fermi approximation
- self-consistent calculation
- increased probability of finding light clusters at nuclear surface
- effective binding energy from energy difference to homogeneous matter

Mass Shifts at High Densities

choice of density dependence of cluster mass shifts

- low densities: linear in n as given by parameterisation of Gerd Röpke
- higher densities (above Mott density): steeper function (∝ n³, artificial) to avoid reappearance of clusters
- ⇒ no clusters above saturation density by construction
- ⇒ transition to mixture of nucleons as quasiparticles

Mass Shifts at High Densities

choice of density dependence of cluster mass shifts

- low densities: linear in n as given by parameterisation of Gerd Röpke
- higher densities (above Mott density): steeper function (∝ n³, artificial) to avoid reappearance of clusters
- ⇒ no clusters above saturation density by construction
- ⇒ transition to mixture of nucleons as quasiparticles
- representation of short-range correlations (SRC) above saturation density in energy density functionals?

clusters as effective many-body correlations

internal motion of nucleons in cluster
 ⇒ tail in single-nucleon momentum distributions

TECHNISCHE UNIVERSITÄT DARMSTADT

clusters as effective many-body correlations

- internal motion of nucleons in cluster
 - \Rightarrow tail in single-nucleon momentum distributions

clusters as effective many-body correlations

- internal motion of nucleons in cluster
 - \Rightarrow tail in single-nucleon momentum distributions

quasi-deuterons as surrogate for two-body correlations

zero temperature

condensation of bosonic clusters

 \Rightarrow condition on chemical potentials $\mu_{d} = \mu_{n} + \mu_{p}$

$$\Rightarrow \Delta m_d = S_d^{\rm meson} - m_d + \sqrt{k_n^2 + (m_n - S_n^{\rm meson})^2} + \sqrt{k_p^2 + (m_p - S_p^{\rm meson})^2}$$

with Fermi momenta k_n and k_p of neutrons and protons

 \Rightarrow density dependence of mass shift Δm_d

for given deuteron mass fraction $X_d = 2n_d/n$

revision of functional form of cluster mass shifts

(S. Typel, Eur. Phys. J. ST 229 (2020) 3433)

clusters as effective many-body correlations

- internal motion of nucleons in cluster
 - \Rightarrow tail in single-nucleon momentum distributions

quasi-deuterons as surrogate for two-body correlations

zero temperature

- condensation of bosonic clusters
- revision of functional form of cluster mass shifts

(S. Typel, Eur. Phys. J. ST 229 (2020) 3433)

 comparison of deuteron mass shifts of original GRDF model with condensation condition for fixed X_d

 \Rightarrow parametrisation of Δm_d for transition ?

Deuteron Mass Shift and Mass Fraction I

- (S. Burrello, S. Typel, EPJ A 58 (2022) 120)
 - extrapolation of deuteron mass shift Δm_d to high densities
 - correct low-density limit
 - \Rightarrow deuteron condensate with correct energy

Deuteron Mass Shift and Mass Fraction I

- (S. Burrello, S. Typel, EPJ A 58 (2022) 120)
 - extrapolation of deuteron mass shift Δm_d to high densities
 - correct low-density limit
 - \Rightarrow deuteron condensate with correct energy
 - constraint on mass fraction X_d at saturation density from experiments on SRCs ($X_d \approx 20\%$ at n_{sat})
 - \Rightarrow rescaling of meson couplings to recover energy at saturation

Deuteron Mass Shift and Mass Fraction I

- (S. Burrello, S. Typel, EPJ A 58 (2022) 120)
 - extrapolation of deuteron mass shift Δm_d to high densities
 - correct low-density limit
 - \Rightarrow deuteron condensate with correct energy
 - constraint on mass fraction X_d at saturation density from experiments on SRCs ($X_d \approx 20\%$ at n_{sat})
 - \Rightarrow rescaling of meson couplings to recover energy at saturation
 - $\hfill \ensuremath{\,^\circ}$ dependence on scaling χ of coupling strength of mesons to nucleons inside deuteron
 - $\chi = 1$ full strength as in nuclear medium
 - χ < 1 reduced strength
 - restrictions on allowed deuteron mass fraction X_d
 - positive effective masses of nucleons required

Deuteron Mass Shift and Mass Fraction II

• case 1: determination of Δm_d from given $X_d \Rightarrow$ straightforward

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 106

Deuteron Mass Shift and Mass Fraction II

- case 1: determination of Δm_d from given $X_d \Rightarrow$ straightforward
- case 2: calculation of X_d from given Δm_d (relevant case)
 - example: symmetric nuclear matter, $\chi = 1$, heuristic form
 - sensitivity to $\Delta m_d \Rightarrow$ fine-tuning required for $\chi > 1/\sqrt{2}$

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 107

Deuteron Mass Shift and Mass Fraction III

- case 1: determination of Δm_d from given $X_d \Rightarrow$ straightforward
- case 2: calculation of X_d from given Δm_d (relevant case)
 - example: symmetric nuclear matter, $\chi = 1/\sqrt{2}$, heuristic form \Rightarrow smooth variation of deuteron mass fraction X_d

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 108
Asymmetric Nuclear Matter with Quasi-Deuterons

- density dependence of symmetry energy E_{sym}
 - quantities isospin dependence of energy
 - parabolic approximation (comparison of neutron matter with symmetric nuclear matter)
- comparison of models
 - GRDF with original DD2 parameterisation (without deuterons, red line)
 - GRDF with quasi-deuterons
 - dependence of mass-shift parameterisation
 - stiffening of E_{sym} at high n_b
 - correct low-density limit (half deuteron binding energy for $n_b \rightarrow 0$)

