
Equation of state of neutron star matter
in a relativistic density functional approach

Stefan Typel

Brainstorming workshop: Deciphering the equation of state using
gravitational waves from astrophysical sources
Institute of Theoretical Physics, University of Warsaw
August 5 - 7, 2024

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 1



Outline

Introduction
Generalized Relativistic Energy Density Functional

Degrees of Freedom, In-Medium Interaction
Lagrangian Density, Approximations, Energy
Tensor Couplings

Model Parameters
Results

Nuclei, Nuclear Matter, Neutron Stars

Correlations and Clusters

Compact Star Matter

Conclusions

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 2



Introduction
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Theory for Nuclei and Nuclear Matter

different approaches
hadronic ’ab-initio’ methods with realistic interactions

– interactions: potential models, meson exchange, chiral forces, RG evolved, . . .
(Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, . . . )

– many-body methods: BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, . . .
QCD-based/inspired descriptions
effective field theories (EFT)
energy density functionals (EDF)
shell models, algebraic models, cluster models, . . .
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Theory for Nuclei and Nuclear Matter

different approaches
hadronic ’ab-initio’ methods with realistic interactions

– interactions: potential models, meson exchange, chiral forces, RG evolved, . . .
(Argonne, Urbana, Tucson-Melbourne, Nijmegen, Paris, Bonn, . . . )

– many-body methods: BHF/DBHF, SCGF, CBF, VMC, GFMC, AFDMC, . . .
QCD-based/inspired descriptions
effective field theories (EFT)
energy density functionals (EDF)
shell models, algebraic models, cluster models, . . .

challenge:
description of atomic nuclei and nuclear matter in a unified model

methods not always applicable (methodological/technical limitations)
⇒ here: generalized relativistic energy density functional
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Energy Density Functionals for Nuclei
and Nuclear Matter

various types
nonrelativistic or relativistic/covariant
often derived from mean-field models in different approximations
(Hartree, Hartree-Fock, Hartree-Fock-Bogoliubov)
nucleons (hyperons, other baryons, clusters, . . . ) as degrees of freedom
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Energy Density Functionals for Nuclei
and Nuclear Matter

various types
nonrelativistic or relativistic/covariant
often derived from mean-field models in different approximations
(Hartree, Hartree-Fock, Hartree-Fock-Bogoliubov)
nucleons (hyperons, other baryons, clusters, . . . ) as degrees of freedom

examples
Skyrme Hartree-Fock models

– zero-range two- and three-body interactions
Gogny Hartree-Fock models

– finite-range two-body interaction, three-body as in Skyrme
relativistic models

– field-theoretical approach, mean-field approximation
– interaction by meson exchange (σ, ω, ρ, . . . )
– medium effects:

− nonlinear models (selfcoupling of mesons)
− density dependent couplings

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 7



Generalized Relativistic Energy Density Functional
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Generalized Relativistic Energy Density Functional

relativistic mean-field approach
with density dependent minimal meson-nucleon couplings
and meson-nucleon tensor couplings (new!)
details: see S. Typel and S. Shlomo, arXiv:2408.00425
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Generalized Relativistic Energy Density Functional

relativistic mean-field approach
with density dependent minimal meson-nucleon couplings
and meson-nucleon tensor couplings (new!)
degrees of freedom

baryon: nucleons, hyperons (optional)
⇒ quasiparticles with effective mass M∗

i = Mi − Si
and effective chemical potential µ∗

i = µi − Vi
mesons: σ, ω, ρ⇒ treated as classical fields
light clusters (d, t, 3He, α), heavy clusters
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Generalized Relativistic Energy Density Functional

relativistic mean-field approach
with density dependent minimal meson-nucleon couplings
and meson-nucleon tensor couplings (new!)
degrees of freedom

baryon: nucleons, hyperons (optional)
⇒ quasiparticles with effective mass M∗

i = Mi − Si
and effective chemical potential µ∗

i = µi − Vi
mesons: σ, ω, ρ⇒ treated as classical fields
light clusters (d, t, 3He, α), heavy clusters

effective in-medium interaction
phenomenological approach
⇒ model parameters to be determined
scalar (Si) and vector (Vi) potentials with rearrangement contributions
⇒ thermodynamic consistency
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Particles, Fields, and Lagrangian Density

particles and fields
nucleons (Ψp, Ψn) with (vacuum) masses Mp, Mn

photons (Aµ) and mesons (σ, ωµ, ρ⃗µ) with masses Mσ , Mω , Mρ

field tensors Fµν = ∂µAν − ∂νAµ, Gµν = ∂µων − ∂νωµ, H⃗µν = ∂µρ⃗ν − ∂ν ρ⃗µ
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Particles, Fields, and Lagrangian Density

particles and fields
nucleons (Ψp, Ψn) with (vacuum) masses Mp, Mn

photons (Aµ) and mesons (σ, ωµ, ρ⃗µ) with masses Mσ , Mω , Mρ

field tensors Fµν = ∂µAν − ∂νAµ, Gµν = ∂µων − ∂νωµ, H⃗µν = ∂µρ⃗ν − ∂ν ρ⃗µ

Lagrangian density
L =

∑
η=p,n

Ψη

(
γµiDµ

η − σµνT µν − Mη

)
Ψη −

1
4
FµνFµν

+
1
2

(
∂
µ
σ∂µσ − M2

σσ
2 −

1
2
GµνGµν + M2

ωωµω
ν −

1
2
H⃗µν · H⃗µν + M2

ρρ⃗µρ⃗
ν

)
covariant derivative iDµ

η = i∂µ − Γωω
µ − Γρρ⃗

µ · τ⃗ − ΓγAµ 1+τ3η
2

mass operator Mη = Mη − Γσσ

tensor contribution T µν = ΓTω
2Mp

Gµν +
ΓTρ
2Mp

H⃗µν · τ⃗
couplings Γω , Γρ, Γσ (depend on baryon density nb) and ΓTω , ΓTρ (constants)
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Field Equations

use Euler-Lagrange equations ∂L
∂ϕ = ∂µ

∂L
∂(∂µϕ)

for all fields ϕ = Ψη , Ψη = Ψ†
ηγ

0, σ, ωµ, ρ⃗µ
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Field Equations

use Euler-Lagrange equations ∂L
∂ϕ = ∂µ

∂L
∂(∂µϕ)

for all fields ϕ = Ψη , Ψη = Ψ†
ηγ

0, σ, ωµ, ρ⃗µ
apply approximations

photon/meson fields ⇒ classical fields
Hartree approximation for many-body wave function of nucleons
no-sea approximation ⇒ negative-energy states not considered
only static solutions (no time dependence), no change of isospin
⇒ only one component of vector fields remains
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Field Equations

use Euler-Lagrange equations ∂L
∂ϕ = ∂µ

∂L
∂(∂µϕ)

for all fields ϕ = Ψη , Ψη = Ψ†
ηγ

0, σ, ωµ, ρ⃗µ
apply approximations

photon/meson fields ⇒ classical fields
Hartree approximation for many-body wave function of nucleons
no-sea approximation ⇒ negative-energy states not considered
only static solutions (no time dependence), no change of isospin
⇒ only one component of vector fields remains

self-consistent solution of coupled field equations
nuclear matter

– meson fields: constants, field equations trivial
– nucleons: modified plane-wave states

nuclei
– meson fields determined using expansion in Riccati-Bessel functions
– numerical solution of Dirac equation with Lagrange-mesh method

(see, e.g, S. Typel, Front. Phys. 6 (2018) 73)
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Energies

energy density from energy-momentum tensor

ε(⃗r) = ⟨T00⟩ Tµν =
∑
ϕ

∂L
∂(∂µϕ)

∂νϕ− gµνL
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Energies

energy density from energy-momentum tensor

ε(⃗r) = ⟨T00⟩ Tµν =
∑
ϕ

∂L
∂(∂µϕ)

∂νϕ− gµνL

nuclei: total energy E =
∫
d3r ε(⃗r)

by numerical integration over spatial coordinates
– correction for breaking of symmetries

(cm motion, rotation for non-spherical nuclei)
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Energies

energy density from energy-momentum tensor

ε(⃗r) = ⟨T00⟩ Tµν =
∑
ϕ

∂L
∂(∂µϕ)

∂νϕ− gµνL

nuclei: total energy E =
∫
d3r ε(⃗r)

by numerical integration over spatial coordinates
– correction for breaking of symmetries

(cm motion, rotation for non-spherical nuclei)

nuclear matter: energy per nucleon E/A = ε/nb −Mnucleon
with average nucleon mass Mnucleon

– analytic expression for temperature zero
– particles & antiparticles at finite temperature
– no contribution of tensor terms
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Tensor Couplings

previous studies:
already suggested in early applications of relativistic mean-field models
(see, e.g., M. Rufa et al., Phys. Rev. C 38 (1988) 390),
but not explored extensively
some initial parameterizations without fine tuning in
S. Typel and D. Alvear Terrero, Eur. Phys. J. A 56 (2020) 160
recent study of effects, without fully selfconsistent fit of parameters in
M. Salinas and J. Piekarewicz, Phys. Rev. C 109 (2024) 045807
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Tensor Couplings

previous studies:
already suggested in early applications of relativistic mean-field models
(see, e.g., M. Rufa et al., Phys. Rev. C 38 (1988) 390),
but not explored extensively
some initial parameterizations without fine tuning in
S. Typel and D. Alvear Terrero, Eur. Phys. J. A 56 (2020) 160
recent study of effects, without fully selfconsistent fit of parameters in
M. Salinas and J. Piekarewicz, Phys. Rev. C 109 (2024) 045807

relevance of tensor couplings:
adds new freedom in description of surface properties of nuclei
releases strong correlation: effective mass
↔ strength of σ meson field
↔ size of spin-orbit splittings
acts only in nuclei but not in homogenous nuclear matter
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Model Parameters
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Parameterisation of Density Dependence
of Couplings

general ansatz: Γm(nb) = Γm(nref) fm(x)
with coupling Γm(nref) at reference density nref = nsat
and function fm(x) with x = nb/nref
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Parameterisation of Density Dependence
of Couplings

general ansatz: Γm(nb) = Γm(nref) fm(x)
with coupling Γm(nref) at reference density nref = nsat
and function fm(x) with x = nb/nref
functional forms as introduced in
S. Typel and H.H. Wolter, Nucl. Phys. A 656 (1999) 331

isoscalar mesons (m = σ, ω) ⇒ rational function

fm(x) = am
1+ bm(x + dm)

2

1+ cm(x + dm)2
with constraints f(1) = 1 f′′(0) = 0

isovector meson (m = ρ) ⇒ exponential function

fm(x) = exp [−am (x − 1)]
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Determination of Model Parameters I

fit of parameters to properties of nuclei ⇒ experimental observables
not to indirectly obtained quantities, e.g., nuclear matter parameters
not to constraints from other theories, e.g., χEFT
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Determination of Model Parameters I

fit of parameters to properties of nuclei ⇒ experimental observables
not to indirectly obtained quantities, e.g., nuclear matter parameters
not to constraints from other theories, e.g., χEFT

selection of observables Oi (i = 1, . . . , 7)
nuclear binding energies B
quantities related to charge form factor

– charge radius rc , diffraction radius rd , surface thickness σ

rms radii rn of single valence neutron above closed shells
spin-orbit splittings ∆Eso

constraint isoscalar monopole giant resonance energies Emono
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Determination of Model Parameters I

fit of parameters to properties of nuclei ⇒ experimental observables
not to indirectly obtained quantities, e.g., nuclear matter parameters
not to constraints from other theories, e.g., χEFT

selection of observables Oi (i = 1, . . . , 7)
nuclear binding energies B
quantities related to charge form factor

– charge radius rc , diffraction radius rd , surface thickness σ

rms radii rn of single valence neutron above closed shells
spin-orbit splittings ∆Eso

constraint isoscalar monopole giant resonance energies Emono

selection of nuclei, mostly (semi-)closed-shell nuclei
16O, 17O, 24O, 28O, 34Si, 34Ca, 40Ca, 41Ca, 48Ca, 48Ni, 56Ni, 68Ni, 78Ni,
90Zr, 100Sn, 116Sn, 132Sn, 140Ce, 144Sm, 208Pb

⇒ 20 nuclei with Ndata = 50 data points
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Determination of Model Parameters II

minimisation of objective function

χ2({pk}) =
Nobs∑
i=1

χ2
i ({pk}) χ2

i ({pk}) =
N(obs)
i∑
n=1

[
O(model)

i (n, {pk})−O(exp)
i (n)

∆Oi

]2

by variation of parameters {pk}
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Determination of Model Parameters II

minimisation of objective function

χ2({pk}) =
Nobs∑
i=1

χ2
i ({pk}) χ2

i ({pk}) =
N(obs)
i∑
n=1

[
O(model)

i (n, {pk})−O(exp)
i (n)

∆Oi

]2

by variation of parameters {pk}
readjustment of uncertainties ∆Oi so that

χ2({pk})
Ndof

= 1
χ2
i ({pk})
N(obs)

i

=
χ2({pk})
Ndata

with Ndof = Ndata − Npar ⇒ reasonable model uncertainties

(∆Oi =
[
(∆O(exp)

i )2 + (∆O(fit)
i )2

]1/2
for binding energies)
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Determination of Model Parameters III

model parameters
Mσ (all other masses fixed)
Γσ(nref), Γω(nref), Γρ(nref), and their density dependence (5 parameters)
ΓTω , ΓTρ

⇒ Npar = 11 (9) for model with (without) tensor couplings
no direct fit of all original model parameters

use nuclear matter parameters ⇒ quasi-analytic conversion
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Determination of Model Parameters III

model parameters
Mσ (all other masses fixed)
Γσ(nref), Γω(nref), Γρ(nref), and their density dependence (5 parameters)
ΓTω , ΓTρ

⇒ Npar = 11 (9) for model with (without) tensor couplings
no direct fit of all original model parameters

use nuclear matter parameters ⇒ quasi-analytic conversion
technical approach:
combination of simplex method and diagonalisation
of second derivative of χ2 ⇒ direction of χ2 reduction
determination of uncertainties (and correlation coefficients) from

Mij =
1
2

∂2χ2

∂pi∂pj

∣∣∣∣∣
min

∆O1∆O2 =
∑

ij

∂O1

∂pi
(M−1)ij

∂O2

∂pj
∆O =

√
∆O∆O
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Parameterisation I

models
DDT: full model with tensor couplings
⇒ base model, fixes uncertainties ∆Oi
variation DDTC:
reduction of Coulomb field (Z → Z − 1) to consider
exchange term approximately (not discussed here)
DD2: previous, often used parameterisation
(S. Typel et al., Phys. Rev. C 81 (2010) 015803)
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Parameterisation I

models
DDT: full model with tensor couplings
⇒ base model, fixes uncertainties ∆Oi
variation DDTC:
reduction of Coulomb field (Z → Z − 1) to consider
exchange term approximately (not discussed here)
DD2: previous, often used parameterisation
(S. Typel et al., Phys. Rev. C 81 (2010) 015803)

self-consistent model uncertainties
Oi B rc rd σ rn ∆Eso Emono

[MeV] [fm] [fm] [fm] [fm] [MeV] [MeV]

∆O(fit)
i 0.619311 0.013364 0.017155 0.026851 0.008249 0.240832 0.430714
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Parameterisation II
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Results
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Results
Nuclei I
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Results
Nuclei I
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Results
Nuclei II
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Results
Nuclei III
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Results
Nuclear Matter I
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Results
Nuclear Matter I
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Results
Nuclear Matter II

nuclear matter parameters
energy per nucleon

E/A(nb, α) = E0(nb) + Esym(nb)α
2 + . . . with α = (nn − np)/nb
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Results
Nuclear Matter II

nuclear matter parameters
energy per nucleon

E/A(nb, α) = E0(nb) + Esym(nb)α
2 + . . . with α = (nn − np)/nb

energy per nucleon of symmetric nuclear matter

E0(nb) = −B+
1
2
Kx2 +

1
6
Qx3 + . . . with x = (nb − nsat)/(3nsat)

B: binding energy at saturation, K: incompressibility coefficient,
Q: skewness parameter
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Results
Nuclear Matter II

nuclear matter parameters
energy per nucleon

E/A(nb, α) = E0(nb) + Esym(nb)α
2 + . . . with α = (nn − np)/nb

energy per nucleon of symmetric nuclear matter

E0(nb) = −B+
1
2
Kx2 +

1
6
Qx3 + . . . with x = (nb − nsat)/(3nsat)

B: binding energy at saturation, K: incompressibility coefficient,
Q: skewness parameter
symmetry energy

Esym(nb) = J+ Lx + 1
2
Ksymx2 + . . .

J: symmetry energy at saturation, L: slope parameter,
Ksym: symmerty incompressibility coefficient
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Results
Nuclear Matter III

nuclear matter parameters
nsat: saturation density
M∗

nuc (Dirac) effective nucleon mass at saturaton

B K Q J L Ksym nsat M∗
nuc

[MeV] [MeV] [MeV] [MeV] [MeV] [MeV] [fm−3] [Mnuc]

DDT 16.23 229.20 88.57 31.21 34.24 -69.54 0.15493 0.65729
±0.03 ±7.99 ±230.06 ±0.50 ±4.33 ±15.45 ±0.00076 ±0.00132

DD2 16.03 242.72 168.77 31.67 55.03 -93.22 0.14908 0.56252

special features of DDT:
small values of K and L
large values of nsat and M∗

nuc
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Results
Neutron Stars I

properties of non-rotating, spherical neutron stars
solve Tolman-Oppenheimer-Volkoff equation
(R. Tolman, Phys. Rev. 55 (1939) 364,
J.R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55 (1939) 374)

dP
dr

= −GM(r)ε(r)
r2

[
1+ P(r)

ε(r)

] [
1+ 4πr3P(r)

M(r)

] [
1− 2GM(r)

r

]−1

with mass inside radius R

M(r) = 4π
∫ r

0
dr′ (r′)2 ε(r′)

for given central density ncentral ⇒ mass-radius relation
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Results
Neutron Stars I

properties of non-rotating, spherical neutron stars
solve Tolman-Oppenheimer-Volkoff equation
(R. Tolman, Phys. Rev. 55 (1939) 364,
J.R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55 (1939) 374)

dP
dr

= −GM(r)ε(r)
r2

[
1+ P(r)

ε(r)

] [
1+ 4πr3P(r)

M(r)

] [
1− 2GM(r)

r

]−1

with mass inside radius R

M(r) = 4π
∫ r

0
dr′ (r′)2 ε(r′)

for given central density ncentral ⇒ mass-radius relation

essential ingredient: equation of state (ε, P, hadrons & leptons) of
charge-neutral matter in β equilibrium, proper crust EOS
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Results
Neutron Stars II
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mass-radius relation

open symbols: multiples
of saturation density
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Results
Neutron Stars II
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mass-radius relation

open symbols: multiples
of saturation density

DDT DD2

R1.4 12.744 13.172
[km]

MMax 2.430 2.417
[Msol]

Rmax 11.739 11.869
[km]

n(max)
central 0.85785 0.85114

[fm−3]
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Correlations anc Clusters
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Correlations and Composite Particles
in Nuclear Matter

interacting many-body system ⇒ many-body correlations
at lowest densities: only two-body correlations relevant
with increasing density: three-, four-, many-body correlations
⇒ formation of many-body bound states: nuclei = clusters
with increasing temperature: competition with entropy
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Correlations and Composite Particles
in Nuclear Matter

interacting many-body system ⇒ many-body correlations
at lowest densities: only two-body correlations relevant
with increasing density: three-, four-, many-body correlations
⇒ formation of many-body bound states: nuclei = clusters
with increasing temperature: competition with entropy

composite particles
at high densities: action of Pauli principle
⇒ blocking of states
⇒ suppression of correlations
⇒ dissolution of clusters
theoretical description?
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Correlations and Composite Particles
in Nuclear Matter
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interacting many-body system ⇒ many-body correlations
at lowest densities: only two-body correlations relevant
with increasing density: three-, four-, many-body correlations
⇒ formation of many-body bound states: nuclei = clusters
with increasing temperature: competition with entropy

composite particles
at high densities: action of Pauli principle
⇒ blocking of states
⇒ suppression of correlations
⇒ dissolution of clusters
theoretical description?

physical versus
chemical picture
⇒ degrees of freedom
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Description of Correlations at Low Densities

finite temperature, exact limit ⇒ virial equation of state (VEOS)
(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;
C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)
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Description of Correlations at Low Densities

finite temperature, exact limit ⇒ virial equation of state (VEOS)
(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;
C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

simplification of VEOS
⇒ nuclear statistical equilibrium (NSE) ⇒ chemical picture

consider nucleons and all nuclei (ground and excited states)
no contributions from continuum, no explicit interaction
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Description of Correlations at Low Densities

finite temperature, exact limit ⇒ virial equation of state (VEOS)
(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;
C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

simplification of VEOS
⇒ nuclear statistical equilibrium (NSE) ⇒ chemical picture

consider nucleons and all nuclei (ground and excited states)
no contributions from continuum, no explicit interaction

extension of VEOS
⇒ generalized (cluster) Beth-Uhlenbeck approach ⇒ physical picture

(G. Röpke, L. Münchow, and H. Schulz, NPA 379 (1982) 536,
M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. 202 (1990) 57,
G. Röpke, N.-U. Bastian et al., NPA 897 (2013) 70)

⇒ suppression of cluster formation with increasing density
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Cluster Formation and Dissolution

example: deuteron as two-body correlation
n-p-d system, no interactions
no deuteron suppression at high densities
in NSE or standard VEOS
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Cluster Formation and Dissolution
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T = 2 MeV
T = 5 MeV
T = 10 MeV
T = 20 MeV

symmetric n-p-d matterexample: deuteron as two-body correlation
n-p-d system, no interactions
no deuteron suppression at high densities
in NSE or standard VEOS

theoretical approaches for cluster suppression
geometric picture (finite size of particles)
⇒ excluded-volume mechanism

– applications to compact star matter
(M. Hempel and J. Schaffner-Bielich, NPA 837 (2010) 210;
S. Banik et al., ApJ. Suppl. 214 (2014) 22;
T. Fischer et al., EPJ A 50 (2014) 46; M. Hempel, PRC 91 (2015) 055897)

– generalized formulation, different interpretation
(S. Typel, EPJ A 52 (2016) 16)
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Cluster Formation and Dissolution
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symmetric n-p-d matterexample: deuteron as two-body correlation
n-p-d system, no interactions
no deuteron suppression at high densities
in NSE or standard VEOS

theoretical approaches for cluster suppression
geometric picture (finite size of particles)
⇒ excluded-volume mechanism

– applications to compact star matter
(M. Hempel and J. Schaffner-Bielich, NPA 837 (2010) 210;
S. Banik et al., ApJ. Suppl. 214 (2014) 22;
T. Fischer et al., EPJ A 50 (2014) 46; M. Hempel, PRC 91 (2015) 055897)

– generalized formulation, different interpretation
(S. Typel, EPJ A 52 (2016) 16)

medium modification of cluster properties
⇒ mass shifts

– action of Pauli principle ⇒ blocking of states
– density, temperature, momentum dependence
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Mass Shifts I

concept applies to composite particles: clusters
light and heavy nuclei
nucleon-nucleon correlations in continuum
⇒ medium dependent resonances

effective change of masses/binding energies
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Mass Shifts I

concept applies to composite particles: clusters
light and heavy nuclei
nucleon-nucleon correlations in continuum
⇒ medium dependent resonances

effective change of masses/binding energies
two major contributions ∆mi = ∆mstrong

i +∆mCoul
i

strong shift ∆mstrong
i = ∆mmeson

i +∆mPauli
i

– effects of strong interaction (coupling to mesons)
– Pauli exclusion principle: blocking of states in the medium

⇒ reduction of binding energies
⇒ cluster dissolution at high densities: Mott effect
⇒ replaces traditional excluded-volume mechanism

electromagnetic shift ∆mCoul
i (in stellar matter)

– electron screening of Coulomb field ⇒ increase of binding energies

⇒ rearrangement contribution in density functional

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 61



Mass Shifts II
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light nuclei and NN scattering states
parametrisation from
Gerd Röpke (Rostock)
simplified and modified for high
densities and temperatures
scattering states:
mass shifts as for deuteron
dependence of ∆mPauli

i on
temperature and effective density
neffi = 2

Ai
[ZiYq + Ni(1 − Yq)] nb

∆mCoul
i in Wigner-Seitz

approximation
full coupling of nucleons in
clusters to meson fields
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Mass Shifts III
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n = 0.020 fm
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n = 0.025 fm
-3

n = 0.030 fm
-3
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light nuclei and NN scattering states
parametrisation from
Gerd Röpke (Rostock)
simplified and modified for high
densities and temperatures
scattering states:
mass shifts as for deuteron
dependence of ∆mPauli

i on
temperature and effective density
neffi = 2

Ai
[ZiYq + Ni(1 − Yq)] nb

∆mCoul
i in Wigner-Seitz

approximation
full coupling of nucleons in
clusters to meson fields

heavy nuclei
heuristic parametrisation
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Correlations at High Densities

baryon density n above nsat
⇒ no clusters expected as degrees of freedom
⇒ only single baryons (nucleons, hyperons, . . . )
microscopic models (e.g. Brueckner HF)
⇒ explicit two-particle correlations
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Correlations at High Densities

baryon density n above nsat
⇒ no clusters expected as degrees of freedom
⇒ only single baryons (nucleons, hyperons, . . . )
microscopic models (e.g. Brueckner HF)
⇒ explicit two-particle correlations
energy density functionals

mixture of baryons as quasiparticles
no explicit correlations between baryons

⇒ ideal mixture of Fermion gases
⇒ step function in single-particle momentum

distributions at zero temperature
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Correlations at High Densities
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baryon density n above nsat
⇒ no clusters expected as degrees of freedom
⇒ only single baryons (nucleons, hyperons, . . . )
microscopic models (e.g. Brueckner HF)
⇒ explicit two-particle correlations
energy density functionals

mixture of baryons as quasiparticles
no explicit correlations between baryons

⇒ ideal mixture of Fermion gases
⇒ step function in single-particle momentum

distributions at zero temperature
experiments
nucleon knockout from nuclei in inelastic electron scattering
(O. Hen et al. (CLAS Collaboration), Science 346 (2014) 614, . . . )

⇒ no sharp cut-off, high-momentum tail
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Mass Shifts at High Densities

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

baryon density   n   [fm
-3

]

-10

-5

0

5

10

15

20

25

30

b
in

d
in

g
 e

n
er

g
y
  
 B

E
  
 [

M
eV

] 2
H

3
H

3
He

4
He

T = 0 MeV

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

baryon density   n   [fm
-3

]

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

m
as

s 
sh

if
t 

  
∆

m
  

 [
M

eV
]

2
H

3
H

3
He

4
He

T = 0 MeV

choice of density dependence
of cluster mass shifts

low densities: linear in n as given
by parameterisation of Gerd Röpke
higher densities (above Mott density):
steeper function (∝ n3, artificial)
to avoid reappearance of clusters

⇒ no clusters above saturation density
by construction

⇒ transition to mixture of nucleons
as quasiparticles
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Mass Shifts at High Densities
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choice of density dependence
of cluster mass shifts
⇒ no clusters above saturation density

by construction
⇒ transition to mixture of nucleons

as quasiparticles
representation of short-range correlations
(SRC) above saturation density in energy
density functionals?
⇒ quasi-deuterons as surrogate

for two-body correlations
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Compact Star Matter
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Compact Star Matter

reactions mediated by interactions faster than system evolution
⇒ thermodynamic equilibrium
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Compact Star Matter

reactions mediated by interactions faster than system evolution
⇒ thermodynamic equilibrium
number of independent chemical potentials
= number of conserved charges

baryon number → baryon chemical potential µB
charge number → charge chemical potential µQ
electron/muon lepton number → electron/muon lepton potential µLe/µLµ
strangeness number → strangeness chemical potential µS (usually µS = 0)
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Compact Star Matter

reactions mediated by interactions faster than system evolution
⇒ thermodynamic equilibrium
number of independent chemical potentials
= number of conserved charges

baryon number → baryon chemical potential µB
charge number → charge chemical potential µQ
electron/muon lepton number → electron/muon lepton potential µLe/µLµ
strangeness number → strangeness chemical potential µS (usually µS = 0)

chemical equilibrium ⇒ relation of chemical potentials
µi = BiµB + QiµQ + LeiµLe + LµiµLµ + SiµS
with baryon, charge,. . . numbers Bi,Qi, . . .of particle i
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Compact Star Matter

reactions mediated by interactions faster than system evolution
⇒ thermodynamic equilibrium
number of independent chemical potentials
= number of conserved charges

baryon number → baryon chemical potential µB
charge number → charge chemical potential µQ
electron/muon lepton number → electron/muon lepton potential µLe/µLµ
strangeness number → strangeness chemical potential µS (usually µS = 0)

chemical equilibrium ⇒ relation of chemical potentials
µi = BiµB + QiµQ + LeiµLe + LµiµLµ + SiµS
with baryon, charge,. . . numbers Bi,Qi, . . .of particle i
condition of charge neutrality fixes µQ

condition of β equilibrium (compact stars) fixes µLe = 0 (µLµ = 0)
⇒ only one independent chemical potential (µB)
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Global EoS for Astrophysical Applications I
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β equilibrium

hadronic charge fraction Yq =
∑

i Qini/nb (without leptons)
⇒ neutronisation with increasing baryon density
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Global EoS for Astrophysical Applications II
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Global EoS for Astrophysical Applications III
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Global EoS for Astrophysical Applications IV
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Compact Star Matter Equation of State −
Low Densities
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Conclusions
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Conclusions

extension of relativistic mean-field approach (see arXiv:2408.00425)
density dependent minimal nucleon-meson couplings
additional tensor couplings (ω and ρ)

new parameterisation of effective interaction
careful selection of observables (only nuclei)
self-consistent determination of uncertainties

⇒ improved description of nuclei
modified equation of state (EOS) of nuclear matter

small K & L, but stiff EoS
neutron stars

Mmax > 2Msol, radii with DDT smaller than with DD2

work in progress: revision of cluster description/mass shifts,
EoS tables with new parameterisation DDT
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Thank You for Your Attention!
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Backup Slides
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Field Equations - Nucleons

modified Dirac equation for nucleons

HΨη =

[
α⃗ · p⃗+ β (Mη − S) + Vη + i⃗γ · r⃗

r
Tη

]
= EηΨη

scalar potential S = Γσσ ⇒ effective mass M∗
η = Mη − S

vector potential Vη = Γωω0 + gηΓρρ0 +
1+gη

2 ΓγA0 + V(R)

with gη = ±1 for η = p/n and rearrangement contribution

V(R) = dΓω
dnb

nωω0 +
dΓρ
dnb

nρρ0 − dΓσ
dnb

nσσ

tensor potential Tη = − ΓTω
Mp

r⃗
r · ∇⃗ω0 −

ΓTρ
Mp

r⃗
r · ∇⃗ρ0

⇒ effective at surface of nuclei,
vanishes in homogeneous nuclear matter
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Field Equations III

Klein-Gordon/Poisson equations for mesons/photon

−∆σ + M2
σσ = Γσnσ

−∆ω0 + M2
ωω0 = Γωnω +

ΓTω

Mp
∇⃗ · ȷ⃗(t)ω

−∆ρ0 + M2
ρρ0 = Γρnρ +

ΓTρ

Mp
∇⃗ · ȷ⃗(t)ρ

−∆A0 = Γγnγ
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Field Equations - Mesons & Photon

Klein-Gordon/Poisson equations for mesons/photon

−∆σ + M2
σσ = Γσnσ

−∆ω0 + M2
ωω0 = Γωnω +

ΓTω

Mp
∇⃗ · ȷ⃗(t)ω

−∆ρ0 + M2
ρρ0 = Γρnρ +

ΓTρ

Mp
∇⃗ · ȷ⃗(t)ρ

−∆A0 = Γγnγ

source densities and currents

nσ = n(s)
p + n(s)

n , nω = n(v)
p + n(v)

n , nρ = n(v)
p − n(v)

n , nγ = n(v)
p

with scalar and vector densities n(s)
η = ⟨Ψη|Ψη⟩, n(v)

η = ⟨Ψη|γ0|Ψη⟩

ȷ⃗ω = ȷ⃗p + ȷ⃗n, ȷ⃗ρ = ȷ⃗p − ȷ⃗n

with tensor currents ȷ⃗
(t)
η = ⟨Ψη|iα⃗|Ψη⟩
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Description of Correlations at Low Densities I

finite temperature, exact limit ⇒ virial equation of state (VEOS)
(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;
C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

expansion of pressure in powers of fugacities zi = exp(µi/T)

p = TV

∑
i

gi

λ3
i
zi +

∑
ij

bij

λ
3/2
i λ

3/2
j

zizj + . . .

 with thermal wavelength λi = [2π/(miT)]
1/2

and virial coefficients gi , bij , . . .⇒ limitation niλ
−3
i ≪ 1
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Description of Correlations at Low Densities I

finite temperature, exact limit ⇒ virial equation of state (VEOS)
(E. Beth and G. Uhlenbeck, Physica 3(1936) 729, Physica 4 (1937) 915;
C. J. Horowitz and A. Schwenk, NPA 776 (2006) 55)

expansion of pressure in powers of fugacities zi = exp(µi/T)

p = TV

∑
i

gi

λ3
i
zi +

∑
ij

bij

λ
3/2
i λ

3/2
j

zizj + . . .

 with thermal wavelength λi = [2π/(miT)]
1/2

and virial coefficients gi , bij , . . .⇒ limitation niλ
−3
i ≪ 1

only two-body correlations relevant at lowest densities, encoded in

bij =
1 + δij

2

λ
3/2
i λ

3/2
j

λ3
ij

∫
dE exp

(
−

E
T

)
Dij(E) ± δij

gi

25/2 λij =
{
2π/[(mi + mj)T]

}1/2

with ’density of states’ Dij(E) =
∑
k

g(ij)k δ(E − E(ik)
k ) +

∑
l

g(ij)l
π

dδ(ij)l
dE

⇒ contribution from bound states and continuum,
depends only on experimental data: binding energies E(ik)

k , phase shifts δ
(ij)
l

(not independent! Levinson theorem)
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Description of Correlations at Low Densities II

simplification of VEOS
⇒ nuclear statistical equilibrium (NSE) ⇒ chemical picture

consider nucleons and all nuclei (ground and excited states)
no contributions from continuum, no explicit interaction
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Description of Correlations at Low Densities II

simplification of VEOS
⇒ nuclear statistical equilibrium (NSE) ⇒ chemical picture

consider nucleons and all nuclei (ground and excited states)
no contributions from continuum, no explicit interaction

extension of VEOS
⇒ generalized (cluster) Beth-Uhlenbeck approach ⇒ physical picture

(G. Röpke, L. Münchow, and H. Schulz, NPA 379 (1982) 536,
M. Schmidt, G. Röpke, and H. Schulz, Ann. Phys. 202 (1990) 57,
G. Röpke, N.-U. Bastian et al., NPA 897 (2013) 70)
quantum statistical description with thermodynamic Green’s functions
part of interaction included in self-energies of quasiparticles
modified second virial coefficient
⇒ dependence on particle-pair momentum,

correction factor in continuum contribution
⇒ suppression of cluster formation with increasing density
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Light Clusters and Continuum Correlations
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Light Clusters and Continuum Correlations
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low densities: two-body
correlations most important
high densities:
dissolution of clusters
⇒ Mott effect
effect of NN continuum correlations

dashed lines: without continuum
full lines: with continuum

⇒ reduction of deutron fraction,
redistribution of other particles

correct low-density limit
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Light Clusters in Heavy-Ion Collisions

emission of light nuclei
determination of density and
temperature of source
S. Kowalski et al. PRC 75 (2007) 014601

J. Natowitz et al. PRL 104 (2010) 202501

R. Wada et al. PRC 85 (2012) 064618

thermodynamic conditions as in
neutrinosphere of core-collapse
supernovae
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Light Clusters in Heavy-Ion Collisions

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

K
c
[

]
(f

m
9
)

4 5 6 7 8 9 10 11 12 13 14

T (MeV)

Exp. (Qin et al. 2012)

ideal gas

HS(DD2), no CS, A 4

SFHo, no CS, A 4

LS220, HIC mod., cor. B

STOS, HIC mod.

SHT(NL3)

SHO(FSU2.1)
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QS

M. Hempel, K. Hagel, J. Natowitz, G. Röpke, S. Typel,

PRC C 91 (2015) 045805

emission of light nuclei
determination of density and
temperature of source
S. Kowalski et al. PRC 75 (2007) 014601

J. Natowitz et al. PRL 104 (2010) 202501

R. Wada et al. PRC 85 (2012) 064618

thermodynamic conditions as in
neutrinosphere of core-collapse
supernovae
particle yields ⇒
chemical equilibrium constants
Kc[i] = ni/(nZi

p nNi
n )

L. Qin et al., PRL 108 (2012) 172701

mixture of ideal gases not sufficient
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Light Clusters in Heavy-Ion Collisions

more recent data from INDRA collaboration
see R. Bougault et al., J. Phys. G 47 (2020) 025103
and analysis, e.g., in
H. Pais et al., Phys. Rev. Lett 125 (2020) 012701
H. Pais et al., J. Phys. G 47 (2020) 105204
T. Custodio et al., Eur. Phys. J. A 56 (2020) 295

emission of light nuclei
determination of density and
temperature of source
S. Kowalski et al. PRC 75 (2007) 014601

J. Natowitz et al. PRL 104 (2010) 202501

R. Wada et al. PRC 85 (2012) 064618

thermodynamic conditions as in
neutrinosphere of core-collapse
supernovae
particle yields ⇒
chemical equilibrium constants
Kc[i] = ni/(nZi

p nNi
n )

L. Qin et al., PRL 108 (2012) 172701

mixture of ideal gases not sufficient
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Formation of Heavy Clusters
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Formation of Heavy Clusters
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increased probability of finding
light clusters at nuclear surface
effective binding energy from energy
difference to homogeneous matter
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Mass Shifts at High Densities
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of cluster mass shifts

low densities: linear in n as given
by parameterisation of Gerd Röpke
higher densities (above Mott density):
steeper function (∝ n3, artificial)
to avoid reappearance of clusters

⇒ no clusters above saturation density
by construction

⇒ transition to mixture of nucleons
as quasiparticles
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Mass Shifts at High Densities
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choice of density dependence
of cluster mass shifts

low densities: linear in n as given
by parameterisation of Gerd Röpke
higher densities (above Mott density):
steeper function (∝ n3, artificial)
to avoid reappearance of clusters

⇒ no clusters above saturation density
by construction

⇒ transition to mixture of nucleons
as quasiparticles

representation of short-range correlations
(SRC) above saturation density in energy
density functionals?
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Correlations and Mass Shifts
at High Densities

clusters as effective many-body correlations
internal motion of nucleons in cluster
⇒ tail in single-nucleon momentum distributions
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Correlations and Mass Shifts
at High Densities

clusters as effective many-body correlations
internal motion of nucleons in cluster
⇒ tail in single-nucleon momentum distributions

quasi-deuterons as surrogate for two-body correlations
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Correlations and Mass Shifts
at High Densities

clusters as effective many-body correlations
internal motion of nucleons in cluster
⇒ tail in single-nucleon momentum distributions

quasi-deuterons as surrogate for two-body correlations
zero temperature

condensation of bosonic clusters
⇒ condition on chemical potentials µd = µn + µp

⇒∆md = Smeson
d −md +

√
k2
n + (mn − Smeson

n )2 +
√

k2
p + (mp − Smeson

p )2

with Fermi momenta kn and kp of neutrons and protons
⇒ density dependence of mass shift ∆md

for given deuteron mass fraction Xd = 2nd/n
revision of functional form of cluster mass shifts
(S. Typel, Eur. Phys. J. ST 229 (2020) 3433)
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Correlations and Mass Shifts
at High Densities
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clusters as effective many-body correlations
internal motion of nucleons in cluster
⇒ tail in single-nucleon momentum distributions

quasi-deuterons as surrogate for two-body correlations
zero temperature

condensation of bosonic clusters
revision of functional form
of cluster mass shifts
(S. Typel, Eur. Phys. J. ST 229 (2020) 3433)
comparison of deuteron mass shifts of
original GRDF model with condensation
condition for fixed Xd
⇒ parametrisation of ∆md for transition ?
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Deuteron Mass Shift and Mass Fraction I

quasi-deuterons as surrogate for two-body correlations
(S. Burrello, S. Typel, EPJ A 58 (2022) 120)

extrapolation of deuteron mass shift ∆md to high densities

correct low-density limit
⇒ deuteron condensate with correct energy
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Deuteron Mass Shift and Mass Fraction I

quasi-deuterons as surrogate for two-body correlations
(S. Burrello, S. Typel, EPJ A 58 (2022) 120)

extrapolation of deuteron mass shift ∆md to high densities

correct low-density limit
⇒ deuteron condensate with correct energy

constraint on mass fraction Xd at saturation density
from experiments on SRCs (Xd ≈ 20% at nsat)
⇒ rescaling of meson couplings to recover energy at saturation
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Deuteron Mass Shift and Mass Fraction I

quasi-deuterons as surrogate for two-body correlations
(S. Burrello, S. Typel, EPJ A 58 (2022) 120)

extrapolation of deuteron mass shift ∆md to high densities

correct low-density limit
⇒ deuteron condensate with correct energy

constraint on mass fraction Xd at saturation density
from experiments on SRCs (Xd ≈ 20% at nsat)
⇒ rescaling of meson couplings to recover energy at saturation

dependence on scaling χ of coupling strength of mesons
to nucleons inside deuteron

– χ = 1 full strength as in nuclear medium
– χ < 1 reduced strength

restrictions on allowed deuteron mass fraction Xd

– positive effective masses of nucleons required
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Deuteron Mass Shift and Mass Fraction II

case 1: determination of ∆md from given Xd ⇒ straightforward

August 6, 2024 | Brainstorming Workshop | Institute of Theoretical Physics, University of Warsaw | Stefan Typel (TUDa, IKP) | 106



Deuteron Mass Shift and Mass Fraction II
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(b)

case 1: determination of ∆md from given Xd ⇒ straightforward
case 2: calculation of Xd from given ∆md (relevant case)

example: symmetric nuclear matter, χ = 1, heuristic form
sensitivity to ∆md ⇒ fine-tuning required for χ > 1/

√
2
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Deuteron Mass Shift and Mass Fraction III
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case 1: determination of ∆md from given Xd ⇒ straightforward
case 2: calculation of Xd from given ∆md (relevant case)

example: symmetric nuclear matter, χ = 1/
√
2, heuristic form

⇒ smooth variation of deuteron mass fraction Xd
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Asymmetric Nuclear Matter with Quasi-Deuterons
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(a)

density dependence of symmetry energy Esym
quantitfies isospin dependence of energy
parabolic approximation
(comparison of neutron matter with symmetric nuclear matter)

comparison of models
GRDF with original
DD2 parameterisation
(without deuterons, red line)
GRDF with quasi-deuterons

– dependence of mass-shift
parameterisation

– stiffening of Esym at high nb
– correct low-density limit

(half deuteron binding energy
for nb → 0)
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