Speed of Sound in Dense Medium

Udita Shukla University of Wrocław (In collaboration with Pok Man Lo)

BRAINSTORMING WORKSHOP: DECIPHERING THE EQUATION OF STATE USING GRAVITATIONAL WAVES FROM ASTROPHYSICAL SOURCES WARSAW, POLAND 05.08.2024 - 07.08.2024

pQCD Constraint on Equation of State (EoS) Theoretical Upper Bound on (squared) speed of sound

Figure 1. PDF of the sound speed squared as function of the energy density. The purple region marks the 95%-interval of maximum central energy densities, so that the vertical purple line represents an estimate for the largest possible energy density in a neutron star. The orange contour marks the region containing EOSs with $c_s^2 < 1/3$.

On the Sound Speed in Neutron Stars

SINAN ALTIPARMAK,¹ CHRISTIAN ECKER,¹ AND LUCIANO REZZOLLA^{1,2,3}

¹Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany ²School of Mathematics, Trinity College, Dublin 2, Ireland ³Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany

ABSTRACT

Determining the sound speed c_s in compact stars is an important open question with numerous implications on the behaviour of matter at large densities and hence on gravitational-wave emission from neutron stars. To this scope, we construct more than 10^7 equations of state (EOSs) with continuous sound speed and build more than 10^8 nonrotating stellar models consistent not only with nuclear theory and perturbative QCD, but also with astronomical observations. In this way, we find that EOSs with sub-conformal sound speeds, i.e., with $c_s^2 < 1/3$ within the stars, are possible in principle but very unlikely in practice, being only 0.03% of our sample. Hence,

- Stiffness of EoS
- Chiral transition
-) ..

QCD Phase Diagram

What we theorise versus what we know (also debatable)...

- Supernova
- Heavy Ion Collisions
- Compact stars

•

Chiral transition?

(De)confinement transition?

μ

Table of Contents

- Quasiparticle Model
- Consequences of Non-locality:
 - Speed of Sound
 - Baryon Fluctuations
- Coulomb Gauge (preliminary results)

quasi horse

RDM

Fig. 0.4 Quasi Particle Concept

Adapted from Richard D. Mattuck, "A Guide to Feynman Diagrams in the Many-Body Problem"

Speed of Sound: Standard Nambu-Jona Lasinio (NJL) Model

Fig. 0.4 Quasi Particle Concept

Adapted from Richard D. Mattuck, "A Guide to Feynman Diagrams in the Many-Body problem"

(Non-local) Nambu-Jona-Lasinio Model

Quasi-particle mass

$$m^{*}(\mathbf{p}) = m + \gamma(\mathbf{p}) 2G_{s}N_{c}N_{f} \int \frac{d^{3}q}{(2\pi)^{3}} \gamma(q) \frac{4m_{q}^{*}}{2E_{q}} [1 - n(E_{q} - \mu_{q}^{*}) - n(E_{q} + \mu_{q}^{*})]$$

Quasi-particle chemical potential

$$\mu^{*}(\mathbf{p}) = \mu - \gamma(\mathbf{p}) 2G_{v}N_{c}N_{f} \int \frac{d^{3}q}{(2\pi)^{3}} \gamma(q) \frac{4}{2} [n(E_{q} - \mu_{q}^{*}) - n(E_{q} + \mu_{q}^{*})]$$

$$n(x) = \frac{1}{1 + e^{x/T}} \qquad \qquad E_q = \sqrt{q^2 + (m_q^*)^2}$$

Dynamical interaction

- M(p) saturates asympto--tically to current quark mass
- μ(p) saturates asympto--tically to bare μ

• Change in dispersion relation -

$$E(p) = \sqrt{p^2 + M(p)^2}$$

Local v/s Dynamical $T \rightarrow 0$

Local Interaction

$$n_{v} = N_{c}N_{f}\frac{1}{\pi^{2}}\int_{0}^{\infty} dqq^{2}\Theta(\mu^{*}-q)$$
$$= N_{c}N_{f}\frac{1}{\pi^{2}}\int_{0}^{\mu^{*}} dqq^{2}$$
$$= N_{c}N_{f}\frac{1}{3\pi^{2}}\mu^{*}(\mu)^{3}$$
$$n_{v} = n_{v}(\mu^{*}(\mu)) \qquad \mu^{*} = \mu - G_{v}n_{v}$$

Trivial Fermi surface

Dynamical Interaction

$$n_v = N_c N_f \frac{1}{\pi^2} \int_0^\infty dq q^2 \Theta(\mu_q^* - q)$$

$$= N_c N_f \frac{1}{\pi^2} \int_0^{\mu_{p_f(\mu)}^*} dq q^2$$

$$n_{v} = n_{v} \left[\mu_{p_{f}(\mu)}^{*} \right] \qquad \mu^{*}$$

$$\mu^*(p) = \mu - \gamma(p)G_v n_v$$
NATURAL DENSITY-
DEPENDENCE

Non-trivial Interacting Fermi surface !

CONSEQUENCE OF DYNAMICAL INTERACTION $T \longrightarrow 0$

SPEED OF SOUND V/S CHIRAL SUSCEPTIBILITY

Non-local cut-off is inherent gluon interaction scale

Fig. 1. The temperature dependence of the quark-number susceptibility χ_q in the unit of $N_f T^2$ with some of the vector coupling $g_V \Lambda^2$: $g_V \Lambda^2 = 0, 0.5, 2, 3, 5, 10, 20$, which are indicated with the numbers attached to the respective curves. The dash-dotted line shows the free massless case. The small circles are the lattice result on an $8^3 \times 4$ lattice with the quark mass m/T=0.2 [7] compiled in ref. [9].

Physics Letters B 271 (1991) 395-402 North-Holland

PHYSICS LETTERS B

Quark-number susceptibility and fluctuations in the vector channel at high temperatures $\stackrel{\star}{\Rightarrow}$

Teiji Kunihiro

Faculty of Science and Technology, Ryukoku University, Seta, Otsu-city 520-21, Japan

Received 9 July 1991; revised manuscript received 10 September 1991

The quark-number susceptibility χ_q is examined as an observable which may help to reveal the physical picture of the hightemperature phase of QCD. It is emphasized that χ_q is intimately related with the fluctuations in the vector channel of the system. It is shown that the results of the recent lattice simulations of χ_q can be understood in terms of a possible change of the interactions between quark and anti-quarks in the vector channel, and imply that the fluctuations in the vector channel is greatly suppressed in the high-temperature phase in contrast with those in the scalar and pseudo-scalar ones.

BARYON FLUCTUATIONS: DYNAMICAL MODEL

CONSEQUENCE OF DYNAMICAL INTERACTION Finite Temperature

Baryon fluctuations: Dynamical model

PRELIMINARY

Baryon Fluctuations: Dynamical model (with confinement)

Missing ingredients: mechanism for (de)confinement

(De)confinement

Dynamical model versus String-Flip model

Niels-Uwe F. Bastian, (2021)

Infinite Mass — Infinite chiral condensate

Coulomb Gauge Model

$$\mu'(p) = \mu + C_F \int \frac{d^3q}{(2\pi)^3} V(\vec{p} - \vec{q}) \times \frac{1}{2} \left(n(\tilde{E}) - \bar{n}(\tilde{E}) \right)$$

$$A(p) = 1 + C_F \int \frac{d^3q}{(2\pi)^3} V(\vec{p} - \vec{q}) \times \frac{A(q) \, \hat{p} \cdot \hat{q}}{2\tilde{E}(q)} \left(1 - n(\tilde{E}) - \bar{n}(\tilde{E}) \right)$$

$$B(p) = m + C_F \int \frac{d^3q}{(2\pi)^3} V(\vec{p} - \vec{q}) \times \frac{B(q)}{2\tilde{E}(q)} \left(1 - n(\tilde{E}) - \bar{n}(\tilde{E}) \right)$$

$$\tilde{E}(p) = \sqrt{A(p)^2 p^2 + B(p)^2}$$

$$n(\tilde{E}) = \frac{1}{e^{\beta(\tilde{E}(q) - \mu'(q))} + 1}.$$
Conf. via:
A -> Infinity
thermal weights -> 0;
non-sense??
Quark Suppression

proton wavefunction

G. Krein EPJA 18 (2003)

Bicudo et. al. PRD 45 5 (1992)

also recently

K. Fukushima, T. Kojo, W. Weise Phys. Rev. D 102, 096017 (2020)

PRELIMINARY

SUMMARY & CONCLUSIONS

- Inherent gluon scale essential for modelling interacting Fermi surface —> natural density-dependence.
- Non-local cut-off —> essential, quantifiable contributions to cs^2 and χ_2 & not a scale to be removed.
- cs^2 and χ_2 reach asymptotic limit in a dynamical model.
- χ_2 along finite T (zero μ) reaches asymptotic limit in a dynamical model.
- (De)confinement and chiral symmetry essential ingredients at intermediate densities and temperatures.

BACK UP SLIDES

(Non-Local) NJL with Diquark

$$m_{p}^{*} = m + \gamma_{p} 2G_{s} N_{f} \int \frac{d^{3}q}{(2\pi)^{3}} \gamma_{q} \frac{4m_{q}^{*}}{2E_{q}} [1 - n(E_{q}^{-}) - n(E_{q}^{+}) + \frac{E_{q}^{+}}{\epsilon_{d}^{+}(q)} (1 - 2n(\epsilon_{d}^{+}(q))) + \frac{E_{q}^{-}}{\epsilon_{d}^{-}(q)} (1 - 2n(\epsilon_{d}^{-}(q)))]$$

$$\mu_{p}^{*} = \mu - \gamma_{p} 2G_{v} N_{f} \int \frac{d^{3}q}{(2\pi)^{3}} \gamma_{q} \frac{4}{2} [n(E_{q}^{-}) - n(E_{q}^{+}) + \frac{E_{q}^{+}}{\epsilon_{d}^{+}(q)} (1 - 2n(\epsilon_{d}^{+}(q))) - \frac{E_{q}^{-}}{\epsilon_{d}^{-}(q)} (1 - 2n(\epsilon_{d}^{-}(q)))]$$

$$\Delta_{p} = \gamma_{p} 2G_{d} N_{f} \int \frac{d^{3}q}{(2\pi)^{3}} \gamma_{q} \Delta_{q} \frac{4}{2} \left[\frac{1 - 2n(\epsilon_{d}^{+}(q))}{\epsilon_{d}^{+}(q)} + \frac{1 - 2n(\epsilon_{d}^{-}(q))}{\epsilon_{d}^{-}(q)} \right]$$

$$E_{q} = \sqrt{p^{2} + (m_{q}^{*})^{2}}$$

$$E_{q}^{\pm} = V_{q} \frac{p^{2}}{2} + (m_{q}^{*})^{2}$$

$$E_{q}^{\pm} = E_{q} \pm \mu_{q}^{*}$$

$$\epsilon_{d}^{\pm}(q) = \sqrt{(E_{q}^{\pm})^{2} + \Delta_{q}^{2}} \longrightarrow \qquad \text{Quasi-particle property}$$

$$\text{modified}$$

DIQ

Non-locality of constituent mass, chemical potential and diquark pairing gap

Verify this

Chiral Susceptibility: Dynamical model (w/i confinement)

Diquark Gap

Speed of Sound: Dynamical model (w/i confinement)

SPEED OF SOUND

CHIRAL SUSCEPTIBILITY

$$\begin{split} n(x) &= \frac{1}{1 + \exp(x/T)} \\ \sigma &= f(\sigma, \omega, \Delta) \\ \sigma &= \frac{4 * 2G_s}{2\pi^2} \int dq \, q^2 \, \gamma(q) \frac{M_q}{2E_q} \big[1 - n(E_q^+) - n(E_q^-) + \frac{E_q^+}{\epsilon_q^+} \big(1 - 2n(\epsilon_q^+) \big) \big] + \frac{E_q^-}{\epsilon_q^-} \big(1 - 2n(\epsilon_q^-) \big) \big] \\ & \omega &= f(\sigma, \omega, \Delta) \\ \omega &= \frac{4 * 2G_v}{2 * 2\pi^2} \int dq \, q^2 \, \gamma(q) \big[n(E_q^-) - n(E_q^+) + \frac{E_q^+}{\epsilon_q^+} \big(1 - 2n(\epsilon_q^+) \big) - \frac{E_q^-}{\epsilon_q^-} \big(1 - 2n(\epsilon_q^-) \big) \big] \\ & \Delta &= f(\sigma, \omega, \Delta) \\ \Delta &= \frac{4 * 2G_d}{2 * 2\pi^2} \int dq \, q^2 \, \gamma(q) \Delta \big[\frac{1}{\epsilon_q^+} \big(1 - 2n(\epsilon_q^+) \big) + \frac{1}{\epsilon_q^-} \big(1 - 2n(\epsilon_q^-) \big) \big] \end{split}$$

Omega mean field in non-local NJL model

SPEED OF SOUND V/S CHIRAL SUSCEPTIBILITY

Non-local cut-off is inherent gluon interaction scale