Various GW emission mechanisms from CCSNe

Max-Planck-Institut für Gravitationsphysik ALBERT-EINSTEIN-INSTITUT

Takami Kuroda (MPI for Gravitational Physics)

$$\begin{split} h^{ij}(t,\mathbf{x}) &= \frac{2Gm}{Rc^4} \bigg\{ Q^{ij} + \frac{1}{c} Q^{ij}_{0.5\text{PN}} + \frac{1}{c^2} Q^{ij}_{1\text{PN}} + \frac{1}{c^3} Q^{ij}_{1.5\text{PN}} \overset{h(t)}{} \\ &+ \frac{1}{c^4} Q^{ij}_{2\text{PN}} + \frac{1}{c^5} Q^{ij}_{2.5\text{PN}} + \dots \bigg\}, \end{split}$$

Post-Newtonian techniques

BNS(/BBH).

Brainstorming workshop: Deciphering the equation of state using gravitational waves from BNS(/BBH).

gravitational waves from

Three major phases in SN

- Collapse and bounce
- PNS contraction
- •Either explosion or BH

Comparison of Multi-Messenger signals between BNS/BBH and CCSN in terms of GWs

Order-of-magnitude estimation of GW amplitude

$$h_{ij} = \frac{2G}{c^4 D} \ddot{I}_{ij} \sim \epsilon \frac{R_s}{D}$$

or in terms of detection horizon D

CCSN

ε: ~0.01-0.1 R_s: ~10km v: ~0.1c $D \sim \epsilon \frac{R_s}{h} \left(\frac{v}{c}\right)^2$ ~a few 10 kpc

We can detect only the Galactic SNe (or SMC/LMC ~50kpc)

- ε: asphericity
- $\left(\frac{v}{c}\right)^2$ $\left(\frac{v}{c}\right)^2$ $R_s: size$ D: source distance
 - v: velocity

BNS/BBH

~10-100(?) ~km ~0.1-0.3c

~100Mpc (for h~10⁻²¹)

CCSN (D~10kpc) ~0.01/galaxy/yr Rate **EM** waves **Neutrinos** (D_{neutrino}~800kpc with SK)

> The chance of GW detection from SN is still low, <one event/(10yr). So it is important to explore their GWs/neutrinos/EM waves emission mechanisms not to miss once-in-a-lifetime event.

Sophisticated SN modeling and GW prediction are essential

GW emissions from SN

- 3 major emission mechanisms
- 1. Rotational bounce
- 2. g/f-mode oscillation of PNS
- 3. SASI motion

—>Dh~100cm —>Dh~10cm —>Dh~10cm

GW emissions from SN **3 major emission mechanisms 1. Rotational bounce** g/f-mode oscillation of PNS

GW emissions from SN 3 major emission mechanisms 1. Rotational bounce

Type I signal —> Linear correlation between $|h|_{max}$ and β_b

From modern stellar evolution, β_i<~0.1% (Heger+,'05,Yoon&Langer,'08) —>β_b<~1%

GW emissions from SN 3 major emission mechanisms 1. Rotational bounce

3 major emissi
1. Rotational
2. g/f-mode os
3. SASI motio

2. g/f-mode oscillation of PNS

3. SASI moti Asteroseismology may identify the excited mode. E.g., Morozova+2018, Torres-Forne+2017,2019, Sotani, Kuroda+2017

GW emissions from SN 3 major emission mechanisms **1. Rotational bounce** 2. g/f-mode oscillation of PNS

- 3. SASI motion

$$F_{\text{peak}} = \frac{1}{2\pi} \sqrt{\frac{1.1m_{\text{n}}}{\langle \varepsilon_{\bar{\nu}_e} \rangle}} \frac{GM}{R^2} \left(1 - \frac{GM}{Rc^2} \right)^{3/2}$$

~540Hz

~500Hz

Thus higher f_{f/g/p}.

I.e. $f_{f/p} \propto sqrt(M/R^3) \sim sqrt < \rho >$ $\mathbf{f}_{\{g\}} = \frac{1}{2\pi} \sqrt{\frac{1.1m_{\rm n}}{\langle \varepsilon_{\bar{\nu}_{\rm c}} \rangle}} \frac{GM}{R^2} \left(1 - \frac{GM}{Rc^2}\right)^{3/2}$

Softer EOS leads to more compact PNS (i.e. smaller R).

From asteroseismology, the actual GWs are expected to be contaminated by many modes (e.g. f/g/p/w=modes).

Torres-Forne+,'19

Not only the nuclear EOS but also **low-density EOS** can affect on the F_{peak}.

GW emissions from SN 3 major emission mechanisms **1. Rotational bounce** 2. g/f-mode oscillation of PNS

3. SASI motion

SASI-indued low-frequency GWs

SFHX (Steiner,'13)

TM1 (Hempel&Schaffner-Bielichi,'10): stiffer EOS, less SASI activity : softer EOS, more SASI activity

Deviations from cylindrical average

Shibagaki, TK, Takiwaki, Kotake, arXiv:1909.09730

Another example of EOS dependence: QCD phase transition GW signals (canonical case: 11.2M_{sun})

Another example of EOS dependence: QCD phase transition GW signals (PT case: 50M_{sun})

Another example of EOS dependence: QCD phase transition

GW signals

Deciphering the EOS via BH formation

Deciphering the EOS via BH formation

- Summary The nuclear EOS, which sensitively affects on the SN explosion, imprints its various features into the emergent GWs.
- The low-density EOS is a key factor as well. From those features (if detected), one might be able to decipher the EOS via SN core dynamics.
- One of noteworthy features is that we would detect higher frequency GWs for softer EOS. (Notice the same tendency for mass and rotation)
- The emergence of active SASI favors softer EOSs —> stronger GWs.
- BH formation time, which is influenced by EOS, also tells us about the EOS.

Discussion

3 major emission mechanisms g/f-mode oscillation of PNS

The biggest uncertainty is the observational angle

Discussion

3 major emission mechanisms 2. g/f-mode oscillation of PNS

Discussion

3 major emission mechanisms 2. g/f-mode oscillation of PNS

E.g. from $(M,R) = (1.4M_{sun}, 20km)$ to $(M,R)=(1.75M_{sun}, 12km)$ the frequency can be increased by a factor of ~2.4 for $f_f(\propto \sqrt{M/R^3})$ and of ~3.3 for $f_g(\propto M/R^2)$

