Takami Kuroda (MPI for Gravitational Physics)

Various GW emission mechanisms from CCSNe

Max-Planck-Institut für Gravitationsphysik ALBERT-EINSTEIN-INSTITUT

Brainstorming workshop: Deciphering the equation of state using BNS(/BBH).gravitational waves from

$$
h^{ij}(t,\mathbf{x}) = \frac{2Gm}{Rc^4} \left\{ Q^{ij} + \frac{1}{c} Q^{ij}_{0.5\text{PN}} + \frac{1}{c^2} Q^{ij}_{1\text{PN}} + \frac{1}{c^3} Q^{ij}_{1.5\text{PN}} \right\}_{i,j=1}^{h(t)}
$$

+
$$
\frac{1}{c^4} Q^{ij}_{2\text{PN}} + \frac{1}{c^5} Q^{ij}_{2.5\text{PN}} + \dots \right\},
$$

Post-Newtonian techniques

Brainstorming workshop: Deciphering the equation of state using BNS(/BBH).gravitational waves from

gravitational waves from

- •Collapse and bounce
- •PNS contraction
- •Either explosion or BH

Three major phases in SN

Comparison of Multi-Messenger signals between BNS/BBH and CCSN in terms of GWs

$$
h_{ij} = \frac{2G}{c^4 D} \ddot{i}_j \sim \epsilon \frac{R_s}{D} \left(
$$

Order-of-magnitude estimation of GW amplitude

- **ε: asphericity**
- **Rs: size**
- **D: source distance**
- **v: velocity**

or in terms of detection horizon D

CCSN BNS/BBH

 \sim **100Mpc (for h~10-21)**

D ∼ *ϵ Rs h* (*v c*) 2 **ε: ~0.01-0.1 ~10-100(?) Rs: ~10km ~km v: ~0.1c ~0.1-0.3c**

We can detect only the Galactic SNe (or SMC/LMC ~50kpc)

EM waves $\qquad \qquad \qquad$ (*v*) Neutrinos \checkmark \checkmark **(Dneutrino~800kpc with SK)**

The chance of GW detection from SN is still low, <one event/(10yr). So it is important to explore their GWs/neutrinos/EM waves emission mechanisms not to miss once-in-a-lifetime event.

Sophisticated SN modeling and GW prediction are essential

GW emissions from SN

- **3 major emission mechanisms**
- **1. Rotational bounce**
- **2. g/f-mode oscillation of PNS**
- **3. SASI motion**

—>Dh~100cm —>Dh~10cm —>Dh~10cm

3 major emission mechanisms 1. Rotational bounce 2. g/f-mode oscillation of PNS GW emissions from SN

2. g(?)-mode oscillation above the PNS 3. SASI motion Type I signal —> Linear correlation between |h|max and β^b

3 major emission mechanisms 1. Rotational bounce GW emissions from SN

From modern stellar evolution, βi<~0.1% (Heger+,'05,Yoon&Langer,'08) —>βb<~1%

1. Rotational bounce

2. g/f-mode oscillation of PNS

3 major emission mechanisms GW emissions from SN

3. SASI moti Asteroseismology may identify the excited mode. E.g., Morozova+2018, Torres-Forne+2017,2019, Sotani, Kuroda+2017

3 major emission mechanisms 1. Rotational bounce 2. g/f-mode oscillation of PNS GW emissions from SN

3. SASI motion

$$
Fpeak - 600 Hz
$$

(@t_{pb}=175ms)

$$
F_{\rm peak} = \frac{1}{2\pi} \sqrt{\frac{1.1 m_{\rm n}}{\langle \varepsilon_{\bar{\nu}_e} \rangle}} \frac{GM}{R^2} \left(1 - \frac{GM}{Rc^2} \right)^{3/2}
$$

 $-540Hz$ $-500Hz$

Softer EOS leads to more compact PNS (i.e. smaller R).

Thus higher f{f/g/p}.

I.e. $f_{\{f/p\}}\propto \sqrt{(M/R^3)}$ ~sqrt< ρ > $\mathsf{f}_{\{\mathsf{g}\}}=\frac{1}{2\pi}\sqrt{\frac{1.1m_\mathrm{n}}{\langle \varepsilon_{\bar{\nu}_e} \rangle}}\frac{GM}{R^2}\left(1-\frac{GM}{Rc^2}\right)^{3/2}$

Torres-Forne+,'19

From asteroseismology, the actual GWs are expected to be contaminated by many modes (e.g. f/g/p/w=modes).

Not only the nuclear EOS but also low-density EOS can affect on the Fpeak.

3 major emission mechanisms 1. Rotational bounce 2. g/f-mode oscillation of PNS 3. SASI motion GW emissions from SN

SASI-indued low-frequency GWs

TM1 (Hempel&Schaffner-Bielichi,'10): stiffer EOS, less SASI activity SFHx (Steiner,'13) : softer EOS, more SASI activity

Deviations from cylindrical average

Shibagaki, TK, Takiwaki, Kotake, arXiv:1909.09730

GW signals (canonical case: 11.2Msun) Another example of EOS dependence: QCD phase transition

S50 $\begin{bmatrix} 5 & 2 \\ 0 & 2 \end{bmatrix}$ \prec \sim ns I= 0 2000 1500 $F[\underline{Hz}]$ 1000

500 00
 t_{pb} [ms]
(c) 100 200 400 0 TK, Fischer+,'21 (see also Zha+,'20)

GW signals (PT case: 50Msun) Another example of EOS dependence: QCD phase transition

GW signals

Another example of EOS dependence: QCD phase transition

Deciphering the EOS via BH formation

Deciphering the EOS via BH formation

- **The nuclear EOS, which sensitively affects on the SN explosion, imprints its various features into the emergent GWs. Summary**
- **The low-density EOS is a key factor as well. From those features (if detected), one might be able to decipher the EOS via SN core dynamics.**
-
- **One of noteworthy features is that we would detect higher frequency GWs for softer EOS. (Notice the same tendency for mass and rotation)**
- **The emergence of active SASI favors softer EOSs —> stronger GWs.**
- **BH formation time, which is influenced by EOS, also tells us about the EOS.**

Discussion

3 major emission mechanisms 2. g/f-mode oscillation of PNS

The biggest uncertainty is the observational angle

Discussion

3 major emission mechanisms 2. g/f-mode oscillation of PNS

Discussion

E.g. from (M,R)=(1.4Msun,20km) to (M,R)=(1.75Msun,12km) the frequency can be increased by a factor of ~2.4 for f_f ($\propto \sqrt{M/R^3}$) and of ~3.3 for $f_g(\propto M/R^2)$

3 major emission mechanisms 2. g/f-mode oscillation of PNS